Can Adjuvant HPV Vaccination Be Helpful in the Prevention of Persistent/Recurrent Cervical Dysplasia after Surgical Treatment?—A Literature Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. HPV and Oncogenesis
3. Primary Prevention of Cervical Cancer
4. Secondary Prevention
5. Secondary Vaccination
6. HPV Status
7. Before or after Surgical Treatment?
8. Vaccination Valency and Dosage
9. Vaccination in HIV-Positive Patients
10. Vaccination Side Effects
11. Therapeutic vs. Preventive Vaccines
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globo can estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Okunade, K.S. human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2020, 40, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Manini, I.; Montomoli, E. Epidemiology and prevention of human papillomavirus. Ann. Ig. Med. Prev. E Comunita 2018, 30, 28–32. [Google Scholar]
- GLOBOCAN. Cervical Cancer Fact Sheet: Cervical Cancer Estimated Incidence, Mortality and Prevalence Worldwide in 2012. France: International Agency for Research on Cancer. 2012. Available online: http://globocan.iarc.fr/old/FactSheets/cancers/cervix-new.asp (accessed on 4 September 2022).
- Gultekin, M.; Ramirez, P.T.; Broutet, N.; Hutubessy, R. World Health Organization call for action to eliminate cervical cancer globally. Int. J. Gynecol. Cancer 2020, 30, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Bjørnerem, M.S.; Sørbye, S.W.; Skjeldestad, F.E. Recurrent disease after treatment for cervical intraepithelial neoplasia—The importance of a flawless definition of residual disease and length of follow-up. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 248, 44–49. [Google Scholar] [CrossRef]
- Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet 2019, 393, 169–182. [Google Scholar] [CrossRef]
- Bosch, F.X.; Lorincz, A.; Muñoz, N.; Meijer, C.J.L.M.; Shah, K.V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 2002, 55, 244–265. [Google Scholar] [CrossRef]
- Burd, E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef]
- Ho, G.Y.F.; Bierman, R.; Beardsley, L.; Chang, C.J.; Burk, R.D. Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med. 1998, 338, 423–428. [Google Scholar] [CrossRef]
- Chua, K.L.; Hjerpe, A. Persistence of human papillomavirus (HPV) infections preceding cervical carcinoma. Cancer 1996, 77, 121–127. [Google Scholar] [CrossRef]
- Bedell, S.L.; Goldstein, L.S.; Goldstein, A.R.; Goldstein, A.T. Cervical cancer screening: Past, present, and future. Sex. Med. Rev. 2020, 8, 28–37. [Google Scholar] [CrossRef]
- Stanley, M. Pathology and epidemiology of HPV infection in females. Gynecol. Oncol. 2010, 117, S5–S10. [Google Scholar] [CrossRef]
- Yousefi, Z.; Aria, H.; Ghaedrahmati, F.; Bakhtiari, T.; Azizi, M.; Bastan, R.; Hosseini, R.; Eskandari, N. An update on human papilloma virus vaccines: History, types, protection, and efficacy. Front. Immunol. 2022, 12, S5–S10. [Google Scholar] [CrossRef]
- Stanley, M. Immune responses to human papillomavirus and the development of human papillomavirus vaccines. In Human Papillomavirus: Proving and Using a Viral Cause for Cancer; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Steinbach, A.; Riemer, A.B. Immune evasion mechanisms of human papillomavirus: An update. Int. J. Cancer 2018, 142, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef]
- Garbuglia, A.R.; Lapa, D.; Sias, C.; Capobianchi, M.R.; Del Porto, P. The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease. Front. Immunol. 2020, 11, 188. [Google Scholar] [CrossRef] [PubMed]
- Joura, E.A.; Kyrgiou, M.; Bosch, F.X.; Kesic, V.; Niemenen, P.; Redman, C.W.; Gultekin, M. Human papillomavirus vaccination: The ESGO–EFC position paper of the European society of Gynaecologic Oncology and the European Federation for colposcopy. Eur. J. Cancer 2019, 116, 21–26. [Google Scholar] [CrossRef]
