Primary Resistance to Immunotherapy-Based Regimens in First Line Hepatocellular Carcinoma: Perspectives on Jumping the Hurdle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Doublets: The Current Strategy
3. Triplets: A Strategy under Investigation
3.1. Anti PD1 + Anti CTLA4 + Anti-Angiogenics
3.2. Anti PD1 + Anti-VEGF + Alternative Immunity Targets
4. Immunotherapy beyond ICIs: Future Perspectives
4.1. Chimeric Antigen Receptor T Cell Therapy
4.2. Vaccines
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Teng, F.; Fu, H.; Ding, G.-S. Immunotherapy in Liver Transplantation for Hepatocellular Carcinoma: Pros and Cons. World J. Gastrointest. Oncol. 2022, 14, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Katariya, N.N.; Lizaola-Mayo, B.C.; Chascsa, D.M.; Giorgakis, E.; Aqel, B.A.; Moss, A.A.; Uson Junior, P.L.S.; Borad, M.J.; Mathur, A.K. Immune Checkpoint Inhibitors as Therapy to Down-Stage Hepatocellular Carcinoma Prior to Liver Transplantation. Cancers 2022, 14, 2056. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, M.; Esmail, A.; Saharia, A.; Abudayyeh, A.; Abdel-Wahab, N.; Diab, A.; Murakami, N.; Kaseb, A.O.; Chang, J.C.; Gaber, A.O.; et al. Utilization of Immunotherapy for the Treatment of Hepatocellular Carcinoma in the Peri-Transplant Setting: Transplant Oncology View. Cancers 2022, 14, 1760. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in Patients with Advanced Hepatocellular Carcinoma (CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Cattan, S.; Edeline, J.; Ogasawara, S.; Palmer, D.H.; Verslype, C.; Zagonel, V.; Rosmorduc, O.; Vogel, A.; et al. KEYNOTE-224: Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. JCO 2018, 36, 209. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. JCO 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus Sorafenib in Advanced Hepatocellular Carcinoma (CheckMate 459): A Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Verset, G.; Borbath, I.; Karwal, M.; Verslype, C.; Van Vlierberghe, H.; Kardosh, A.; Zagonel, V.; Stal, P.; Sarker, D.; Palmer, D.H.; et al. Pembrolizumab Monotherapy for Previously Untreated Advanced Hepatocellular Carcinoma: Data from the Open-Label, Phase II KEYNOTE-224 Trial. Clin. Cancer Res. 2022, 28, 2547–2554. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Hepatobiliary.Pdf. NCCN Guidelines. Hepatobiliary. 2022. Available online: https://www.nccn.org/guidelines/category_1 (accessed on 1 August 2022).
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracián, A.C.; Acosta-Rivera, M.; Choo, S.-P.; El-Khoueiry, A.B.; Kuromatsu, R.; El-Rayes, B.; et al. CheckMate 040 Cohort 5: A Phase I/II Study of Nivolumab in Patients with Advanced Hepatocellular Carcinoma and Child-Pugh B Cirrhosis. J. Hepatol. 2021, 75, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Chan, S.; Furuse, J.; Tak, W.; Masi, G.; Varela, M.; Kim, J.; Tanasanvimon, S.; Reig, M.; Dayyani, F.; et al. O-5 Outcomes by Baseline Liver Function in Patients with Unresectable Hepatocellular Carcinoma Treated with Tremelimumab and Durvalumab in the Phase 3 HIMALAYA Study. Ann. Oncol. 2022, 33, S380–S381. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Q.-Q. Mechanisms and Strategies to Overcome Immunotherapy Resistance in Hepatobiliary Malignancies. Hepatobiliary Pancreat. Dis. Int. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Atwa, S.M.; Odenthal, M.; El Tayebi, H.M. Genetic Heterogeneity, Therapeutic Hurdle Confronting Sorafenib and Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Cancers 2021, 13, 4343. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Li, Y.; Yang, J.; Jin, S.; Chen, G.; Li, D.; Fan, X.; Lin, H. Immunotherapy for Hepatocellular Carcinoma: Current Limits and Prospects. Front. Oncol. 2021, 11, 589680. [Google Scholar] [CrossRef] [PubMed]
