Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Q1—Tools for Commissioning and QA
2.2. Q2—Image Registration and Utilities to Optimize Information from Previous Implants
2.3. Q3—MRI Contouring:Removing the Endocavitary Component
2.4. Q4—Catheter Reconstruction: Endocavitary Component Library
2.5. Q5—Needle Reconstruction: Interstitial Component
2.6. Q6—Interpolated Images
2.7. Q7—Use of EQD2 in the Optimization Process
2.8. Q8—EQD2 Combination with EBRT: Optimal and Mandatory Constraints
2.9. Q9—Dwell-Time Locking
2.10. Q10—Optimization Methods: Implementation of D90 and D2cc
2.11. Q11—DVH Resolution
2.12. Q12—D2cc Location
2.13. Q13—Model-Based Dose Calculation Algorithms (MBDCA)
3. Results
3.1. A1—Tools for Commissioning and QA
3.2. A2—Image Registration and Utilities to Optimize Information from Previous Treatments
3.3. A3—MRI Contouring: Removing the Endocavitary Component
3.4. A4—Catheter Reconstruction: Endocavitary Component Library
3.5. A5—Needle Reconstruction: Interstitial Component
3.6. A6—Interpolated Images
3.7. A7—Use of EQD2 in the Optimization Process
3.8. A8—EQD2 Combination with External RT: Optimal and Mandatory Constraints
3.9. A9—Dwell-Time Locking
3.10. A10—Optimization Methods: Implementation of D90 and D2cc
3.11. A11—DVH Resolution
3.12. A12—D2cc Location
3.13. A13—Model-Based Dose Calculation Algorithms (MBDCA)
3.14. Summary
- More agile data insertion, making it possible to work with data lists and more advanced tools that help in the commissioning and QA of the TPS.
- Regarding applicator reconstruction, explore the possibilities of automatic reconstruction using, for example, AI-based tools. Furthermore, research on the design of new dummies is needed regarding needle reconstruction and the use of such new tools.
- It would be helpful if the optimization algorithms could handle biological dose equivalents (EQD2) to dispense with external tools.
- Due to the relationship of “hot spots” in OARs with their toxicity, a suitable tool for locating such spots would be desirable.
- Finally, integrating deformable registration algorithms in the TPS would be very helpful.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cibula, D.; Pötter, R.; Planchamp, F.; Avall-Lundqvist, E.; Fischerova, D.; Haie Meder, C.; Köhler, C.; Landoni, F.; Lax, S.; Lindegaard, J.C.; et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients with Cervical Cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2018, 127, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, M.D.; Eifel, P.J. Figo IIIB Squamous Cell Carcinoma of the Cervix: An Analysis of Prognostic Factors Emphasizing the Balance between External Beam and Intracavitary Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 763–775. [Google Scholar] [CrossRef]
- Nag, S.; Erickson, B.; Thomadsen, B.; Orton, C.; Demanes, J.D.; Petereit, D. The American Brachytherapy Society Recommendations for High-Dose-Rate Brachytherapy for Carcinoma of the Cervix. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 201–211. [Google Scholar] [CrossRef]
- Han, K.; Milosevic, M.; Fyles, A.; Pintilie, M.; Viswanathan, A.N. Trends in the Utilization of Brachytherapy in Cervical Cancer in the United States. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 111–119. [Google Scholar] [CrossRef]
- Tanderup, K.; Eifel, P.J.; Yashar, C.M.; Pötter, R.; Grigsby, P.W. Curative Radiation Therapy for Locally Advanced Cervical Cancer: Brachytherapy Is NOT Optional. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 537–539. [Google Scholar] [CrossRef]
- Holschneider, C.H.; Petereit, D.G.; Chu, C.; Hsu, I.-C.; Ioffe, Y.J.; Klopp, A.H.; Pothuri, B.; Chen, L.-M.; Yashar, C. Brachytherapy: A Critical Component of Primary Radiation Therapy for Cervical Cancer: From the Society of Gynecologic Oncology (SGO) and the American Brachytherapy Society (ABS). Brachytherapy 2019, 18, 123–132. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network Cervical Cancer (Version 1.2022). Available online: https://www.nccn.org/guidelines/guidelines-detail (accessed on 17 May 2022).