- Joura, E.A.; Garland, S.M.; Paavonen, J.; Ferris, D.G.; Perez, G.; Ault, K.A.; Huh, W.K.; Sings, H.L.; James, M.K.; Haupt, R.M. Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: Retrospective pooled analysis of trial data. BMJ 2012, 344, e1401. [Google Scholar] [CrossRef]
- Nayar, R.; Chhieng, D.C.; Crothers, B.; Darragh, T.M.; Davey, D.D.; Eisenhut, C.; Goulart, R.; Huang, E.C.; Tabbara, S.O. Moving forward—The 2019 ASCCP risk-based management consensus guidelines for abnormal cervical cancer screening tests and cancer precursors and beyond: Implications and suggestions for laboratories. J. Am. Soc. Cytopathol. 2020, 9, 291–303. [Google Scholar] [CrossRef]
- Stumbar, S.E.; Stevens, M.; Feld, Z. Cervical cancer and its precursors: A preventative approach to screening, diagnosis, and management prim. Care Clin. Off. Pract. 2019, 46, 117–134. [Google Scholar] [CrossRef]
- Martin-Hirsch, P.P.L.; Paraskevaidis, E.; Bryant, A.; Dickinson, H.O. Surgery for cervical intraepithelial neoplasia. Cochrane Database Syst. Rev. 2013, 2014, CD001318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santesso, N.; Mustafa, R.A.; Wiercioch, W.; Kehar, R.; Gandhi, S.; Chen, Y.; Cheung, A.; Hopkins, J.; Khatib, R.; Ma, B.; et al. Systematic reviews and meta-analyses of benefits and harms of cryo-therapy, LEEP, and cold knife conization to treat cervical intraepithelial neoplasia. Int. J. Gynecol. Obstet. 2016, 132, 266–271. [Google Scholar] [CrossRef]
- Arbyn, M.; Redman, C.W.E.; Verdoodt, F.; Kyrgiou, M.; Tzafetas, M.; Ghaem-Maghami, S.; Petry, K.U.; Leeson, S.; Bergeron, C.; Nieminen, P.; et al. Incomplete excision of cervical precancer as a predictor of treatment failure: A systematic review and meta-analysis. Lancet Oncol. 2017, 18, 1665–1679. [Google Scholar] [CrossRef]
- Serati, M.; Siesto, G.; Carollo, S.; Formenti, G.; Riva, C.; Cromi, A.; Ghezzi, F. Risk factors for cervical intraepithelial neoplasia recurrence after conization: A 10-year study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 165, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Gosvig, C.F.; Huusom, L.D.; Andersen, K.K.; Duun-Henriksen, A.K.; Frederiksen, K.; Iftner, A.; Svare, E.; Iftner, T.; Kjaer, S.K. Long-term follow-up of the risk for cervical intraepithelial neoplasia grade 2 or worse in HPV-negative women after conization. Int. J. Cancer 2015, 137, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Alder, S.; Megyessi, D.; Sundström, K.; Östensson, E.; Mints, M.; Belkić, K.; Arbyn, M.; Andersson, S. Incomplete excision of cervical intraepithelial neoplasia as a predictor of the risk of recurrent disease—A 16-year follow-up study. Am. J. Obstet. Gynecol. 2020, 222, 172.e1–172.e12. [Google Scholar] [CrossRef] [PubMed]
- Ghelardi, A.; Parazzini, F.; Martella, F.; Pieralli, A.; Bay, P.; Tonetti, A.; Svelato, A.; Bertacca, G.; Lombardi, S.; Joura, E.A. Speranza project: HPV vaccination after treatment for CIN2+. Gynecol. Oncol. 2018, 151, 229–234. [Google Scholar] [CrossRef]
- Grzes, B.; Heimrath, J.; Ciszek, M. Minimally invasive surgery with the complementing immunotherapy in the treatment of intraepithelial neoplasia of cervic in women of child-bearing age. Onkol. Pol. 2011, 14, 125–130. [Google Scholar]
- Pieralli, A.; Bianchi, C.; Auzzi, N.; Fallani, M.G.; Bussani, C.; Fambrini, M.; Cariti, G.; Scarselli, G.; Petraglia, F.; Ghelardi, A. Indication of prophylactic vaccines as a tool for secondary prevention in HPV-linked disease. Arch. Gynecol. Obstet. 2018, 298, 1205–1210. [Google Scholar] [CrossRef]
- Sand, F.L.; Kjaer, S.K.; Frederiksen, K.; Dehlendorff, C. Risk of cervical intraepithelial neoplasia grade 2 or worse after conization in relation to HPV vaccination status. Int. J. Cancer 2020, 147, 641–647. [Google Scholar] [CrossRef]
