Visceral Obesity Is a More Important Factor for Colorectal Adenomas than Skeletal Muscle or Body Fat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Clinical and Biochemical Evaluations
2.3. Anthropometric Measurements
2.4. Definitions of Body Indices
2.5. Colonoscopic Examination
2.6. Outcomes
2.7. Statistical Analyses
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Relationship between Various Body Indices and Adenomas
3.3. Risk Factors for Adenomas and High-Risk Adenomas
3.4. Subgroup Analysis According to Body Mass Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Leslie, A.; Carey, F.A.; Pratt, N.R.; Steele, R.J. The colorectal adenoma-carcinoma sequence. Br. J. Surg. 2002, 89, 845–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Force USPST; Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W., Jr.; Garcia, F.A.R.; Gillman, M.W.; Harper, D.M.; Kemper, A.R.; et al. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2016, 315, 2564–2575. [Google Scholar] [CrossRef] [PubMed]
- Zauber, A.G.; Winawer, S.J.; O’Brien, M.J.; Lansdorp-Vogelaar, I.; van Ballegooijen, M.; Hankey, B.F.; Shi, W.; Bond, J.H.; Schapiro, M.; Panish, J.F.; et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N. Engl. J. Med. 2012, 366, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.K.; Ward, E.; Kohler, B.A.; Eheman, C.; Zauber, A.G.; Anderson, R.N.; Jemal, A.; Schymura, M.J.; Lansdorp-Vogelaar, I.; Seeff, L.C.; et al. Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 2010, 116, 544–573. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Finucane, M.M.; Stevens, G.A.; Cowan, M.J.; Danaei, G.; Lin, J.K.; Paciorek, C.J.; Singh, G.M.; Gutierrez, H.R.; Lu, Y.; Bahalim, A.N.; et al. National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011, 377, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Xu, Y.C.; Niu, L. Obesity and colorectal cancer risk: A meta-analysis of cohort studies. World J. Gastroenterol. 2007, 13, 4199–4206. [Google Scholar] [CrossRef]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Ortega, L.S.; Bradbury, K.E.; Cross, A.J.; Morris, J.S.; Gunter, M.J.; Murphy, N. A Prospective Investigation of Body Size, Body Fat Composition and Colorectal Cancer Risk in the UK Biobank. Sci. Rep. 2017, 7, 17807. [Google Scholar] [CrossRef]
- Arthur, R.S.; Dannenberg, A.J.; Kim, M.; Rohan, T.E. The association of body fat composition with risk of breast, endometrial, ovarian and colorectal cancers among normal weight participants in the UK Biobank. Br. J. Cancer 2021, 124, 1592–1605. [Google Scholar] [CrossRef]
- Seo, I.K.; Kim, B.J.; Kim, B.; Choi, C.H.; Kim, J.W.; Kim, J.G.; Chang, S.K.; Kang, H. Abdominal fat distribution measured using computed tomography is associated with an increased risk of colorectal adenoma in men. Medicine 2017, 96, e8051. [Google Scholar] [CrossRef]
- Im, J.P.; Kim, D.; Chung, S.J.; Jin, E.H.; Han, Y.M.; Park, M.J.; Song, J.H.; Yang, S.Y.; Kim, Y.S.; Yim, J.Y.; et al. Visceral obesity as a risk factor for colorectal adenoma occurrence in surveillance colonoscopy. Gastrointest. Endosc. 2018, 88, 119–127.e114. [Google Scholar] [CrossRef]
- Moon, J.M.; Im, J.P.; Kim, D.; Han, Y.M.; Soh, H.; Song, J.H.; Yang, S.Y.; Kim, Y.S.; Yim, J.Y.; Lim, S.H.; et al. Increasing changes in visceral adiposity is associated with higher risk for colorectal adenoma: Multilevel analysis in a prospective cohort. J. Gastroenterol. Hepatol. 2021, 36, 1836–1842. [Google Scholar] [CrossRef]
- Maurovich-Horvat, P.; Massaro, J.; Fox, C.S.; Moselewski, F.; O’Donnell, C.J.; Hoffmann, U. Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomography. Int. J. Obes. 2007, 31, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Bohm, A.; Heitmann, B.L. The use of bioelectrical impedance analysis for body composition in epidemiological studies. Eur. J. Clin. Nutr. 2013, 67, S79–S85. [Google Scholar] [CrossRef]
- Park, K.S.; Lee, D.H.; Lee, J.; Kim, Y.J.; Jung, K.Y.; Kim, K.M.; Kwak, S.H.; Choi, S.H.; Park, K.S.; Jang, H.C.; et al. Comparison between two methods of bioelectrical impedance analyses for accuracy in measuring abdominal visceral fat area. J. Diabetes Complicat. 2016, 30, 343–349. [Google Scholar] [CrossRef]
- Ogawa, H.; Fujitani, K.; Tsujinaka, T.; Imanishi, K.; Shirakata, H.; Kantani, A.; Hirao, M.; Kurokawa, Y.; Utsumi, S. InBody 720 as a new method of evaluating visceral obesity. Hepatogastroenterology 2011, 58, 42–44. [Google Scholar]
- Yoo, K.M.; Yang, H.J.; Park, S.K.; Jung, Y.S.; Park, J.H.; Park, D.I.; Sohn, C.I. Skeletal muscle mass and risk of advanced adenoma in surveillance colonoscopy. J. Gastroenterol. Hepatol. 2020, 35, 2088–2095. [Google Scholar] [CrossRef]