- Haie-Meder, C.; Pötter, R.; Van Limbergen, E.; Briot, E.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Hellebust, T.P.; Kirisits, C.; Lang, S.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and Terms in 3D Image Based 3D Treatment Planning in Cervix Cancer Brachytherapy with Emphasis on MRI Assessment of GTV and CTV. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2005, 74, 235–245. [Google Scholar] [CrossRef]
- Pötter, R.; Haie-Meder, C.; Van Limbergen, E.; Barillot, I.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Erickson, B.; Lang, S.; Nulens, A.; et al. Recommendations from Gynaecological (GYN) GEC ESTRO Working Group (II): Concepts and Terms in 3D Image-Based Treatment Planning in Cervix Cancer Brachytherapy-3D Dose Volume Parameters and Aspects of 3D Image-Based Anatomy, Radiation Physics, Radiobiology. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2006, 78, 67–77. [Google Scholar] [CrossRef]
- Nag, S. Controversies and New Developments in Gynecologic Brachytherapy: Image-Based Intracavitary Brachytherapy for Cervical Carcinoma. Semin. Radiat. Oncol. 2006, 16, 164–167. [Google Scholar] [CrossRef]
- Potter, R.; Kirisits, C.; Fidarova, E.F.; Dimopoulos, J.C.A.; Berger, D.; Tanderup, K.; Lindegaard, J.C. Present Status and Future of High-Precision Image Guided Adaptive Brachytherapy for Cervix Carcinoma. Acta Oncol. Stockh. Swed. 2008, 47, 1325–1336. [Google Scholar] [CrossRef] [Green Version]
- Hellebust, T.P.; Kirisits, C.; Berger, D.; Pérez-Calatayud, J.; De Brabandere, M.; De Leeuw, A.; Dumas, I.; Hudej, R.; Lowe, G.; Wills, R.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: Considerations and Pitfalls in Commissioning and Applicator Reconstruction in 3D Image-Based Treatment Planning of Cervix Cancer Brachytherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 96, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, J.C.A.; Petrow, P.; Tanderup, K.; Petric, P.; Berger, D.; Kirisits, C.; Pedersen, E.M.; van Limbergen, E.; Haie-Meder, C.; Pötter, R. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic Principles and Parameters for MR Imaging within the Frame of Image Based Adaptive Cervix Cancer Brachytherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2012, 103, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Pötter, R.; Georg, P.; Dimopoulos, J.C.A.; Grimm, M.; Berger, D.; Nesvacil, N.; Georg, D.; Schmid, M.P.; Reinthaller, A.; Sturdza, A.; et al. Clinical Outcome of Protocol Based Image (MRI) Guided Adaptive Brachytherapy Combined with 3D Conformal Radiotherapy with or without Chemotherapy in Patients with Locally Advanced Cervical Cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2011, 100, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijkmans, E.C.; Nout, R.A.; Rutten, I.H.H.M.; Ketelaars, M.; Neelis, K.J.; Laman, M.S.; Coen, V.L.M.A.; Gaarenstroom, K.N.; Kroep, J.R.; Creutzberg, C.L. Improved Survival of Patients with Cervical Cancer Treated with Image-Guided Brachytherapy Compared with Conventional Brachytherapy. Gynecol. Oncol. 2014, 135, 231–238. [Google Scholar] [CrossRef]
- Nomden, C.N.; de Leeuw, A.A.C.; Roesink, J.M.; Tersteeg, R.J.H.A.; Moerland, M.A.; Witteveen, P.O.; Schreuder, H.W.; van Dorst, E.B.L.; Jürgenliemk-Schulz, I.M. Clinical Outcome and Dosimetric Parameters of Chemo-Radiation Including MRI Guided Adaptive Brachytherapy with Tandem-Ovoid Applicators for Cervical Cancer Patients: A Single Institution Experience. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2013, 107, 69–74. [Google Scholar] [CrossRef]