- Del Pino, M.; Martí, C.; Torras, I.; Henere, C.; Munmany, M.; Marimon, L.; Saco, A.; Torné, A.; Ordi, J. HPV vaccination as adjuvant to conization in women with cervical intraepithelial neoplasia: A study under real-life conditions. Vaccines 2020, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Henere, C.; Torné, A.; Llupià, A.; Aldea, M.; Martí, C.; Glickman, A.; Saco, A.; Marimon, L.; Manzotti, C.; Rakislova, N.; et al. HPV vaccination in women with cervical intraepithelial neoplasia undergoing excisional treatment: Insights into unsolved questions. Vaccines 2022, 10, 887. [Google Scholar] [CrossRef] [PubMed]
- Firnhaber, C.; Swarts, A.; Jezile, V.; Mulongo, M.; Goeieman, B.; Williams, S.; Faesen, M.; Michelow, P.; Wilkin, T. Human papillomavirus vaccination prior to loop electroexcision procedure does not prevent recurrent cervical high-grade squamous intraepithelial lesions in women living with human immunodeficiency virus: A randomized, double-blind, place-bo-controlled trial. Clin. Infect. Dis. 2021, 73, e2211–e2216. [Google Scholar] [PubMed]
- Di Donato, V.; Caruso, G.; Petrillo, M.; Kontopantelis, E.; Palaia, I.; Perniola, G.; Plotti, F.; Angioli, R.; Muzii, L.; Panici, P.B.; et al. Adjuvant HPV vaccination to prevent recurrent cervical dysplasia after surgical treatment: A meta-analysis. Vaccines 2021, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Jentschke, M.; Kampers, J.; Becker, J.; Sibbertsen, P.; Hillemanns, P. Prophylactic HPV vaccination after conization: A systematic review and meta-analysis. Vaccine 2020, 38, 6402–6409. [Google Scholar] [CrossRef] [PubMed]
- Kechagias, K.S.; Kalliala, I.; Bowden, S.J.; Athanasiou, A.; Paraskevaidi, M.; Paraskevaidis, E.; Dillner, J.; Nieminen, P.; Strander, B.; Sasieni, P.; et al. Role of human papillomavirus (HPV) vaccination on HPV infection and recurrence of HPV related disease after local surgical treatment: Systematic review and meta-analysis. BMJ 2022, 378, e070135. [Google Scholar] [CrossRef]
- Hildesheim, A.; Gonzalez, P.; Kreimer, A.R.; Wacholder, S.; Schussler, J.; Rodriguez, A.C.; Porras, C.; Schiffman, M.; Sidawy, M.; Schiller, J.T.; et al. Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. Am. J. Obstet. Gynecol. 2016, 215, 212.e1–212.e15. [Google Scholar] [CrossRef]
- Garland, S.M.; Paavonen, J.; Jaisamrarn, U.; Naud, P.; Salmerón, J.; Chow, S.N.; Apter, D.; Castellsagué, X.; Teixeira, J.C.; Skinner, S.R.; et al. Prior human papillomavirus-16/18 AS04-adjuvanted vaccination prevents recurrent high grade cervical intraepithelial neoplasia after definitive surgical therapy: Post-hoc analysis from a randomized controlled trial. Int. J. Cancer 2016, 139, 2812–2826. [Google Scholar] [CrossRef]
- Coskuner, E.R.; Ozkan, T.A.; Karakose, A.; Dillioglugil, O.; Cevik, I. Impact of the quadrivalent HPV vaccine on disease recurrence in men exposed to HPV infection: A randomized study. J. Sex. Med. 2014, 11, 2785–2791. [Google Scholar] [CrossRef]
- Ghelardi, A.; Marrai, R.; Bogani, G.; Sopracordevole, F.; Bay, P.; Tonetti, A.; Lombardi, S.; Bertacca, G.; Joura, E.A. Surgical treatment of vulvar HSIL: Adjuvant HPV vaccine reduces recurrent disease. Vaccines 2021, 9, 83. [Google Scholar] [CrossRef]
- Dion, G.R.; Teng, S.; Boyd, L.R.; Northam, A.; Mason-Apps, C.; Vieira, D.; Amin, M.R.; Branski, R.C. Adjuvant human papillomavirus vaccination for secondary prevention: A systematic review. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.A.; Cantor, S.B.; Fenwick, E.; Chiao, E.Y.; Nyitray, A.G.; Stier, E.A.; Goldstone, S.E.; Wilkin, T.; Chhatwal, J. Adjuvant HPV vaccination for anal cancer prevention in HIV-positive men who have sex with men: The time is now. Vaccine 2017, 35, 5102–5109. [Google Scholar] [CrossRef]
- Xavier, M.-G.; Curran, A.; Campins, M.; Alemany, L.; Rodrigo-Pendás, J.Á.; Borruel, N.; Castellsagué, X.; Díaz-de-Heredia, C.; Moraga-Llop, F.A.; del Pino, M.; et al. 2019 multidisciplinary, evidence-based consensus guidelines for human papillomavirus (HPV) vaccination in highrisk populations, Spain. Eurosurveillance 2016, 24, 1700857. [Google Scholar]
