Real-World Experience of Measurable Residual Disease Response and Prognosis in Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patients and Treatment
2.2. Treatment, Monitoring and Follow Up
2.3. Response Assessments
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Prognostic Value of MRD by MFC in Patients Achieving Response
3.3. MRD Negativity at 0.1% Level Is an Independent Predictor for CIR, RFS, and OS
3.4. MRD Negativity at Treatment Termination Predicts for Lower Risk of Relapse
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivey, A.; Hills, R.K.; Simpson, M.A.; Jovanovic, J.V.; Gilkes, A.; Grech, A.; Patel, Y.; Bhudia, N.; Farah, H.; Mason, J.; et al. Assessment of Minimal Residual Disease in Standard-Risk AML. N. Engl. J. Med. 2016, 374, 422–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terwijn, M.; van Putten, W.L.; Kelder, A.; van der Velden, V.H.; Brooimans, R.A.; Pabst, T.; Maertens, J.; Boeckx, N.; de Greef, G.E.; Valk, P.J.; et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A study. J. Clin. Oncol. 2013, 31, 3889–3897. [Google Scholar] [CrossRef]
- Freeman, S.D.; Virgo, P.; Couzens, S.; Grimwade, D.; Russell, N.; Hills, R.K.; Burnett, A.K. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J. Clin. Oncol. 2013, 31, 4123–4131. [Google Scholar] [CrossRef]
- Short, N.J.; Zhou, S.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Nogueras Gonzalez, G.; Hwang, H.; et al. Association of Measurable Residual Disease with Survival Outcomes in Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 1890–1899. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; DiNardo, C.D.; Wang, S.A.; Jorgensen, J.; Kadia, T.M.; Daver, N.G.; Short, N.J.; Yilmaz, M.; Pemmaraju, N.; Borthakur, G.; et al. Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Adv. 2021, 5, 1876–1883. [Google Scholar] [CrossRef]
- Pratz, K.W.; Jonas, B.A.; Pullarkat, V.; Recher, C.; Schuh, A.C.; Thirman, M.J.; Garcia, J.S.; DiNardo, C.D.; Vorobyev, V.; Fracchiolla, N.S.; et al. Measurable Residual Disease Response and Prognosis in Treatment-Naïve Acute Myeloid Leukemia with Venetoclax and Azacitidine. J. Clin. Oncol. 2022, 40, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D.; Beach, C.L.; Mahmoud, D.; Weber, L.; Henk, H.J. Survival and hospitalization among patients with acute myeloid leukemia treated with azacitidine or decitabine in a large managed care population: A real-world, retrospective, claims-based, comparative analysis. Exp. Hematol. Oncol. 2014, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Winters, A.C.; Gutman, J.A.; Purev, E.; Nakic, M.; Tobin, J.; Chase, S.; Kaiser, J.; Lyle, L.; Boggs, C.; Halsema, K.; et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv. 2019, 3, 2911–2919. [Google Scholar] [CrossRef] [Green Version]
- Boddu, P.; Jorgensen, J.; Kantarjian, H.; Borthakur, G.; Kadia, T.; Daver, N.; Alvarado, Y.; Pemmaraju, N.; Bose, P.; Naqvi, K.; et al. Achievement of a negative minimal residual disease state after hypomethylating agent therapy in older patients with AML reduces the risk of relapse. Leukemia 2018, 32, 241–244. [Google Scholar] [CrossRef]