- Sanceau, J.; Gougelet, A. Epigenetic Mechanisms of Liver Tumor Resistance to Immunotherapy. World J. Hepatol. 2021, 13, 979–1002. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH Limits Anti-Tumour Surveillance in Immunotherapy-Treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; de Moura, M.C.; Putra, J.; Camprecios, G.; Bassaganyas, L.; Akers, N.; et al. Identification of an Immune-Specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology 2017, 153, 812–826. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Yamaguchi, R.; Hasegawa, T.; Shimada, S.; Arihiro, K.; Hayashi, S.; Maejima, K.; Nakano, K.; Fujimoto, A.; Ono, A.; et al. Classification of Primary Liver Cancer with Immunosuppression Mechanisms and Correlation with Genomic Alterations. eBioMedicine 2020, 53, 102659. [Google Scholar] [CrossRef]
- Shimada, S.; Mogushi, K.; Akiyama, Y.; Furuyama, T.; Watanabe, S.; Ogura, T.; Ogawa, K.; Ono, H.; Mitsunori, Y.; Ban, D.; et al. Comprehensive Molecular and Immunological Characterization of Hepatocellular Carcinoma. eBioMedicine 2019, 40, 457–470. [Google Scholar] [CrossRef]
- Maruhashi, T.; Sugiura, D.; Okazaki, I.; Okazaki, T. LAG-3: From Molecular Functions to Clinical Applications. J. Immunother. Cancer 2020, 8, e001014. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Mei, M.; Liu, T.; Zhang, S.; Wang, Z.; Suo, Y.; Wang, S.; Liu, Y.; Zhang, N.; Lu, W. Identification of PDCD1 and PDCD1LG2 as Prognostic Biomarkers and Associated with Immune Infiltration in Hepatocellular Carcinoma. Int. J. Gen. Med. 2022, 15, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhan, C. Bioinformatic-Based Mechanism Identification of E2F1-Related CeRNA and E2F1 Immunoassays in Hepatocellular Carcinoma. J. Gastrointest. Oncol. 2022, 13, 1915–1926. [Google Scholar] [CrossRef] [PubMed]
- Hua, N.; Chen, A.; Yang, C.; Dong, H.; He, X.; Ru, G.; Tong, X.; Zhou, F.; Wang, S. The Correlation of Fibrinogen-like Protein-1 Expression with the Progression and Prognosis of Hepatocellular Carcinoma. Mol. Biol. Rep. 2022, 49, 7911–7919. [Google Scholar] [CrossRef]
- Yan, Q.; Lin, H.-M.; Zhu, K.; Cao, Y.; Xu, X.-L.; Zhou, Z.-Y.; Xu, L.; Liu, C.; Zhang, R. Immune Checkpoint FGL1 Expression of Circulating Tumor Cells Is Associated With Poor Survival in Curatively Resected Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 810269. [Google Scholar] [CrossRef]
- Wei, Y.-Y.; Fan, J.; Shan, M.-X.; Yin, D.-D.; Wang, L.-L.; Ye, W.; Zhao, W. TIGIT Marks Exhausted T Cells and Serves as a Target for Immune Restoration in Patients with Chronic HBV Infection. Am. J. Transl. Res. 2022, 14, 942–954. [Google Scholar]
- Wang, T.; Dang, N.; Tang, G.; Li, Z.; Li, X.; Shi, B.; Xu, Z.; Li, L.; Yang, X.; Xu, C.; et al. Integrating Bulk and Single-cell RNA Sequencing Reveals Cellular Heterogeneity and Immune Infiltration in Hepatocellular Carcinoma. Mol. Oncol. 2022, 16, 2195–2213. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. Available online: https://www.nejm.org/doi/full/10.1056/nejmoa1915745 (accessed on 8 July 2022). [CrossRef]
- A Phase IIIB, Single Arm, Multicenter Study of Atezolizumab (Tecentriq) in Combination With Bevacizumab to Investigate Safety and Efficacy in Patients With Unresectable Hepatocellular Carcinoma Not Previously Treated With Systemic Therapy-Amethista. clinicaltrials.gov; 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04487 (accessed on 1 August 2022).