- Hogewoning, C.J.A.; Bleeker, M.C.G.; Van Den Brule, A.J.C.; Voorhorst, F.J.; Snijders, P.J.F.; Berkhof, J.; Westenend, P.J.; Meijer, C.J.L.M. Condom use promotes regression of cervical intraepithelial neoplasia and clearance of human papillomavirus: A randomized clinical trial. Int. J. Cancer 2003, 107, 811–816. [Google Scholar] [CrossRef]
- Munk, A.C.; Gudlaugsson, E.; Malpica, A.; Fiane, B.; Løvslett, K.I.; Kruse, A.J.; Øvestad, I.T.; Voorhorst, F.; Janssen, E.A.M.; Baak, J.P. A consistent condom use increases the regression rate of cervical intraepithelial neoplasia 2–3. PLoS ONE 2012, 7, e45114. [Google Scholar]
- Paradkar, P.H.; Joshi, J.V.; Mertia, P.N.; Agashe, S.V.; Vaidya, R. A role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac. J. Cancer Prev. 2014, 15, 3851–3864. [Google Scholar] [CrossRef]
- Song, S.H.; Lee, J.K.; Lee, N.W.; Saw, H.S.; Kang, J.S.; Lee, K.W. Interferon-gamma (IFN-gamma): A possible prognostic marker for clearance of high-risk human papillomavirus (HPV). Gynecol. Oncol. 2008, 108, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Saftlas, A.F.; Spracklen, C.N.; Ryckman, K.K.; Stockdale, C.K.; Penrose, K.; Ault, K.; Rubenstein, L.M.; Pinto, L.A. Influence of a loop electrosurgical excision procedure (LEEP) on levels of cytokines in cervical secretions. J. Reprod. Immunol. 2015, 109, 74–83. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, T.; You, Z.; Zhang, Y. Positive surgical margin, HPV persistence, and expression of both TPX2 and PD-L1 are associated with persistence/recurrence of cervical intraepithelial neoplasia after cervical conization. PLoS ONE 2015, 10, e0142868. [Google Scholar] [CrossRef]
- Ghaem-Maghami, S.; Sagi, S.; Majeed, G.; Soutter, W.P. Incomplete excision of cervical intraepithelial neoplasia and risk of treatment failure: A meta-analysis. Lancet Oncol. 2007, 8, 985–993. [Google Scholar] [CrossRef]
- Brotherton, J.M.; Budd, A.; Rompotis, C.; Bartlett, N.; Malloy, M.J.; Andersen, R.L.; Coulter, K.A.; Couvee, P.W.; Steel, N.; Ward, G.H.; et al. Is one dose of human papillomavirus vaccine as effective as three? A national cohort analysis. Papillomavirus Res. 2019, 8, 100177. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, A.R.; Herrero, R.; Sampson, J.N.; Porras, C.; Lowy, D.R.; Schiller, J.T.; Schiffman, M.; Rodriguez, A.C.; Chanock, S.; Jimenez, S.; et al. Evidence for single-dose protection by the bivalent HPV vaccine—Review of the costa rica HPV vaccine trial and future research studies. Vaccine 2018, 36, 4774–4782. [Google Scholar] [CrossRef]
- D’Addario, M.; Redmond, S.; Scott, P.; Egli-Gany, D.; Riveros-Balta, A.X.; Henao Restrepo, A.M.; Low, N. Two-dose schedules for human papillomavirus vaccine: Systematic review and meta-analysis. Vaccine 2017, 35, 2892–2901. [Google Scholar] [CrossRef] [PubMed]
- Mbatha, J.N.; Taylor, M.; Kleppa, E.; Lillebo, K.; Galapaththi-Arachchige, H.N.; Singh, D.; Kjetland, E.F.; Baay, M.F.D.; Mkhize-Kwitshana, Z.L. High-risk human papillomavirus types in HIV-infected and HIV-uninfected young women in Kwa-Zulu-Natal, south Africa: Implications for vaccination. Infect. Dis. 2017, 49, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Debeaudrap, P.; Sobngwi, J.; Tebeu, P.M.; Clifford, G.M. Residual or recurrent precancerous lesions after treatment of cervical lesions in human immunodeficiency virus-infected women: A systematic review and meta-analysis of treatment failure. Clin. Infect. Dis. 2019, 69, 1555–1565. [Google Scholar] [CrossRef]
- Global Advisory Committee on Vaccine Safety, 30 November–1 December 2016, Weekly Epidemiological Record, World Health Organization. 2017. Available online: http://apps.who.int/iris/bitstream/handle/10665/253062/WER9202.pdf;jsessionid=3798F820EF7F139BA23367F4725F55AC?sequence=1 (accessed on 4 September 2022).
