Clinicopathological and Prognostic Value of Survivin Expression in Surgically Resected Pancreatic Ductal Adenocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Tissue Microarray and Immunohistochemistry
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics and Outcome
3.2. Survivin Expression in Pancreatic Ductal Adenocarcinoma
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Recalcitrant Cancer Research Act. Public Law 112-239, §108. 2012. 126 Stat. 1961–1963. Available online: https://www.congress.gov/bill/112th-congress/house-bill/733/text (accessed on 29 March 2022).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Pamarthy, R.; Vallabhaneni, M.; Sarfraz, S.; Ali, H.; Rafique, H. Pancreatic cancer incidence trends in the United States from 2000-2017: Analysis of Surveillance, Epidemiology and End Results (SEER) database. F1000Research 2021, 10, 529. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Safi, S.A.; Haeberle, L.; Fluegen, G.; Lehwald-Tywuschik, N.; Krieg, A.; Keitel, V.; Luedde, T.; Esposito, I.; Rehders, A.; Knoefel, W.T. Mesopancreatic excision for pancreatic ductal adenocarcinoma improves local disease control and survival. Pancreatology 2021, 21, 787–795. [Google Scholar] [CrossRef]
- Luttges, J.; Kloppel, G. Pancreatic ductal adenocarcinoma and its precursors. Pathologe 2005, 26, 12–17. [Google Scholar] [CrossRef]
- Benzel, J.; Fendrich, V. Familial Pancreatic Cancer. Oncol. Res. Treat. 2018, 41, 611–618. [Google Scholar] [CrossRef]
- Guo, J.; Xie, K.; Zheng, S. Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer. Int. J. Biol. Sci. 2016, 12, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.J.; Norris, A.L.; Petersen, G.M.; Bondy, M.L.; Brand, R.; Gallinger, S.; Kurtz, R.C.; Olson, S.H.; Rustgi, A.K.; Schwartz, A.G.; et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov. 2016, 6, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, E.M.; McKernin, S.E.; Brand, R.; Canto, M.; Goggins, M.; Moravek, C.; Nagarajan, A.; Petersen, G.M.; Simeone, D.M.; Yurgelun, M.; et al. Evaluating Susceptibility to Pancreatic Cancer: ASCO Provisional Clinical Opinion. J. Clin. Oncol. 2019, 37, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Contratto, M.; Miller, G.; Leichman, L.; Wu, J. Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations. World J. Clin. Oncol. 2017, 8, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Upadhrasta, S.; Zheng, L. Strategies in Developing Immunotherapy for Pancreatic Cancer: Recognizing and Correcting Multiple Immune "Defects" in the Tumor Microenvironment. J. Clin. Med. 2019, 8, 1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 2015, 47, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.M.; Gingras, M.C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.; Quinn, M.C.; et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016, 531, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Collisson, E.A.; Sadanandam, A.; Olson, P.; Gibb, W.J.; Truitt, M.; Gu, S.; Cooc, J.; Weinkle, J.; Kim, G.E.; Jakkula, L.; et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 2011, 17, 500–503. [Google Scholar] [CrossRef]