- Paiva, B.; Vidriales, M.B.; Sempere, A.; Tarín, F.; Colado, E.; Benavente, C.; Cedena, M.T.; Sánchez, J.; Caballero-Velazquez, T.; Cordón, L.; et al. Impact of measurable residual disease by decentralized flow cytometry: A PETHEMA real-world study in 1076 patients with acute myeloid leukemia. Leukemia 2021, 35, 2358–2370. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venditti, A.; Piciocchi, A.; Candoni, A.; Melillo, L.; Calafiore, V.; Cairoli, R.; de Fabritiis, P.; Storti, G.; Salutari, P.; Lanza, F.; et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019, 134, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Buccisano, F.; Maurillo, L.; Del Principe, M.I.; Del Poeta, G.; Sconocchia, G.; Lo-Coco, F.; Arcese, W.; Amadori, S.; Venditti, A. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012, 119, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossenkoppele, G.; Schuurhuis, G.J. MRD in AML: Does it already guide therapy decision-making? Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; DiNardo, C.D.; Potluri, J.; Dunbar, M.; Kantarjian, H.M.; Humerickhouse, R.A.; Wong, S.L.; Menon, R.M.; Konopleva, M.Y.; Salem, A.H. Management of Venetoclax-Posaconazole Interaction in Acute Myeloid Leukemia Patients: Evaluation of Dose Adjustments. Clin Ther. 2017, 39, 359–367. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Wei, A.H. How I treat acute myeloid leukemia in the era of new drugs. Blood 2020, 135, 85–96. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [Green Version]
- Van Dongen, J.J.; Lhermitte, L.; Böttcher, S.; Almeida, J.; van der Velden, V.H.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lécrevisse, Q.; Lucio, P.; et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef] [Green Version]
- Mrózek, K.; Eisfeld, A.K.; Kohlschmidt, J.; Carroll, A.J.; Walker, C.J.; Nicolet, D.; Blachly, J.S.; Bill, M.; Papaioannou, D.; Wang, E.S.; et al. Complex karyotype in de novo acute myeloid leukemia: Typical and atypical subtypes differ molecularly and clinically. Leukemia 2019, 33, 1620–1634. [Google Scholar] [CrossRef]
- Simoes, C.; Paiva, B.; Martínez-Cuadrón, D.; Bergua, J.M.; Vives, S.; Algarra, L.; Tormo, M.; Martinez, P.; Serrano, J.; Herrera, P.; et al. Measurable residual disease in elderly acute myeloid leukemia: Results from the PETHEMA-FLUGAZA phase 3 clinical trial. Blood Adv. 2021, 5, 760–770. [Google Scholar] [CrossRef]
- Chua, C.C.; Hammond, D.; Kent, A.; Tiong, I.S.; Konopleva, M.Y.; Pollyea, D.A.; DiNardo, C.D.; Wei, A.H. Treatment-free remission after ceasing venetoclax-based therapy in patients with acute myeloid leukemia. Blood Adv. 2022, 6, 3879–3883. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic, R.; et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- Hasserjian, R.P.; Steensma, D.P.; Graubert, T.A.; Ebert, B.L. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 2020, 135, 1729–1738. [Google Scholar] [CrossRef]
- Ravandi, F.; Walter, R.B.; Freeman, S.D. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018, 2, 1356–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tettero, J.M.; Freeman, S.; Buecklein, V.; Venditti, A.; Maurillo, L.; Kern, W.; Walter, R.B.; Wood, B.L.; Roumier, C.; Philippé, J.; et al. Technical Aspects of Flow Cytometry-based Measurable Residual Disease Quantification in Acute Myeloid Leukemia: Experience of the European LeukemiaNet MRD Working Party. Hemasphere 2022, 6, e676, Erratum in Hemasphere 2022, 6, e703. [Google Scholar] [CrossRef] [PubMed]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef] [PubMed]
- Lachowiez, C.A.; Loghavi, S.; Kadia, T.M.; Daver, N.; Borthakur, G.; Pemmaraju, N.; Naqvi, K.; Alvarado, Y.; Yilmaz, M.; Short, N.; et al. Outcomes of older patients with NPM1-mutated AML: Current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020, 4, 1311–1320. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Tiong, I.S.; Quaglieri, A.; MacRaild, S.; Loghavi, S.; Brown, F.C.; Thijssen, R.; Pomilio, G.; Ivey, A.; Salmon, J.M.; et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood 2020, 135, 791–803. [Google Scholar] [CrossRef]