- Villafranca, E.; Navarrete, P.; Sola, A.; Muruzabal, J.C.; Aguirre, S.; Ostiz, S.; Sanchez, C.; Guarch, R.; Lainez, N.; Barrado, M. Image-Guided Brachytherapy in Cervical Cancer: Experience in the Complejo Hospitalario de Navarra. Rep. Pract. Oncol. Radiother. J. Gt. Cancer Cent. Poznan Pol. Soc. Radiat. Oncol. 2018, 23, 510–516. [Google Scholar] [CrossRef]
- Möller, S.; Mordhorst, L.B.; Hermansson, R.S.; Karlsson, L.; Granlund, U.; Riemarsma, C.; Sorbe, B. Combined External Pelvic Chemoradiotherapy and Image-Guided Adaptive Brachytherapy in Treatment of Advanced Cervical Carcinoma: Experience from a Single Institution. J. Contemp. Brachytherapy 2020, 12, 356–366. [Google Scholar] [CrossRef]
- Sturdza, A.; Pötter, R.; Fokdal, L.U.; Haie-Meder, C.; Tan, L.T.; Mazeron, R.; Petric, P.; Šegedin, B.; Jurgenliemk-Schulz, I.M.; Nomden, C.; et al. Image Guided Brachytherapy in Locally Advanced Cervical Cancer: Improved Pelvic Control and Survival in RetroEMBRACE, a Multicenter Cohort Study. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2016, 120, 428–433. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer (EMBRACE-I): A Multicentre Prospective Cohort Study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef]
- Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix. J. ICRU 2013, 13, 2. [CrossRef]
- Kirisits, C.; Lang, S.; Dimopoulos, J.; Berger, D.; Georg, D.; Pötter, R. The Vienna Applicator for Combined Intracavitary and Interstitial Brachytherapy of Cervical Cancer: Design, Application, Treatment Planning, and Dosimetric Results. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Nomden, C.N.; de Leeuw, A.A.C.; Moerland, M.A.; Roesink, J.M.; Tersteeg, R.J.H.A.; Jürgenliemk-Schulz, I.M. Clinical Use of the Utrecht Applicator for Combined Intracavitary/Interstitial Brachytherapy Treatment in Locally Advanced Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Derks, K.; Steenhuijsen, J.L.G.; van den Berg, H.A.; Houterman, S.; Cnossen, J.; van Haaren, P.; De Jaeger, K. Impact of Brachytherapy Technique (2D versus 3D) on Outcome Following Radiotherapy of Cervical Cancer. J. Contemp. Brachytherapy 2018, 10, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pötter, R.; Tanderup, K.; Kirisits, C.; de Leeuw, A.; Kirchheiner, K.; Nout, R.; Tan, L.T.; Haie-Meder, C.; Mahantshetty, U.; Segedin, B.; et al. The EMBRACE II Study: The Outcome and Prospect of Two Decades of Evolution within the GEC-ESTRO GYN Working Group and the EMBRACE Studies. Clin. Transl. Radiat. Oncol. 2018, 9, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, K.; Frederick, P.; Reynolds, R.K.; Tanner, E.; Comprehensive, R.H.L.; Urban, R. Cervical Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf (accessed on 17 May 2022).
- Mazeron, R.; Castelnau-Marchand, P.; Dumas, I.; Del Campo, E.R.; Kom, L.K.; Martinetti, F.; Farha, G.; Tailleur, A.; Morice, P.; Chargari, C.; et al. Impact of Treatment Time and Dose Escalation on Local Control in Locally Advanced Cervical Cancer Treated by Chemoradiation and Image-Guided Pulsed-Dose Rate Adaptive Brachytherapy. Radiother. Oncol. 2015, 114, 257–263. [Google Scholar] [CrossRef] [PubMed]
- IROC Houston Joint AAPM/IROC Houston Registry of Brachytherapy. Available online: http://rpc.mdanderson.org/RPC/BrachySeeds/Source_Registry.htm (accessed on 15 April 2022).