- Di Federico, A.; Mosca, M.; Pagani, R.; Carloni, R.; Frega, G.; De Giglio, A.; Rizzo, A.; Ricci, D.; Tavolari, S.; Di Marco, M.; et al. Immunotherapy in Pancreatic Cancer: Why Do We Keep Failing? A Focus on Tumor Immune Microenvironment, Predictive Biomarkers and Treatment Outcomes. Cancers 2022, 14, 2429. [Google Scholar] [CrossRef]
- Arlt, A.; Muerkoster, S.S.; Schafer, H. Targeting apoptosis pathways in pancreatic cancer. Cancer Lett. 2013, 332, 346–358. [Google Scholar] [CrossRef]
- Satoh, K.; Kaneko, K.; Hirota, M.; Masamune, A.; Satoh, A.; Shimosegawa, T. Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer 2001, 92, 271–278. [Google Scholar] [CrossRef]
- Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A unique target for tumor therapy. Cancer Cell Int. 2016, 16, 49. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Aljahdali, I.; Ling, X. Cancer therapeutics using survivin BIRC5 as a target: What can we do after over two decades of study? J. Exp. Clin. Cancer Res. 2019, 38, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheatley, S.P.; Altieri, D.C. Survivin at a glance. J. Cell Sci. 2019, 132, jcs223826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.A.; Park, G.S.; Lee, H.J.; Jung, J.H.; Kang, J.H.; Hong, Y.S.; Lee, K.S.; Kim, D.G.; Kim, S.N. Survivin expression and its clinical significance in pancreatic cancer. BMC Cancer 2005, 5, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauerbrei, W.; Taube, S.E.; McShane, L.M.; Cavenagh, M.M.; Altman, D.G. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. J. Natl. Cancer Inst. 2018, 110, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumors, 8th ed.; Wiley-Blackwell: Chichester, UK, 2017. [Google Scholar]
- Cupisti, K.; Lehwald, N.; Anlauf, M.; Riemer, J.; Werner, T.A.; Krieg, A.; Witte, J.; Chanab, A.; Baldus, S.E.; Krausch, M.; et al. Encapsulation status of papillary thyroid microcarcinomas is associated with the risk of lymph node metastases and tumor multifocality. Horm. Metab. Res. 2014, 46, 138–144. [Google Scholar] [CrossRef]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987, 8, 138–140. [Google Scholar]
- Mahotka, C.; Krieg, T.; Krieg, A.; Wenzel, M.; Suschek, C.V.; Heydthausen, M.; Gabbert, H.E.; Gerharz, C.D. Distinct in vivo expression patterns of survivin splice variants in renal cell carcinomas. Int. J. Cancer 2002, 100, 30–36. [Google Scholar] [CrossRef]
- Span, P.N.; Sweep, F.C.; Wiegerinck, E.T.; Tjan-Heijnen, V.C.; Manders, P.; Beex, L.V.; de Kok, J.B. Survivin is an independent prognostic marker for risk stratification of breast cancer patients. Clin. Chem. 2004, 50, 1986–1993. [Google Scholar] [CrossRef] [Green Version]
- Ghadimi, M.P.; Young, E.D.; Belousov, R.; Zhang, Y.; Lopez, G.; Lusby, K.; Kivlin, C.; Demicco, E.G.; Creighton, C.J.; Lazar, A.J.; et al. Survivin is a viable target for the treatment of malignant peripheral nerve sheath tumors. Clin. Cancer Res. 2012, 18, 2545–2557. [Google Scholar] [CrossRef] [Green Version]
- Krieg, A.; Mahotka, C.; Krieg, T.; Grabsch, H.; Muller, W.; Takeno, S.; Suschek, C.V.; Heydthausen, M.; Gabbert, H.E.; Gerharz, C.D. Expression of different survivin variants in gastric carcinomas: First clues to a role of survivin-2B in tumour progression. Br. J. Cancer 2002, 86, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Krieg, A.; Baseras, B.; Tomczak, M.; Verde, P.E.; Stoecklein, N.H.; Knoefel, W.T. Role of survivin as prognostic and clinicopathological marker in gastric cancer: A meta-analysis. Mol. Biol. Rep. 2013, 40, 5501–5511. [Google Scholar] [CrossRef] [PubMed]