- Kelley, R.K.; Rimassa, L.; Cheng, A.-L.; Kaseb, A.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V.; et al. Cabozantinib plus Atezolizumab versus Sorafenib for Advanced Hepatocellular Carcinoma (COSMIC-312): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2022, 23, 995–1008. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, J.; Bai, Y.; Xu, A.; Cang, S.; Du, C.; Li, Q.; Lu, Y.; Chen, Y.; Guo, Y.; et al. Sintilimab plus a Bevacizumab Biosimilar (IBI305) versus Sorafenib in Unresectable Hepatocellular Carcinoma (ORIENT-32): A Randomised, Open-Label, Phase 2–3 Study. Lancet Oncol. 2021, 22, 977–990. [Google Scholar] [CrossRef]
- Alsina, A.; Kudo, M.; Vogel, A.; Cheng, A.-L.; Tak, W.Y.; Ryoo, B.-Y.; Evans, T.R.J.; López López, C.; Daniele, B.; Misir, S.; et al. Effects of Subsequent Systemic Anticancer Medication Following First-Line Lenvatinib: A Post Hoc Responder Analysis from the Phase 3 REFLECT Study in Unresectable Hepatocellular Carcinoma. Liver Cancer 2020, 9, 93–104. [Google Scholar] [CrossRef]
- Muhammed, A.; D’Alessio, A.; Enica, A.; Talbot, T.; Fulgenzi, C.A.M.; Nteliopoulos, G.; Goldin, R.D.; Cortellini, A.; Pinato, D.J. Predictive Biomarkers of Response to Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Expert Rev. Mol. Diagn. 2022, 22, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Mukai, S.; Kanzaki, H.; Ogasawara, S.; Ishino, T.; Ogawa, K.; Nakagawa, M.; Fujiwara, K.; Unozawa, H.; Iwanaga, T.; Sakuma, T.; et al. Exploring Microsatellite Instability in Patients with Advanced Hepatocellular Carcinoma and Its Tumor Microenvironment. JGH Open 2021, 5, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Kawaoka, T.; Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Morio, K.; Fujino, H.; et al. Incidence of Microsatellite Instability-High Hepatocellular Carcinoma among Japanese Patients and Response to Pembrolizumab. Hepatol. Res. 2020, 50, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin. Cancer Res. 2019, 25, 912–920, American Association for Cancer Research. Available online: https://aacrjournals.org/clincancerres/article/25/3/912/9616/The-Role-of-Angiogenesis-in-Hepatocellular (accessed on 23 July 2022). [CrossRef] [Green Version]
- Moawad, A.W.; Szklaruk, J.; Lall, C.; Blair, K.J.; Kaseb, A.O.; Kamath, A.; Rohren, S.A.; Elsayes, K.M. Angiogenesis in Hepatocellular Carcinoma; Pathophysiology, Targeted Therapy, and Role of Imaging. J. Hepatocell. Carcinoma 2020, 7, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef] [Green Version]
- CTLA-4 Blockade Drives Loss of Treg Stability in Glycolysis-Low Tumors. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057670/ (accessed on 23 July 2022).