- Nath, R.; Anderson, L.L.; Meli, J.A.; Olch, A.J.; Stitt, J.A.; Williamson, J.F. Code of Practice for Brachytherapy Physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine. Med. Phys. 1997, 24, 1557–1598. [Google Scholar] [CrossRef] [Green Version]
- Bidmead, M.; Briot, E.; Burger, J.; Ferreira, I.; Grusell, E.; Kirisits, C.; Kneschaurek, P.; Kawczynska, M.M.; Marchetti, C.; Hellebust, T.P.; et al. A Practical Guide to Quality Control of Brachytherapy Equipment; ESTRO: Brussels, Belgium, 2004. [Google Scholar]
- Elfrink, R.J.M.; Van Kleffens, H.J.; Kolkman-Deurloo, I.K.K.; Aalbers, A.H.L.; Dries, W.J.F.; Rijnders, A.; Schaeken, B.; Venselaar, J.L.M. NCS Report 13: Quality Control in Brachytherapy: Current Practice and Minimum Requirements, 1st ed.; NCS: Delft, The Netherlands, 2000. [Google Scholar]
- Swamidas, J.; Kirisits, C.; De Brabandere, M.; Hellebust, T.P.; Siebert, F.-A.; Tanderup, K. Image Registration, Contour Propagation and Dose Accumulation of External Beam and Brachytherapy in Gynecological Radiotherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 143, 1–11. [Google Scholar] [CrossRef]
- Sabater, S.; Andres, I.; Sevillano, M.; Berenguer, R.; Machin-Hamalainen, S.; Arenas, M. Dose Accumulation during Vaginal Cuff Brachytherapy Based on Rigid/Deformable Registration vs. Single Plan Addition. Brachytherapy 2014, 13, 343–351. [Google Scholar] [CrossRef]
- Anderson, C.; Lowe, G.; Wills, R.; Inchley, D.; Beenstock, V.; Bryant, L.; Chapman, C.; Hoskin, P.J. Critical Structure Movement in Cervix Brachytherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2013, 107, 39–45. [Google Scholar] [CrossRef]
- Xu, Z.; Traughber, B.J.; Harris, E.; Podder, T.K. Effect of Applicator Removal from Target Volume for Cervical Cancer Patients Treated with Venezia High-Dose-Rate Brachytherapy Applicator. J. Contemp. Brachytherapy 2022, 14, 176–182. [Google Scholar] [CrossRef]
- Perez-Calatayud, J.; Kuipers, F.; Ballester, F.; Granero, D.; Richart, J.; Rodriguez, S.; Tormo, A.; Santos, M. Exclusive MRI-Based Tandem and Colpostats Reconstruction in Gynaecological Brachytherapy Treatment Planning. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2009, 91, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Nkiwane, K.S.; Pötter, R.; Fokdal, L.U.; Hoskin, P.; Pearcey, R.; Segedin, B.; Mahantshetty, U.; Kirisits, C. Use of Bladder Dose Points for Assessment of the Spatial Dose Distribution in the Posterior Bladder Wall in Cervical Cancer Brachytherapy and the Impact of Applicator Position. Brachytherapy 2015, 14, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Mazeron, R.; Champoudry, J.; Gilmore, J.; Dumas, I.; Goulart, J.; Oberlander, A.-S.; Rivin del Campo, E.; Diallo, I.; Lefkopoulos, D.; Haie-Meder, C. Intrafractional Organs Movement in Three-Dimensional Image-Guided Adaptive Pulsed-Dose-Rate Cervical Cancer Brachytherapy: Assessment and Dosimetric Impact. Brachytherapy 2015, 14, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.; Carlsson Tedgren, A.; Carrier, J.-F.; Davis, S.D.; Mourtada, F.; Rivard, M.J.; Thomson, R.M.; Verhaegen, F.; Wareing, T.A.; Williamson, J.F. Report of the Task Group 186 on Model-Based Dose Calculation Methods in Brachytherapy beyond the TG-43 Formalism: Current Status and Recommendations for Clinical Implementation. Med. Phys. 2012, 39, 6208–6236. [Google Scholar] [CrossRef] [Green Version]
- Pantelis, E.; Peppa, V.; Lahanas, V.; Pappas, E.; Papagiannis, P. BrachyGuide: A Brachytherapy-Dedicated DICOM RT Viewer and Interface to Monte Carlo Simulation Software. J. Appl. Clin. Med. Phys. 2015, 16, 5136. [Google Scholar] [CrossRef]
- Fonseca, G.P.; Reniers, B.; Landry, G.; White, S.; Bellezzo, M.; Antunes, P.C.G.; de Sales, C.P.; Welteman, E.; Yoriyaz, H.; Verhaegen, F. A Medical Image-Based Graphical Platform—Features, Applications and Relevance for Brachytherapy. Brachytherapy 2014, 13, 632–639. [Google Scholar] [CrossRef]