- Werner, T.A.; Tamkan-Olcek, Y.; Dizdar, L.; Riemer, J.C.; Wolf, A.; Cupisti, K.; Verde, P.E.; Knoefel, W.T.; Krieg, A. Survivin and XIAP: Two valuable biomarkers in medullary thyroid carcinoma. Br. J. Cancer 2016, 114, 427–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, T.A.; Dizdar, L.; Nolten, I.; Riemer, J.C.; Mersch, S.; Schutte, S.C.; Driemel, C.; Verde, P.E.; Raba, K.; Topp, S.A.; et al. Survivin and XIAP-two potential biological targets in follicular thyroid carcinoma. Sci. Rep. 2017, 7, 11383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brany, D.; Dvorska, D.; Slavik, P.; Skolka, R.; Adamkov, M. Survivin and gynaecological tumours. Pathol. Res. Pract. 2017, 213, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Dizdar, L.; Oesterwind, K.A.; Riemer, J.C.; Werner, T.A.; Mersch, S.; Mohlendick, B.; Schutte, S.C.; Verde, P.E.; Raba, K.; Topp, S.A.; et al. Preclinical assesement of survivin and XIAP as prognostic biomarkers and therapeutic targets in gastroenteropancreatic neuroendocrine neoplasia. Oncotarget 2017, 8, 8369–8382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dizdar, L.; Tomczak, M.; Werner, T.A.; Safi, S.A.; Riemer, J.C.; Verde, P.E.; Stoecklein, N.H.; Knoefel, W.T.; Krieg, A. Survivin and XIAP expression in distinct tumor compartments of surgically resected gastric cancer: XIAP as a prognostic marker in diffuse and mixed type adenocarcinomas. Oncol. Lett. 2017, 14, 6847–6856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dizdar, L.; Junemann, L.M.; Werner, T.A.; Verde, P.E.; Baldus, S.E.; Stoecklein, N.H.; Knoefel, W.T.; Krieg, A. Clinicopathological and functional implications of the inhibitor of apoptosis proteins survivin and XIAP in esophageal cancer. Oncol. Lett. 2018, 15, 3779–3789. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.Q.; Hu, Y.; Xiao, H.J. The prognostic significance of survivin expression in patients with HNSCC: A systematic review and meta-analysis. BMC Cancer 2021, 21, 424. [Google Scholar] [CrossRef]
- Vay, C.; Schlunder, P.M.; Dizdar, L.; Esposito, I.; Ghadimi, M.P.H.; Knoefel, W.T.; Krieg, A. Targeting abundant survivin expression in liposarcoma: Subtype dependent therapy responses to YM155 treatment. J. Cancer Res. Clin. Oncol. 2021, 148, 633–645. [Google Scholar] [CrossRef]
- Sarela, A.I.; Verbeke, C.S.; Ramsdale, J.; Davies, C.L.; Markham, A.F.; Guillou, P.J. Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. Br. J. Cancer 2002, 86, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Tonini, G.; Vincenzi, B.; Santini, D.; Scarpa, S.; Vasaturo, T.; Malacrino, C.; Coppola, R.; Magistrelli, P.; Borzomati, D.; Baldi, A.; et al. Nuclear and cytoplasmic expression of survivin in 67 surgically resected pancreatic cancer patients. Br. J. Cancer 2005, 92, 2225–2232. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Qian, D.; Wang, Y.; Meng, L.; Chen, D.; Ji, X.; Feng, W. Survivin expression and serum levels in pancreatic cancer. World J. Surg. Oncol. 2015, 13, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.Q.; Zhang, H.Y.; Su, T.; Wang, X.H.; Zhang, L. Clinical significance of serum survivin in patients with pancreatic ductal adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3063–3068. [Google Scholar] [PubMed]