- Vichnin, M.; Bonanni, P.; Klein, N.P.; Garland, S.M.; Block, S.L.; Kjaer, S.K.; Sings, H.L.; Perez, G.; Haupt, R.M.; Saah, A.J.; et al. An overview of quadrivalent human papillomavirus vaccine safety: 2006 to 2015. Pediatr. Infect. Dis. J. 2015, 34, 983–991. [Google Scholar] [CrossRef]
- Moreira, E.D.; Block, S.L.; Ferris, D.; Giuliano, A.R.; Iversen, O.E.; Joura, E.A.; Kosalaraksa, P.; Schilling, A.; Van Damme, P.; Bornstein, J.; et al. Safety profile of the 9-valent HPV vaccine: A combined analysis of 7 phase III clinical trials. Pediatrics 2016, 138, e20154387. [Google Scholar] [CrossRef]
- Smalley Rumfield, C.; Roller, N.; Pellom, S.T.; Schlom, J.; Jochems, C. Therapeutic vaccines for HPV-associated malignancies. Immuno. Targets Ther. 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Farmer, E.; Wu, T.C.; Hung, C.F. Perspectives for therapeutic HPV vaccine development. J. Biomed. Sci. 2016, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Rosales, R.; López-Contreras, M.; Rosales, C.; Magallanes-Molina, J.R.; Gonzalez-Vergara, R.; Arroyo-Cazarez, J.M.; Ricardez-Arenas, A.; Del Follo-Valencia, A.; Padilla-Arriaga, S.; Guerrero, M.V.; et al. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum. Gene Ther. 2014, 25, 1035–1049. [Google Scholar] [CrossRef]
- Tang, J.; Li, M.; Zhao, C.; Shen, D.; Liu, L.; Zhang, X.; Wei, L. Therapeutic DNA vaccines against HPV-related malignancies: Promising leads from clinical trials. Viruses 2022, 14, 239. [Google Scholar] [CrossRef] [PubMed]
Valency | HPV Genotypes | Vaccination Schedule | |
---|---|---|---|
Cervarix | Bivalent | 16 and 18 | 0, 1, and 6 months |
Gardasil | Quadrivalent | 16, 18, 6, and 11 | 0, 2, and 6 months |
Gardasil 9 | Nonavalent | 16, 18, 6, 11, 31, 33, 45, 52, and 58 | 0, 2, and 6 months |
Inclusion CRITERIA | Surgical Method | Study Design | Vaccination Type | Vaccination Timing | Study Population | Study Results | |
---|---|---|---|---|---|---|---|
Ghelardi et al. [29] | CIN 2+ lesions/ stage IA1 cervical cancer | LEEP | Prospective case control SPERANZA study | Quadrivalent | 30 days after LEEP, at 2 and 6 months after 1st dose | 536 patients | Reduced risk of subsequent HSIL recurrence by 81.2% (95% CI, 34.3–95.7), irrespective of causal HPV type |
Grześ et al. [30] | CIN I–CIN III, carcinoma in situ | LEEP, surgical conization | Prospective case control | Quadrivalent | - | 75 patients | 25 patients received vaccination; none had disease recurrence during the observation period |
Pieralli et al. [31] | Patients treated for CIN with negative HPV test, cytology and colposcopy 3 months after treatment | Conization, other n.a. | Randomized controlled trial | Quadrivalent | 3, 5, and 9 months after surgical treatment | 178 patients | Disease recurrence rate significantly higher in non-vaccination group |
Sand et al. [32] | CIN 2, CIN 3, carcinoma in situ | Conization | Prospective population-based cohort study | Not stated | 0–3 months before or 0-12 months after conization | 17,128 patients | Nonsignificant lower risk of CIN 2+ among vaccinated patients |