- Hrinivich, W.T.; Morcos, M.; Viswanathan, A.; Lee, J. Automatic Tandem and Ring Reconstruction Using MRI for Cervical Cancer Brachytherapy. Med. Phys. 2019, 46, 4324–4332. [Google Scholar] [CrossRef] [Green Version]
- Richart, J.; Otal, A.; Rodriguez, S.; Nicolás, A.I.; DePiaggio, M.; Santos, M.; Vijande, J.; Ballester, F.; Perez-Calatayud, J. A Practical MRI-Based Reconstruction Method for a New Endocavitary and Interstitial Gynaecological Template. J. Contemp. Brachytherapy 2015, 7, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Otal, A.; Richart, J.; Rodriguez, S.; Santos, M.; Perez-Calatayud, J. A Method to Incorporate Interstitial Components into the TPS Gynecologic Rigid Applicator Library. J. Contemp. Brachytherapy 2017, 9, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Shaaer, A.; Paudel, M.; Smith, M.; Tonolete, F.; Nicolae, A.; Leung, E.; Ravi, A. Evaluation of an MR-Only Interstitial Gynecologic Brachytherapy Workflow Using MR-Line Marker for Catheter Reconstruction. Brachytherapy 2020, 19, 642–650. [Google Scholar] [CrossRef]
- Shaaer, A.; Paudel, M.; Smith, M.; Tonolete, F.; Ravi, A. Deep-Learning-Assisted Algorithm for Catheter Reconstruction during MR-Only Gynecological Interstitial Brachytherapy. J. Appl. Clin. Med. Phys. 2022, 23, e13494. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.L. Image Registration and Data Fusion in Radiation Therapy. Br. J. Radiol. 2006, 79, S99–S108. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, Y.C.; Benedict, S.H.; Dyer, B.; Price, M.; Rong, Y.; Ravi, A.; Leung, E.; Beriwal, S.; Bernard, M.E.; et al. Dose Summation Strategies for External Beam Radiation Therapy and Brachytherapy in Gynecologic Malignancy: A Review from the NRG Oncology and NCTN Medical Physics Subcommittees. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Mikell, J.K.; Klopp, A.H.; Gonzalez, G.M.N.; Kisling, K.D.; Price, M.J.; Berner, P.A.; Eifel, P.J.; Mourtada, F. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e417–e422. [Google Scholar] [CrossRef] [Green Version]
- Hyer, D.E.; Sheybani, A.; Jacobson, G.M.; Kim, Y. The Dosimetric Impact of Heterogeneity Corrections in High-Dose-Rate 192Ir Brachytherapy for Cervical Cancer: Investigation of Both Conventional Point-A and Volume-Optimized Plans. Brachytherapy 2012, 11, 515–520. [Google Scholar] [CrossRef]
- Sinnatamby, M.; Nagarajan, V.; Reddy, K.S.; Karunanidhi, G.; Singhavajala, V. Comparison of Image-Based Three-Dimensional Treatment Planning Using AcurosTM BV and AAPM TG-43 Algorithm for Intracavitary Brachytherapy of Carcinoma Cervix. J. Radiother. Pract. 2016, 15, 254–262. [Google Scholar] [CrossRef]
- Hofbauer, J.; Kirisits, C.; Resch, A.; Xu, Y.; Sturdza, A.; Pötter, R.; Nesvacil, N. Impact of Heterogeneity-Corrected Dose Calculation Using a Grid-Based Boltzmann Solver on Breast and Cervix Cancer Brachytherapy. J. Contemp. Brachytherapy 2016, 8, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Kadoya, N.; Sato, S.; Hashimoto, S.; Nakajima, Y.; Miyasaka, Y.; Ito, K.; Umezawa, R.; Yamamoto, T.; Takahashi, N.; et al. Impact of a Commercially Available Model-Based Dose Calculation Algorithm on Treatment Planning of High-Dose-Rate Brachytherapy in Patients with Cervical Cancer. J. Radiat. Res. 2018, 59, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.-Y.; Zhou, J.-Y.; Xu, X.-T.; Guo, J.; Han, M.-F.; Gao, Y.-Z.; Du, H.; Stahl, J.N.; Maltz, J.S. Deep Learning-Based Auto-Segmentation of Clinical Target Volumes for Radiotherapy Treatment of Cervical Cancer. J. Appl. Clin. Med. Phys. 2022, 23, e13470. [Google Scholar] [CrossRef]