- Ballehaninna, U.K.; Chamberlain, R.S. Biomarkers for pancreatic cancer: Promising new markers and options beyond CA 19-9. Tumour. Biol. 2013, 34, 3279–3292. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Nguyen, T.T.; Hsu, C.H.; Bryant, K.L.; Kim, H.J.; Ying, H.; Erickson, J.W.; Der, C.J.; Cerione, R.A.; Antonyak, M.A. KRAS-dependent cancer cells promote survival by producing exosomes enriched in Survivin. Cancer Lett. 2021, 517, 66–77. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, J.; Liang, Z.Y.; Zhou, W.X.; Yuan, D.; Li, B.Q.; You, L.; Guo, J.C.; Zhao, Y.P. High nuclear Survivin expression as a poor prognostic marker in pancreatic ductal adenocarcinoma. J. Surg. Oncol. 2018, 118, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Specht, E.; Kaemmerer, D.; Sanger, J.; Wirtz, R.M.; Schulz, S.; Lupp, A. Comparison of immunoreactive score, HER2/neu score and H score for the immunohistochemical evaluation of somatostatin receptors in bronchopulmonary neuroendocrine neoplasms. Histopathology 2015, 67, 368–377. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O'Reilly, D.A.; Cunningham, D.; Wadsley, J.; et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011–1024. [Google Scholar] [CrossRef]
- Sinn, M.; Bahra, M.; Liersch, T.; Gellert, K.; Messmann, H.; Bechstein, W.; Waldschmidt, D.; Jacobasch, L.; Wilhelm, M.; Rau, B.M.; et al. CONKO-005: Adjuvant Chemotherapy With Gemcitabine Plus Erlotinib Versus Gemcitabine Alone in Patients After R0 Resection of Pancreatic Cancer: A Multicenter Randomized Phase III Trial. J. Clin. Oncol. 2017, 35, 3330–3337. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.L.; Chone, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Kami, K.; Doi, R.; Koizumi, M.; Toyoda, E.; Mori, T.; Ito, D.; Kawaguchi, Y.; Fujimoto, K.; Wada, M.; Miyatake, S.; et al. Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery 2005, 138, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Singh, N.; Kanwar, R.K.; Kanwar, J.R. Survivin Modulators: An Updated Patent Review (2011–2015). Recent Pat. Anticancer Drug Discov. 2016, 11, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, F.; Yazdani-Nafchi, F.; Banitalebi-Dehkordi, M.; Chehelgerdi, M.; Khorramian-Ghahfarokhi, M. Trace of survivin in cancer. Eur. J. Cancer Prev. 2019, 28, 365–372. [Google Scholar] [CrossRef]
- Yoon, D.H.; Shin, J.S.; Jin, D.H.; Hong, S.W.; Jung, K.A.; Kim, S.M.; Hong, Y.S.; Kim, K.P.; Lee, J.L.; Suh, C.; et al. The survivin suppressant YM155 potentiates chemosensitivity to gemcitabine in the human pancreatic cancer cell line MiaPaCa-2. Anticancer Res. 2012, 32, 1681–1688. [Google Scholar]
- Na, Y.S.; Yang, S.J.; Kim, S.M.; Jung, K.A.; Moon, J.H.; Shin, J.S.; Yoon, D.H.; Hong, Y.S.; Ryu, M.H.; Lee, J.L.; et al. YM155 induces EGFR suppression in pancreatic cancer cells. PLoS ONE 2012, 7, e38625. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Puszyk, W.M.; Lu, Z.; Ostrov, D.A.; George, T.J.; Robertson, K.D.; Liu, C. Small molecule inhibitor YM155-mediated activation of death receptor 5 is crucial for chemotherapy-induced apoptosis in pancreatic carcinoma. Molecular Cancer Ther. 2015, 14, 80–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.; Zhang, W.; Yan, D.; Kenath, R.; Le, L.; Wang, H.; Delitto, D.; Ostrov, D.; Robertson, K.; Liu, C.; et al. The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC. PLoS ONE 2020, 15, e0226917. [Google Scholar] [CrossRef] [PubMed]