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.-L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. VEGF-A Modulates Expression of Inhibitory Checkpoints on CD8+ T Cells in Tumors. J. Exp. Med. 2015, 212, 139–148. [Google Scholar] [CrossRef]
- Hegde, P.S.; Wallin, J.J.; Mancao, C. Predictive Markers of Anti-VEGF and Emerging Role of Angiogenesis Inhibitors as Immunotherapeutics. Semin. Cancer Biol. 2018, 52, 117–124. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Connolly, E.M.; Liao, X.; Ouyang, J.; Giobbie-Hurder, A.; Lawrence, D.; McDermott, D.; Murphy, G.; Zhou, J.; et al. Combined Anti-VEGF and Anti–CTLA-4 Therapy Elicits Humoral Immunity to Galectin-1 Which Is Associated with Favorable Clinical Outcomes. Cancer Immunol. Res. 2017, 5, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.-L.; Hsu, C.; Chan, S.L.; Choo, S.-P.; Kudo, M. Challenges of Combination Therapy with Immune Checkpoint Inhibitors for Hepatocellular Carcinoma. J. Hepatol. 2020, 72, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Tabata, K.; Kimura, T.; Yachie-Kinoshita, A.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus Anti-PD-1 Antibody Combination Treatment Activates CD8+ T Cells through Reduction of Tumor-Associated Macrophage and Activation of the Interferon Pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, R.K.; Sangro, B.; Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.K.; Qin, S.; Tai, D.W.; Lim, H.Y.; Yau, T.; et al. Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients With Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. J. Clin. Oncol. 2021, 39, 2991–3001. Available online: https://ascopubs.org/doi/10.1200/JCO.20.03555?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 24 July 2022). [CrossRef]
- Perets, R.; Bar, J.; Rasco, D.W.; Ahn, M.-J.; Yoh, K.; Kim, D.-W.; Nagrial, A.; Satouchi, M.; Lee, D.H.; Spigel, D.R.; et al. Safety and Efficacy of Quavonlimab, a Novel Anti-CTLA-4 Antibody (MK-1308), in Combination with Pembrolizumab in First-Line Advanced Non-Small-Cell Lung Cancer. Ann. Oncol. 2021, 32, 395–403. [Google Scholar] [CrossRef]
- Cho, B.C.; Yoh, K.; Perets, R.; Nagrial, A.; Spigel, D.R.; Gutierrez, M.; Kim, D.-W.; Kotasek, D.; Rasco, D.; Niu, J.; et al. Anti–Cytotoxic T-Lymphocyte–Associated Antigen-4 Monoclonal Antibody Quavonlimab in Combination with Pembrolizumab: Safety and Efficacy from a Phase I Study in Previously Treated Extensive-Stage Small Cell Lung Cancer. Lung Cancer 2021, 159, 162–170. [Google Scholar] [CrossRef]
- Shi, A.-P.; Tang, X.-Y.; Xiong, Y.-L.; Zheng, K.-F.; Liu, Y.-J.; Shi, X.-G.; Lv, Y.; Jiang, T.; Ma, N.; Zhao, J.-B. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front. Immunol. 2022, 12, 785091. [Google Scholar] [CrossRef]