- Shi, J.; Ding, X.; Liu, X.; Li, Y.; Liang, W.; Wu, J. Automatic Clinical Target Volume Delineation for Cervical Cancer in CT Images Using Deep Learning. Med. Phys. 2021, 48, 3968–3981. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, Y.; Peng, Z.; Lv, Y.; Shi, W.; Wang, F.; Pei, X.; Xu, X.G. Evaluation of Deep Learning-Based Auto-Segmentation Algorithms for Delineating Clinical Target Volume and Organs at Risk Involving Data for 125 Cervical Cancer Patients. J. Appl. Clin. Med. Phys. 2020, 21, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, M.; Nunes, J.-C.; Chourak, H.; Largent, A.; Tahri, S.; Acosta, O.; De Crevoisier, R.; Lafond, C.; Barateau, A. Deep Learning Methods to Generate Synthetic CT from MRI in Radiotherapy: A Literature Review. Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. AIFB 2021, 89, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Beld, E.; Moerland, M.A.; Zijlstra, F.; Viergever, M.A.; Lagendijk, J.J.W.; Seevinck, P.R. MR-Based Source Localization for MR-Guided HDR Brachytherapy. Phys. Med. Biol. 2018, 63, 085002. [Google Scholar] [CrossRef] [PubMed]
- Beld, E.; Seevinck, P.R.; Schuurman, J.; Viergever, M.A.; Lagendijk, J.J.W.; Moerland, M.A. Development and Testing of a Magnetic Resonance (MR) Conditional Afterloader for Source Tracking in Magnetic Resonance Imaging-Guided High-Dose-Rate (HDR) Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 960–968. [Google Scholar] [CrossRef]
- Bert, C.; Kellermeier, M.; Tanderup, K. Electromagnetic Tracking for Treatment Verification in Interstitial Brachytherapy. J. Contemp. Brachytherapy 2016, 8, 448–453. [Google Scholar] [CrossRef] [Green Version]
- van Heerden, L.; Schiphof-Godart, J.; Christianen, M.; Mens, J.-W.; Franckena, M.; Maenhout, M.; Hoogeman, M.; Kolkman-Deurloo, I.-K. Accuracy of Dwell Position Detection with a Combined Electromagnetic Tracking Brachytherapy System for Treatment Verification in Pelvic Brachytherapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2021, 154, 249–254. [Google Scholar] [CrossRef]
Question | Description |
---|---|
Q1 | Tools for commissioning and QA. |
Q2 | Image registration and utilities to optimize information from previous treatments data. |
Q3 | MRI contouring. Removing the endocavitary component. |
Q4 | Catheter reconstruction. Endocavitary component library. |
Q5 | Needle reconstruction. Interstitial component. |
Q6 | Interpolated images. |
Q7 | Use of EQD2 in the optimization process. |
Q8 | EQD2 combination with external beam radiation therapy. (EBRT). Optimal and mandatory constrains. |
Q9 | Dwell times locking. |
Q10 | Optimization methods. Implementation of D90 and D2cc. |
Q11 | DVH resolution. |
Q12 | D2cc location. |
Q13 | Model-based dose calculation algorithms (MBDCA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otal, A.; Celada, F.; Chimeno, J.; Vijande, J.; Pellejero, S.; Perez-Calatayud, M.-J.; Villafranca, E.; Fuentemilla, N.; Blazquez, F.; Rodriguez, S.; et al. Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives. Cancers 2022, 14, 3467. https://doi.org/10.3390/cancers14143467
Otal A, Celada F, Chimeno J, Vijande J, Pellejero S, Perez-Calatayud M-J, Villafranca E, Fuentemilla N, Blazquez F, Rodriguez S, et al. Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives. Cancers. 2022; 14(14):3467. https://doi.org/10.3390/cancers14143467
Chicago/Turabian StyleOtal, Antonio, Francisco Celada, Jose Chimeno, Javier Vijande, Santiago Pellejero, Maria-Jose Perez-Calatayud, Elena Villafranca, Naiara Fuentemilla, Francisco Blazquez, Silvia Rodriguez, and et al. 2022. "Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives" Cancers 14, no. 14: 3467. https://doi.org/10.3390/cancers14143467
APA StyleOtal, A., Celada, F., Chimeno, J., Vijande, J., Pellejero, S., Perez-Calatayud, M.-J., Villafranca, E., Fuentemilla, N., Blazquez, F., Rodriguez, S., & Perez-Calatayud, J. (2022). Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives. Cancers, 14(14), 3467. https://doi.org/10.3390/cancers14143467