- Boidot, R.; Végran, F.; Lizard-Nacol, S. Transcriptional regulation of the survivin gene. Mol. Biol. Rep. 2014, 41, 233–240. [Google Scholar] [CrossRef]
- Lyu, H.; Huang, J.; He, Z.; Liu, B. Epigenetic mechanism of survivin dysregulation in human cancer. Sci. China Life Sci. 2018, 61, 808–814. [Google Scholar] [CrossRef]
- Estève, P.O.; Chin, H.G.; Pradhan, S. Molecular mechanisms of transactivation and doxorubicin-mediated repression of survivin gene in cancer cells. J. Biol. Chem. 2007, 282, 2615–2625. [Google Scholar] [CrossRef] [Green Version]
- Smallwood, A.; Estève, P.O.; Pradhan, S.; Carey, M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007, 21, 1169–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, W.; Cai, D.; Zhang, B.; Lou, G.; Zou, X. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed. Pharmacother. 2015, 74, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.G.; Zhou, W.; Yee, N.S. Combined targeting of histone deacetylases and hedgehog signaling enhances cytoxicity in pancreatic cancer. Cancer Biol. Ther. 2009, 8, 1328–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pishvaian, M.J.; Blais, E.M.; Brody, J.R.; Lyons, E.; DeArbeloa, P.; Hendifar, A.; Mikhail, S.; Chung, V.; Sahai, V.; Sohal, D.P.S.; et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: A retrospective analysis of the Know Your Tumor registry trial. Lancet Oncol. 2020, 21, 508–518. [Google Scholar] [CrossRef]
Variables | No. of Patients (%) |
---|---|
Total | 236 |
Age | |
Median (range in years) | 68 (41–95 yrs.) |
Gender | |
Male | 126 (53.4%) |
Female | 110 (46.6%) |
Tumour localisation | |
Pancreatic head | 217 (91.9%) |
Pancreatic tail | 19 (8.1%) |
Primary tumour stage | |
T1 | 1 (0.4%) |
T2 | 11 (4.7%) |
T3 | 214 (90.7%) |
T4 | 10 (4.2%) |
Regional lymph node metastasis | |
N0 | 42 (17.8%) |
N1 | 194 (82.2%) |
Distant metastasis | |
M0 | 203 (86.0%) |
M1 | 33 (14.0%) |
UICC Stage | |
UICC IA | 0 |
UICC IB | 2 (0.8%) |
UICC IIA | 31 (13.1%) |
UICC IIB | 165 (69.9%) |
UICC III | 7 (3.0%) |
UICC IV | 31 (13.1%) |
Grading | |
G1/G2 | 125 (52.9%) |
G3 | 110 (46.6%) |
ND | 1 (0.5%) |
Perineural invasion | |
Pn0 | 23 (9.7%) |
Pn1 | 96 (40.7%) |
ND | 117 (49.6%) |
Lymphatic vessel invasion | |
L0 | 75 (31.8%) |
L1 | 91 (31.8%) |
ND | 70 (29.7%) |
Venous invasion | |
V0 | 116 (49.1%) |
V1 | 49 (20.8%) |
ND | 71 (30.1%) |
Residual tumour | |
R0 | 184 (78.0%) |
R1 | 52 (22.0%) |
Central tumour area | Tumour invasion front | Lymph node metastasis | |||||||
---|---|---|---|---|---|---|---|---|---|
Low (n = 125) | High (n = 95) | p-Value | Low (n = 92) | High (n = 97) | p-Value | Low (n = 51) | High (n = 97) | p-Value | |
Median age | |||||||||
≤68 yrs. | 72 (58.5%) | 51 (41.5%) | 0.586 | 50 (46.3%) | 58 (53.7%) | 0.466 | 29 (32.2%) | 61 (67.8%) | 0.484 |
>68 yrs. | 53 (54.6%) | 44 (45.4%) | 42 (51.9%) | 39 (48.1%) | 22 (37.9%) | 36 (62.1%) | |||
Gender | |||||||||
male | 57 (55.3%) | 46 (44.7%) | 0.685 | 45(45.5%) | 54 (44.5%) | 0.834 | 30 (38.0%) | 49 (62.0%) | 0.388 |
female | 68 (58.1%) | 49 (41.9%) | 47(52.2%) | 43 (47.8%) | 21 (30.4%) | 48 (69.6%) | |||