- Guo, M.; Yuan, F.; Qi, F.; Sun, J.; Rao, Q.; Zhao, Z.; Huang, P.; Fang, T.; Yang, B.; Xia, J. Expression and Clinical Significance of LAG-3, FGL1, PD-L1 and CD8+T Cells in Hepatocellular Carcinoma Using Multiplex Quantitative Analysis. J. Transl. Med. 2020, 18, 306. [Google Scholar] [CrossRef]
- Lipson, E.J.; Tawbi, H.A.-H.; Schadendorf, D.; Ascierto, P.A.; Matamala, L.; Gutiérrez, E.C.; Rutkowski, P.; Gogas, H.; Lao, C.D.; Janoski de Menezes, J.; et al. Relatlimab (RELA) plus Nivolumab (NIVO) versus NIVO in First-Line Advanced Melanoma: Primary Phase III Results from RELATIVITY-047 (CA224-047). JCO 2021, 39, 9503. [Google Scholar] [CrossRef]
- Sangro, B.; Numata, K.; Huang, Y.; Gomez-Martin, C.; Hiraoka, A.; Moriguchi, M.; Shen, Y.; Horvath, A.; Feely, W.; Young, T.; et al. P-61 Relatlimab + Nivolumab in Patients with Advanced Hepatocellular Carcinoma Who Are Naive to Immuno-Oncology Therapy but Progressed on Tyrosine Kinase Inhibitors, a Phase 2, Randomized, Open-Label Study: RELATIVITY-073. Ann. Oncol. 2021, 32, S117. [Google Scholar] [CrossRef]
- Sun, H.; Huang, Q.; Huang, M.; Wen, H.; Lin, R.; Zheng, M.; Qu, K.; Li, K.; Wei, H.; Xiao, W.; et al. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology 2019, 70, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Zhou, G.; Campos Carrascosa, L.; Gausvik, E.; Boor, P.P.C.; Noordam, L.; Doukas, M.; Polak, W.G.; Terkivatan, T.; Pan, Q.; et al. TIGIT and PD1 Co-Blockade Restores Ex Vivo Functions of Human Tumor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma. Cell Mol. Gastroenterol. Hepatol. 2021, 12, 443–464. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, J.; Cui, J.; Ma, B.; Zhou, Q.; Yang, X.; Lu, Z.; Du, Y.; Su, C. Expression of TIGIT/CD155 and Correlations with Clinical Pathological Features in Human Hepatocellular Carcinoma. Mol. Med. Rep. 2019, 20, 3773–3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Li, M.; Wang, X.; Dang, Z.; Jiang, Y.; Wang, X.; Kong, Y.; Yang, Z. PD-1 + TIGIT + CD8 + T Cells Are Associated with Pathogenesis and Progression of Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Cancer Immunol. Immunother. CII 2019, 68, 2041–2054. [Google Scholar] [CrossRef]
- Aghayev, T.; Mazitova, A.M.; Fang, J.R.; Peshkova, I.O.; Rausch, M.; Hung, M.; White, K.F.; Masia, R.; Titerina, E.K.; Fatkhullina, A.R.; et al. IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discov. 2022, 12, 1960–1983. [Google Scholar] [CrossRef]
- Rolvering, C.; Zimmer, A.D.; Ginolhac, A.; Margue, C.; Kirchmeyer, M.; Servais, F.; Hermanns, H.M.; Hergovits, S.; Nazarov, P.V.; Nicot, N.; et al. The PD-L1- and IL6-Mediated Dampening of the IL27/STAT1 Anticancer Responses Are Prevented by α-PD-L1 or α-IL6 Antibodies. J. Leukoc. Biol. 2018, 104, 969–985. [Google Scholar] [CrossRef] [Green Version]
- Bavituximab—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/bavituximab (accessed on 10 August 2022).