Characteristic | Patient Population (n = 63) | MRD ≥ 0.1% (n = 39) | MRD < 0.1% (n = 24) | p |
---|---|---|---|---|
Age ≥ 65, n (%) | 36 (57%) | 21 (58%) | 15 (42%) | 0.500 |
BM blasts, n (%) | 0.487 | |||
<30% | 26 (41%) | 17 (65%) | 9 (35%) | |
30–50% | 16 (25%) | 8 (50%) | 8 (50%) | |
≥50% | 19 (30%) | 13 (68%) | 6 (32%) | |
Diagnosis, n (%) | 0.433 | |||
De Novo | 44 (70%) | 25 (57%) | 19 (43%) | |
sAML with AHD | 16 (25%) | 12 (75%) | 4 (25%) | |
Therapy related | 3 (5%) | 2 (67%) | 1 (33%) | |
ELN 2017 risk group, n (%) | 0.030 | |||
Favorable | 11 (17%) | 3 (27%) | 8 (73%) | |
Intermediate | 20 (32%) | 13 (65%) | 7 (35%) | |
Adverse | 32 (51%) | 23 (72%) | 9 (28%) | |
Complex cytogenetics, n (%) | 17 (27%) | 12 (71%) | 5 (29%) | 0.388 |
Mutations, n (%) | ||||
NPM1 | 11 (17%) | 4 (36%) | 7 (64%) | 0.055 |
FLT3 ITD/TKD | 14 (22%) | 7 (50%) | 7 (50%) | 0.416 |
Prior HMA | 14 (22%) | 12 (86%) | 2 (14%) | 0.038 |
Outcomes, n (%) | 0.785 | |||
CR | 15 (24%) | 9 (60%) | 6 (40%) | |
CRi | 42 (66.5%) | 27 (64%) | 15 (36%) | |
MLFS | 6 (9.5%) | 3 (50%) | 3 (50%) | |
Mean time to best response, days (SD) | 56 (34–71) | 53 (30–64.5) | 56 (40–106) | 0.192 |
Transplant, n (%) | 20 (32%) | 11 (55%) | 9 (45%) | 0.441 |
Variables | CIR | PFS | OS | |||
---|---|---|---|---|---|---|
aSHR (95% CI) | p ≠ | HR (95% CI) | p ≠ | HR (95% CI) | p ≠ | |
MRD ≥ 0.01% at response | 4.70 (1.11–19.8) | 0.035 | 4.62 (1.04–20.57) | 0.044 | 1.99 (0.77–5.13) | 0.156 |
MRD ≥ 0.1% at response | 5.72 (1.33–24.64) | 0.019 | 5.92 (1.34–26.09) | 0.019 | 2.60 (1.02–6.63) | 0.046 |
MRD ≥ 0.01% at cumulative 3-month post-remission | 5.83 (1.13–29.93) | 0.035 | 6.76 (1.31–34.73) | 0.022 | 2.08 (0.65–6.64) | 0.215 |
MRD ≥ 0.1% at cumulative 3-month post-remission | 6.78 (2.77–41.50) | <0.001 | 14.55 (3.40–62.35) | <0.001 | 3.59 (1.21–10.71) | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, S.Y.; Tan Si Yun, M.; Abdul Halim, N.A.; Christopher, D.; Jen, W.Y.; Gallardo, C.; Tan Hwee Yim, A.; Woon, Y.K.; Ng, H.J.; Ooi, M.; et al. Real-World Experience of Measurable Residual Disease Response and Prognosis in Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine. Cancers 2022, 14, 3576. https://doi.org/10.3390/cancers14153576
Ong SY, Tan Si Yun M, Abdul Halim NA, Christopher D, Jen WY, Gallardo C, Tan Hwee Yim A, Woon YK, Ng HJ, Ooi M, et al. Real-World Experience of Measurable Residual Disease Response and Prognosis in Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine. Cancers. 2022; 14(15):3576. https://doi.org/10.3390/cancers14153576
Chicago/Turabian StyleOng, Shin Yeu, Melinda Tan Si Yun, Nurul Aidah Abdul Halim, Dheepa Christopher, Wei Ying Jen, Christian Gallardo, Angeline Tan Hwee Yim, Yeow Kheong Woon, Heng Joo Ng, Melissa Ooi, and et al. 2022. "Real-World Experience of Measurable Residual Disease Response and Prognosis in Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine" Cancers 14, no. 15: 3576. https://doi.org/10.3390/cancers14153576
APA StyleOng, S. Y., Tan Si Yun, M., Abdul Halim, N. A., Christopher, D., Jen, W. Y., Gallardo, C., Tan Hwee Yim, A., Woon, Y. K., Ng, H. J., Ooi, M., & Wong, G. C. (2022). Real-World Experience of Measurable Residual Disease Response and Prognosis in Acute Myeloid Leukemia Treated with Venetoclax and Azacitidine. Cancers, 14(15), 3576. https://doi.org/10.3390/cancers14153576