Primary tumour | |||||||||
T1/T2 | 5 (50.0%) | 5 (50.0%) | 0.750 | 3 (30.0%) | 7 (70.0%) | 0.334 | 3 (37.5%) | 5 (62.5%) | 1.000 |
T3/T4 | 118 (56.7%) | 90 (43.3%) | 87 (49.2%) | 90 (50.8%) | 47 (33.8%) | 92 (66.2%) | |||
Regional lymph node metastasis | |||||||||
N0 | 23 (53.5%) | 20 (46.5%) | 0.732 | 18 (51.4%) | 17 (48.6%) | 0.852 | 3 (50.0%) | 3 (50.0%) | 0.415 |
N1 | 102 (57.6%) | 75 (42.4%) | 74 (48.1%) | 80 (51.9%) | 48 (33.8%) | 94 (66.0%) | |||
Distant metastasis | |||||||||
M0 | 111 (58.4%) | 79 (41.6%) | 0.240 | 83(51.6%) | 78(48.4%) | 0.067 | 44 (35.5%) | 80 (64.5%) | 0.643 |
M1 | 14 (46.7%) | 16 (53.3%) | 9(32.1%) | 19(67.9%) | 7 (29.2%) | 17 (70.8%) | |||
UICC Stage | |||||||||
I/II | 107 (57.8%) | 78 (42.2%) | 0.577 | 79 (50.6%) | 77 (49.4%) | 0.257 | 44 (35.2%) | 81 (64.8%) | 0.812 |
III/IV | 18 (51.4%) | 17 (48.6%) | 13 (39.4%) | 20 (60.6%) | 7 (30.4%) | 16 (69.6%) | |||
Grading | |||||||||
G2 | 58 (51.3%) | 55 (48.7%) | 0.076 | 44 (44.0%) | 56 (56.0%) | 0.242 | 27 (35.1%) | 50 (64.9%) | 1.000 |
G3 | 66 (63.5%) | 38 (36.5%) | 47 (53.4%) | 41 (46.6%) | 24 (34.8%) | 45 (65.2%) | |||
Venous invasion | |||||||||
V0 | 62 (57.9%) | 45 (42.1%) | 0.483 | 43 (45.7%) | 51 (54.3%) | 0.850 | 25 (34.7%) | 47 (65.3%) | 0.836 |
V1 | 24 (51.1%) | 23 (48.9%) | 17 (43.6%) | 22 (56.4%) | 15 (38.5%) | 24 (61.5%) | |||
Lymphatic invasion | |||||||||
L0 | 36 (52.9%) | 32 (57.1%) | 0.416 | 28 (47.5%) | 31 (52.5%) | 0.604 | 17 (40.5%) | 25 (59.2%) | 0.543 |
L1 | 53 (60.2%) | 35 (39.8%) | 32 (42.7%) | 43 (57.3%) | 23 (33.8%) | 45 (66.2%) | |||
Perineural invasion | |||||||||
Pn0 | 16 (72.7%) | 6 (27.3%) | 0.147 | 12 (66.7%) | 6 (33.3%) | 0.035 | 8 (61.5%) | 5 (38.5%) | 0.064 |
Pn1 | 46 (52.9%) | 41 (47.1%) | 29 (37.7%) | 48 (62.3%) | 23 (32.9%) | 47 (67.1%) | |||
Residual tumour | |||||||||
R0 | 95 (55.2%) | 77 (44.8%) | 0.412 | 76 (50.7%) | 74 (39.3%) | 0.369 | 38 (33.3%) | 76 (66.7%) | 0.682 |
R1 | 30 (62.5%) | 18 (37.5%) | 16 (41.0%) | 23 (59.0%) | 13 (38.2%) | 21 (61.8%) |
Central tumour area | Tumour invasion front | Lymph node metastasis | |||||||
---|---|---|---|---|---|---|---|---|---|
Low (n = 127) | High (n = 93) | p-Value | Low (n = 97) | High (n = 92) | p-Value | Low (n = 63) | High (n = 85) | p-Value | |
Median age | |||||||||
≤68 yrs. | 67 (54.5%) | 56 (45.5%) | 0.336 | 49 (45.4%) | 59 (54.6%) | 0.077 | 40 (44.4%) | 50 (55.6%) | 0.612 |
>68 yrs. | 60 (61.9%) | 37 (38.1%) | 48 (59.3%) | 33 (40.7%) | 23 (39.7%) | 35 (60.3%) | |||
Gender | |||||||||
male | 68 (58.1%) | 49 (41.9%) | 1.000 | 47 (47.5%) | 52 (52.5%) | 0.309 | 33 (41.8%) | 46 (58.2%) | 0.869 |
female | 59 (57.3%) | 44 (42.7%) | 50 (55.6%) | 40 (44.4%) | 30 (43.5%) | 39 (56.5%) | |||
Primary tumour | |||||||||
T1/T2 | 8 (80.0%) | 2 (20.0%) | 0.197 | 6 (60.0%) | 4 (40.0%) | 0.749 | 3 (37.5%) | 5 (62.5%) | 1.000 |
T3/T4 | 118 (56.7%) | 90 (43.3%) | 91 (51.4%) | 86 (48.6%) | 60 (43.2%) | 79 (56.8%) | |||
Regional lymph node metastasis | |||||||||
N0 | 23 (53.5%) | 20 (46.5%) | 0.606 | 14 (40.0%) | 21 (60.0%) | 0.189 | 3 (50.0%) | 3 (50.0%) | 0.700 |
N1 | 104 (58.8%) | 73 (41.2%) | 83 (53.9%) | 71 (46.1%) | 60 (42.3%) | 82 (57.7%) | |||
Distant Metastasis | |||||||||
M0 | 116 (61.1%) | 74 (38.9%) | 0.016 | 86 (53.4%) | 75 (46.6%) | 0.219 | 52 (41.9%) | 72 (58.1%) | 0.822 |