- Mokdad, A.A.; Zhu, H.; Beg, M.S.; Arriaga, Y.; Dowell, J.E.; Singal, A.G.; Yopp, A.C. Efficacy and Safety of Bavituximab in Combination with Sorafenib in Advanced Hepatocellular Carcinoma: A Single-Arm, Open-Label, Phase II Clinical Trial. Targ. Oncol. 2019, 14, 541–550. [Google Scholar] [CrossRef]
- Hsiehchen, D.; Kainthla, R.; Zhu, H.; Jones, A.; Beg, M.S. 939P Phase II Study of Pembrolizumab (Pembro) and Bavituximab (Bavi) in Advanced Hepatocellular Carcinoma (HCC). Ann. Oncol. 2021, 32, S822–S823. [Google Scholar] [CrossRef]
- Dika, I.E.; Makki, I.; Abou-Alfa, G.K. Hepatocellular Carcinoma, Novel Therapies on the Horizon. Chin. Clin. Oncol. 2021, 10, 12. [Google Scholar] [CrossRef]
- Dargel, C.; Bassani-Sternberg, M.; Hasreiter, J.; Zani, F.; Bockmann, J.-H.; Thiele, F.; Bohne, F.; Wisskirchen, K.; Wilde, S.; Sprinzl, M.F.; et al. T Cells Engineered to Express a T-Cell Receptor Specific for Glypican-3 to Recognize and Kill Hepatoma Cells In Vitro and in Mice. Gastroenterology 2015, 149, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Schaft, N. The Landscape of CAR-T Cell Clinical Trials against Solid Tumors—A Comprehensive Overview. Cancers 2020, 12, 2567. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jiang, X.; Chen, S.; Lai, Y.; Wei, X.; Li, B.; Lin, S.; Wang, S.; Wu, Q.; Liang, Q.; et al. Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma. Front. Immunol. 2017, 7, 690. Available online: https://www.frontiersin.org/articles/10.3389/fimmu.2016.00690/full (accessed on 13 August 2022). [CrossRef] [PubMed] [Green Version]
- Cherkassky, L.; Morello, A.; Villena-Vargas, J.; Feng, Y.; Dimitrov, D.S.; Jones, D.R.; Sadelain, M.; Adusumilli, P.S. Human CAR T Cells with Cell-Intrinsic PD-1 Checkpoint Blockade Resist Tumor-Mediated Inhibition. J. Clin. Investig. 2016, 126, 3130–3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in Immunotherapy for Hepatocellular Carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. Available online: https://www.nature.com/articles/s41575-021-00438-0 (accessed on 13 August 2022). [CrossRef]
- Kamphorst, A.O.; Wieland, A.; Nasti, T.; Yang, S.; Zhang, R.; Barber, D.L.; Konieczny, B.T.; Daugherty, C.Z.; Koenig, L.; Yu, K.; et al. Rescue of Exhausted CD8 T Cells by PD-1–Targeted Therapies Is CD28-Dependent. Science 2017, 355, 1423–1427. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, L.; Silva, L.; Llopiz, D.; Ruiz, M.; Iglesias, T.; Lozano, T.; Casares, N.; Hervas-Stubbs, S.; Rodríguez, M.J.; Carrascosa, J.L.; et al. The Toll like Receptor 4 Ligand Cold-Inducible RNA-Binding Protein as Vaccination Platform against Cancer. OncoImmunology 2018, 7, e1409321. [Google Scholar] [CrossRef] [Green Version]
- Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; et al. T Cell Costimulatory Receptor CD28 Is a Primary Target for PD-1-Mediated Inhibition. Science 2017, 355, 1428–1433. [Google Scholar] [CrossRef]
- Qiang, X.; Yang, W.-L.; Wu, R.; Zhou, M.; Jacob, A.; Dong, W.; Kuncewitch, M.; Ji, Y.; Yang, H.; Wang, H.; et al. Cold-Inducible RNA-Binding Protein (CIRP) Triggers Inflammatory Responses in Hemorrhagic Shock and Sepsis. Nat. Med. 2013, 19, 1489–1495. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.; Egea, J.; Villanueva, L.; Ruiz, M.; Llopiz, D.; Repáraz, D.; Aparicio, B.; Lasarte-Cia, A.; Lasarte, J.J.; Ruiz de Galarreta, M.; et al. Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses against Hepatocellular Carcinoma. Cancers 2020, 12, 3397. [Google Scholar] [CrossRef]