Del Pino et al. [33] | CIN II-CINIII | Conization | Prospective | Bivalent, quadrivalent and nonavalent | Bivalent at 0, 1, and 6 months Quadrivalent at 0, 2, and 6 months Nonavalent at LEEP, and 2 and 6 months | 265 patients | 4.5-fold reduction in the risk of persistent/recurrent HSILs among vaccinated patients |
Henere et al. [34] | HSIL | LEEP | Prospective | Nonavalent | Immediately before or after treatment, at 2 and 6 months | 306 patients | Vaccination before treatment reduces the prevalence of post-treatment HSILs (2.6% vs. 10.5%) |
Firnhaber et al. [35] | CIN 2-CIN 3 HIV positive | LEEP | Randomized, double-blind, placebo-controlled prospective clinical trial | Quadrivalent | 1st dose 4 weeks before LEEP, week 4, and week 26 | 180 HIV-positive patients diagnosed with HSILs | No effect of HPV vaccination to prevent recurrent HSILs after LEEP in patients with HIV |
Clinical Trial | Phase | Inclusion Criteria | Intervention | Recruitment Status | Estimated Study Start Date | Estimated Study Completion Date | Estimated Enrollment |
---|---|---|---|---|---|---|---|
NOVEL (NCT03979014) | Phase III | CIN 2–3 or AIS | GARDASIL 9 at the time of LEEP/ surgical conization | Not yet recruiting | 1 November 2019 | 31 July 2023 | 1000 participants |
COVENANT (NCT03284866) | Phase III | HIV-positive patients who present with HSILs | Gardasil 9 (at weeks 0, 4, and 26) + LEEP at week 4 | Recruiting | 31 July 2019 | January 2024 | 536 participants |
NCT02864147 | Phase II | Patients with CIN 2-3 HPV+ | Observation (control), imiquimod only, imiquimod + Gardasil 9 | Recruiting | July 2016 | January 2023 | 138 participants |
HOPE9 (NCT03848039) | Phase III | HSILs or initially invasive cervical cancer (histological results ≥ CIN 2 + and ≤ Ia1 | Gardasil 9 at months 0, 2 (day of LEEP), and 6 | Not yet recruiting | December 2020 | May 2028 | 1220 participants |
VACCIN (Trial NL7938) | Phase III | CIN 2, CIN 3 | Gardasil 9 at the time of LEEP, at 2 and 6 months | Recruiting | 19 August 2019 | August 2022 | 750 participants |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczyk, K.; Misiek, M.; Chudecka-Głaz, A. Can Adjuvant HPV Vaccination Be Helpful in the Prevention of Persistent/Recurrent Cervical Dysplasia after Surgical Treatment?—A Literature Review. Cancers 2022, 14, 4352. https://doi.org/10.3390/cancers14184352
Michalczyk K, Misiek M, Chudecka-Głaz A. Can Adjuvant HPV Vaccination Be Helpful in the Prevention of Persistent/Recurrent Cervical Dysplasia after Surgical Treatment?—A Literature Review. Cancers. 2022; 14(18):4352. https://doi.org/10.3390/cancers14184352
Chicago/Turabian StyleMichalczyk, Kaja, Marcin Misiek, and Anita Chudecka-Głaz. 2022. "Can Adjuvant HPV Vaccination Be Helpful in the Prevention of Persistent/Recurrent Cervical Dysplasia after Surgical Treatment?—A Literature Review" Cancers 14, no. 18: 4352. https://doi.org/10.3390/cancers14184352
APA StyleMichalczyk, K., Misiek, M., & Chudecka-Głaz, A. (2022). Can Adjuvant HPV Vaccination Be Helpful in the Prevention of Persistent/Recurrent Cervical Dysplasia after Surgical Treatment?—A Literature Review. Cancers, 14(18), 4352. https://doi.org/10.3390/cancers14184352