M1 | 11 (36.7%) | 19 (63.3%) | 11 (39.3%) | 17 (60.7%) | 11 (45.8%) | 3 (54.2%) | |||
UICC Stage | |||||||||
I/II | 114 (61.6%) | 71 (38.4%) | 0.009 | 85 (54.5%) | 71 (45.5%) | 0.084 | 52 (41.6%) | 73 (58.4%) | 0.649 |
III/IV | 13 (37.1%) | 22 (62.9%) | 12 (36.4%) | 21 (63.6%) | 11 (47.8%) | 12 (52.2%) | |||
Grading | |||||||||
G2 | 65 (57.5%) | 48 (42.5%) | 1.000 | 50 (50.0%) | 50 (50.0%) | 0.772 | 32 (41.6%) | 45 (58.4%) | 0.739 |
G3 | 60 (57.7%) | 44 (42.3%) | 46 (52.3%) | 42 (47.7%) | 31 (44.9%) | 38 (55.1%) | |||
Venous invasion | |||||||||
V0 | 60 (56.1%) | 47 (43.9%) | 1.000 | 41 (43.6%) | 53 (56.4%) | 0.022 | 26 (36.1%) | 46 (63.9%) | 0.683 |
V1 | 27 (57.4%) | 20 (42.6%) | 26 (66.7%) | 13 (33.3%) | 16 (41.0%) | 23 (59.0%) | |||
Lymphatic invasion | |||||||||
L0 | 39 (57.4%) | 29 (42.6%) | 1.000 | 28 (47.5%) | 31 (52.5%) | 0.731 | 18 (42.9%) | 24 (57.1%) | 0.552 |
L1 | 50 (56.8%) | 38 (43.2%) | 38 (50.7%) | 37 (49.3%) | 25 (36.8%) | 43 (63.2%) | |||
Perineural invasion | |||||||||
Pn0 | 15 (68.2%) | 7 (31.8%) | 0.337 | 11 (61.1%) | 7 (38.9%) | 0.306 | 6 (46.2%) | 7 (53.8%) | 1.000 |
Pn1 | 48 (55.2%) | 39 (44.8%) | 36 (46.8%) | 41 (53. 2%) | 30 (42.9%) | 40 (57.1%) | |||
Residual tumour | |||||||||
R0 | 100 (58.1%) | 72 (41.9%) | 0.869 | 76 (50.7%) | 74 (49.3%) | 0.858 | 45 (39.5%) | 69 (60.5%) | 0.173 |
R1 | 27 (56.3%) | 21 (43.8%) | 21 (53.8%) | 18 (46.2%) | 18 (52.9%) | 16 (47.1%) |
Variable | Univariate analysis | Multivariate analysis | ||
---|---|---|---|---|
p-Value | HR | 95% CI | p-Value | |
Age (median 68 yrs.) | 0.009 | 1.737 | 1.121–2.692 | 0.013 |
Male vs. female | 0.490 | NS | NS | NS |
T1/2 vs. T3/4 | 0.432 | NS | NS | NS |
N0 vs. N1 | 0.384 | NS | NS | NS |
M0 vs. M1 | <0.001 | NS | NS | NS |
G1/2 vs. G3 | 0.071 | NS | NS | NS |
Pn0 vs. Pn1 | 0.427 | NS | NS | NS |
L0 vs. L1 | 0.794 | NS | NS | NS |
V0 vs. V1 | 0.021 | 1.615 | 1.024–2.546 | 0.039 |
R0 vs. R1 | 0.011 | 2.421 | 1.391–4.216 | 0.002 |
High vs. low nuclear survivin (central tumour area) | 0.769 | NS | NS | NS |
High vs. low nuclear survivin (invasion front) | 0.793 | NS | NS | NS |
High vs. low cytoplasmic survivin (central tumour area) | 0.782 | NS | NS | NS |
High vs. low cytoplasmic survivin (invasion front) | 0.072 | NS | NS | NS |
Variable | Patient subgroup | ||||
---|---|---|---|---|---|
R0 (n = 184) | R0 + M0 (n = 168) | M0 (n = 203) | Pancreatic head PDAC (n = 217) | Pancreatic tail PDAC (n = 19) | |
Age (median 68 yrs.) | 0.024 | 0.005 | 0.002 | 0.024 | 0.480 |
Male vs. female | 0.944 | 0.996 | 0.677 | 0.457 | 0.830 |
T1/2 vs. T3/4 | 0.561 | 000.511 | 0.647 | 0.682 | 0.480 |
UICC I/II vs. UICC III/IV 2 | 0.561 | 0.499 | 0.113 | 0.095 | 0.397 |
N0 vs. N1 | 0.950 | 0.601 | 0.651 | 0.203 | 0.074 |
M0 vs. M1 | 0.308 | — | — | 0.001 | 0.074 |
G1/2 vs. G3 | 0.939 | 0.775 | 0.183 | 0.052 | 0.818 |
Pn0 vs. Pn1 | 0.657 | 0.691 | 0.557 | 0.814 | 0.522 |
L0 vs. L1 | 0.374 | 0.207 | 0.462 | 0.819 | 0.046 |
V0 vs. V1 | 0.605 | 0.713 | 0.093 | 0.041 | 0.370 |
R0 vs. R1 | — | — | 0.347 | 0.056 | 0.047 |
High vs. low nuclear survivin (central tumour area) | 0.645 | 0.501 | 0.782 | 0.747 | 0.317 |
High vs. low nuclear survivin (invasion front) | 0.819 | 0.863 | 0.943 | 0.992 | 0.363 |
High vs. low cytoplasmic survivin (central tumour area) | 0.573 | 0.652 | 0.398 | 0.745 | 0.841 |