Determinant | Biological Role | Specificity to HCC | Putative Mechanism of Resistance | Ref. |
---|---|---|---|---|
WNT/CTNNTB1 | Evolutionary conserved transcriptional pathway, cell-cell adhesion, pivotal hepatic functions since embryonal life. | Its activating mutation relates to over-expression of wnt-target genes, enrichment in beta-catenin, and PTK2-related immune exclusion. More represented in viral etiology. | Lower enrichment score of immune signatures: T-cell exclusion, and down-regulation of CCL4. Down-regulation of NKG2D ligand hampering NK-mediated response. | [19,20,21] |
LAG-3 | Type-I trans-membrane protein acts as a negative immune counterweight during prolonged exposure to tumor antigens and is constitutively expressed by T-regs. | More expressed and more frequently mutated (15%) in HCC tissues than non-malignant livers in TGCA samples; positively correlated with the oncogenic transcription factor E2F1. | High correlation between its expression and immune-suppressive or exhausted tumor environment. | [17,22,23,24] |
FGL1 | Liver-secreted protein and main functional ligand to LAG-3 inhibiting antigen-specific T cell activation | Significantly down-regulated in HCC samples and correlated with higher grades, presence of metastases and poorer outcomes. FGL1-positive CTC patients showed resistance to ICIs treatment in a limited retrospective case-series | High expression of FGL1 is correlated with higher density of LAG3+: blocking the FGL1/LAG3 can promote T cytotoxicity immunity. | [14,25,26] |
TIGIT | Co-inhibitor receptor expressed on T cells and NK, functionally similar to PD-1 | Co-factor for T cells functional exhaustion in chronic viral hepatotropic infections; hallmark of immune suppressed HCC TGCA sub-group. | TIGIT, CTLA4 and ICOS are co-regulated and co-expressed; TIGIT interaction with NECTIN2 shapes a cancer-promoting immune suppressive environment | [14,27,28] |
Strategy | Trial Name and/or CTC Identification | Recruitment | Phase | Comparator | Interventions targets |
---|---|---|---|---|---|
Anti-PD(L)1/anti CTLA4 | NCT04720716 | China | III | Sorafenib a | IBI-310 b (ipilimumab bio-similar) + sintilimab c |
NCT04039607/ CheckMate 9DW | global | III | Sorafenib or Lenvatinib d | Ipilimumab b + nivolumab c | |
Anti-PD(L)1/anti-VEGF | NCT04605796 | China | II | - | JS001, toripalimab c + bevacizumab e |
NCT04560894 | China | II/III | Sorafenib a | SCT-I10Ac + SCT510 (bevacizumab bio-similar) e | |
NCT04741165 | China | II | - | HX008 c + bevacizumab e | |
NCT03973112, arm IV | China | II | - | HLX10, serplulimab c + HLX04 (bevacizumab biosimilar) e | |
Anti PD(L)1/TKIs | NCT04443309 | China | I/II | - | Camrelizumab c + lenvatinib d |
NCT04401800 | China | II | - | Tislelizumab c + Lenvatinib d | |
NCT04183088 | Taiwan | II | Regorafenib f | tislelizumab c + regorafenib f | |
NCT04523493 | global | III | Lenvatinib d | JS001, toripalimab c + lenvatinib d | |
NCT03841201/IMMUNIB | Germany | II | - | Nivolumab c + lenvatinib d | |
NCT04741165 | China | II | - | HX008 c + lenvatinib d | |
NCT05441475, part b | China | II | - | Atezolizumab g + ABSK-011 h | |
NCT03439891 | USA | II | - | nivolumab c + sorafenib a | |
NCT04443322 | China | II | - | Durvalumab h + lenvatinib d |