High vs. low cytoplasmic survivin (invasion front) | 0.025 | 0.029 | 0.037 | 0.481 | 0.022 |
Variable | Patient subgroup | ||||
---|---|---|---|---|---|
R0 (n = 184) | R0 + M0 (n = 168) | M0 (n = 203) | Pancreatic head PDAC (n = 217) | Pancreatic tail PDAC (n = 19) | |
Age (median 68 yrs.) | NS | 1.5 (1.0–2.2) | 1.5 (1.1–2.1) | NS | NS |
Male vs. female | NS | NS | NS | NS | NS |
T1/2 vs. T3/4 | NS | NS | NS | NS | NS |
UICC I/II vs. UICC III/IV 2 | NS | NS | NS | NS | NS |
N0 vs. N1 | NS | NS | NS | NS | NS |
M0 vs. M1 | NS | — | — | 2.1 (1.3–3.3) | NS |
G1/2 vs. G3 | NS | NS | NS | NS | NS |
Pn0 vs. Pn1 | NS | NS | NS | NS | NS |
L0 vs. L1 | NS | NS | NS | NS | NS |
V0 vs. V1 | NS | NS | NS | NS | NS |
R0 vs. R1 | — | — | NS | NS | NS |
High vs. low nuclear survivin (central tumour area) | NS | NS | NS | NS | 13.5 (1.4–129.7) |
High vs. low nuclear survivin (invasion front) | NS | NS | NS | NS | NS |
High vs. low cytoplasmic survivin (central tumour area) | NS | NS | NS | NS | NS |
High vs. low cytoplasmic survivin (invasion front) | NS | NS | NS | NS | NS |
Variable | Univariate analyses | Multivariate analyses | ||
---|---|---|---|---|
p-Value | HR | 95% CI | p-Value | |
Age (median 68 yrs.) | 0.481 | NS | NS | NS |
Male vs. female | 0.498 | NS | NS | NS |
T1/2 vs. T3/4 | 0.551 | NS | NS | NS |
N0 vs. N1 | 0.621 | NS | NS | NS |
M0 vs. M1 | 0.552 | NS | NS | NS |
G1/2 vs. G3 | 0.481 | NS | NS | NS |
Pn0 vs. Pn1 | 0.219 | NS | NS | NS |
L0 vs. L1 | 0.634 | NS | NS | NS |
V0 vs. V1 | 0.207 | NS | NS | NS |
R0 vs. R1 | 0.043 | 1.885 | 1.065-3.161 | 0.029 |
Nuclear survivin (central tumour area) | 0.024 | 1.798 | 1.037-3.118 | 0.012 |
Nuclear survivin (invasion front) | 0.050 | NS | NS | NS |
Cytoplasmic survivin (central tumour area) | 0.362 | NS | NS | NS |
Cytoplasmic survivin (invasion front) | 0.416 | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vay, C.; Babaei, S.; Safi, S.-A.; Dizdar, L.; Rehders, A.; Haeberle, L.; Roderburg, C.; Loosen, S.H.; Esposito, I.; Knoefel, W.T.; et al. Clinicopathological and Prognostic Value of Survivin Expression in Surgically Resected Pancreatic Ductal Adenocarcinoma. Cancers 2022, 14, 3494. https://doi.org/10.3390/cancers14143494
Vay C, Babaei S, Safi S-A, Dizdar L, Rehders A, Haeberle L, Roderburg C, Loosen SH, Esposito I, Knoefel WT, et al. Clinicopathological and Prognostic Value of Survivin Expression in Surgically Resected Pancreatic Ductal Adenocarcinoma. Cancers. 2022; 14(14):3494. https://doi.org/10.3390/cancers14143494
Chicago/Turabian StyleVay, Christian, Shahrooz Babaei, Sami-Alexander Safi, Levent Dizdar, Alexander Rehders, Lena Haeberle, Christoph Roderburg, Sven H. Loosen, Irene Esposito, Wolfram T. Knoefel, and et al. 2022. "Clinicopathological and Prognostic Value of Survivin Expression in Surgically Resected Pancreatic Ductal Adenocarcinoma" Cancers 14, no. 14: 3494. https://doi.org/10.3390/cancers14143494
APA StyleVay, C., Babaei, S., Safi, S.-A., Dizdar, L., Rehders, A., Haeberle, L., Roderburg, C., Loosen, S. H., Esposito, I., Knoefel, W. T., & Krieg, A. (2022). Clinicopathological and Prognostic Value of Survivin Expression in Surgically Resected Pancreatic Ductal Adenocarcinoma. Cancers, 14(14), 3494. https://doi.org/10.3390/cancers14143494