Trial Identification | Study Phase | Treatment Arms | Targets | Primary End-Point |
---|---|---|---|---|
NCT05363722 | Ib | IBI 310 (ipilimumab biosimilar) + bevacizumab + sintilimab | anti PD1 + anti CTLA4 + anti-VEGF | ORR |
NCT04740307 MK-1308A-004 | II | pembrolizumab/quavonlimab (MK-1308A) + lenvatinib | Coformulated anti PD1/anti CTLA4 + TKI | DLTs ORR |
NCT05363722 | III | Camrelizumab + Folfox4 | anti PD1 + chemotherapy | OS |
Camrelizumab + placebo | ||||
NCT04948697 AdvanTIG-206 | II | ociperlimab + tislelizumab + BAT1706 | Anti-TIGIT + anti PD1 + anti- VEGF | ORR |
tislelizumab + BAT1706 | anti PD1 + anti- VEGF | ORR | ||
NCT05337137 Relativity-106 | I/II | Relatlimab + Nivolumab + Bevacizumab | Anti-LAG + anti PD1 + anti-VEGF | DLTs ad PFS |
Placebo + Nivolumab + Bevacizumab | anti PD1 + anti-VEGF | |||
NCT05359861 | II | SRF388 + Atezolizumab + bevacizumab | Anti-IL27 + anti PDL1 + anti-VEGF | PFS |
Placebo + Atezolizumab + bevacizumab | anti PDL1 + anti-VEGF | |||
NCT05249569 | II | Axitinib + Avelumab + Bavituximab | Anti-VEGFR + anti PDL1 + anti-phosphatidylserine | RR |
Treatment Strategy | Trial Identification | Study Phase | Treatment Arms | Primary End-Point |
---|---|---|---|---|
CAR-T cells therapy | NCT02905188 GLYCAR trial | I | GPC3-CAR (GLYCAR T cells) + lymphodepleting chemotherapy (Cyclophosphamide and Fludarabine) | DLT |
NCT03884751 | I | CAR-GPC3 T Cells | DLT + MTD | |
NCT03980288 | I | CAR-GPC3 T Cells (in part II: combination with TKI or anti- PD(L)1) | DLT + MTD | |
NCT04121273 | I | CAR-GPC3 T Cells | DLT | |
NCT03993743 | I | CD147-CART hepatic artery infusion | AEs | |
Vaccine + RFA/surgery | NCT03067493 RAMEC trial | II | RFA or surgery +/− Neo-MASCT | DFS + immune response rate |
Vaccine + ICIs | NCT04248569 | I | DNAJB1-PRKACA peptide vaccine + Nivolumab + Ipilimumab | AEs + change in INF-producing DNAJB1-PRKACA-specific CD8/CD4 T cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salani, F.; Genovesi, V.; Vivaldi, C.; Massa, V.; Cesario, S.; Bernardini, L.; Caccese, M.; Graziani, J.; Berra, D.; Fornaro, L.; et al. Primary Resistance to Immunotherapy-Based Regimens in First Line Hepatocellular Carcinoma: Perspectives on Jumping the Hurdle. Cancers 2022, 14, 4896. https://doi.org/10.3390/cancers14194896
Salani F, Genovesi V, Vivaldi C, Massa V, Cesario S, Bernardini L, Caccese M, Graziani J, Berra D, Fornaro L, et al. Primary Resistance to Immunotherapy-Based Regimens in First Line Hepatocellular Carcinoma: Perspectives on Jumping the Hurdle. Cancers. 2022; 14(19):4896. https://doi.org/10.3390/cancers14194896
Chicago/Turabian StyleSalani, Francesca, Virginia Genovesi, Caterina Vivaldi, Valentina Massa, Silvia Cesario, Laura Bernardini, Miriam Caccese, Jessica Graziani, Dario Berra, Lorenzo Fornaro, and et al. 2022. "Primary Resistance to Immunotherapy-Based Regimens in First Line Hepatocellular Carcinoma: Perspectives on Jumping the Hurdle" Cancers 14, no. 19: 4896. https://doi.org/10.3390/cancers14194896
APA StyleSalani, F., Genovesi, V., Vivaldi, C., Massa, V., Cesario, S., Bernardini, L., Caccese, M., Graziani, J., Berra, D., Fornaro, L., & Masi, G. (2022). Primary Resistance to Immunotherapy-Based Regimens in First Line Hepatocellular Carcinoma: Perspectives on Jumping the Hurdle. Cancers, 14(19), 4896. https://doi.org/10.3390/cancers14194896