- Jung, Y.S.; Kim, N.H.; Ryu, S.; Park, J.H.; Park, D.I.; Sohn, C.I. Association Between Low Relative Muscle Mass and the Risk of Colorectal Neoplasms. J. Clin. Gastroenterol. 2017, 51, e83–e89. [Google Scholar] [CrossRef]
- Kurinami, N.; Sugiyama, S.; Yoshida, A.; Hieshima, K.; Miyamoto, F.; Kajiwara, K.; Jinnouchi, T.; Jinnouchi, H. Correlation of body muscle/fat ratio with insulin sensitivity using hyperinsulinemic-euglycemic clamp in treatment-naive type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2016, 120, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Shoji, K.; Maeda, K.; Nakamura, T.; Funahashi, T.; Matsuzawa, Y.; Shimomura, I. Measurement of visceral fat by abdominal bioelectrical impedance analysis is beneficial in medical checkup. Obes. Res. Clin. Pract. 2008, 2, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Kim, H.K.; Lee, M.J.; Bae, S.J.; Choe, J.; Jung, C.H.; Kim, C.H.; Park, J.Y.; Lee, W.J. Sex Differences of Visceral Fat Area and Visceral-to-Subcutaneous Fat Ratio for the Risk of Incident Type 2 Diabetes Mellitus. Diabetes Metab. J. 2022, 46, 486–498. [Google Scholar] [CrossRef]
- Liu, D.; Zhong, J.; Wen, W.; Ruan, Y.; Zhang, Z.; Sun, J.; Chen, H. Relationship Between Skeletal Muscle Mass to Visceral Fat Area Ratio and Cardiovascular Risk in Type 2 Diabetes. Diabetes. Metab. Syndr. Obes. 2021, 14, 3733–3742. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.G.; May, F.P.; Anderson, J.C.; Burke, C.A.; Dominitz, J.A.; Gross, S.A.; Jacobson, B.C.; Shaukat, A.; Robertson, D.J. Updates on Age to Start and Stop Colorectal Cancer Screening: Recommendations from the U.S. Multi-Society Task Force on Colorectal Cancer. Am. J. Gastroenterol. 2022, 117, 57–69. [Google Scholar] [CrossRef]
- Choi, J.M.; Seo, J.Y.; Lee, J.; Han, Y.M.; Jin, E.H.; Bae, J.H.; Lim, J.H. Longer Withdrawal Time Is More Important than Excellent Bowel Preparation in Colonoscopy of Adequate Bowel Preparation. Dig. Dis. Sci. 2021, 66, 1168–1174. [Google Scholar] [CrossRef]
- Seo, J.Y.; Lee, C.; Jin, E.H.; Yun, M.H.; Lim, J.H.; Kang, H.Y.; Yang, J.I.; Chung, S.J.; Yang, S.Y.; Kim, J.S. Is a split-dose regimen of 2 L polyethylene glycol plus ascorbic acid tolerable for colonoscopy in an early morning visit to a comprehensive medical check-up? World J. Gastroenterol. 2017, 23, 1030–1037. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, Y.J.; Kim, Y.H.; Sung, I.K.; Shim, S.G.; Oh, S.O.; Park, S.S.; Yang, S.; Son, H.J.; Rhee, P.L.; et al. Is metabolic syndrome a risk factor for colorectal adenoma? Cancer Epidemiol. Biomark. Prev. 2007, 16, 1543–1546. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, Y.; Lee, S. An association between colonic adenoma and abdominal obesity: A cross-sectional study. BMC Gastroenterol. 2009, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.V.; Murthy, V.L.; Abbasi, S.A.; Blankstein, R.; Kwong, R.Y.; Goldfine, A.B.; Jerosch-Herold, M.; Lima, J.A.; Ding, J.; Allison, M.A. Visceral adiposity and the risk of metabolic syndrome across body mass index: The MESA Study. JACC Cardiovasc. Imaging 2014, 7, 1221–1235. [Google Scholar] [CrossRef] [Green Version]
- Giovannucci, E. Insulin, insulin-like growth factors and colon cancer: A review of the evidence. J. Nutr. 2001, 131, 3109S–3120S. [Google Scholar] [CrossRef]
- Chung, G.E.; Heo, N.J.; Kim, D.; Kwak, M.S.; Yim, J.Y.; Kim, J.S.; Ahmed, A. Association between advanced fibrosis in fatty liver disease and overall mortality based on body fat distribution. J. Gastroenterol. Hepatol. 2020, 35, 90–96. [Google Scholar] [CrossRef]
- Lee, S.W.; Son, J.Y.; Kim, J.M.; Hwang, S.S.; Han, J.S.; Heo, N.J. Body fat distribution is more predictive of all-cause mortality than overall adiposity. Diabetes Obes. Metab. 2018, 20, 141–147. [Google Scholar] [CrossRef]
- Pou, K.M.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; Maurovich-Horvat, P.; Larson, M.G.; Keaney, J.F., Jr.; Meigs, J.B.; Lipinska, I.; Kathiresan, S.; et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham Heart Study. Circulation 2007, 116, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Booth, A.D.; Magnuson, A.M.; Fouts, J.; Wei, Y.; Wang, D.; Pagliassotti, M.J.; Foster, M.T. Subcutaneous adipose tissue accumulation protects systemic glucose tolerance and muscle metabolism. Adipocyte 2018, 7, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Kim, D.; Kim, J.S. Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study. Sci. Rep. 2017, 7, 10955. [Google Scholar] [CrossRef] [Green Version]
- Jurimae, T.; Jurimae, J.; Wallner, S.J.; Lipp, R.W.; Schnedl, W.J.; Moller, R.; Tafeit, E. Relationships between body fat measured by DXA and subcutaneous adipose tissue thickness measured by Lipometer in adults. J. Physiol. Anthropol. 2007, 26, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Achamrah, N.; Colange, G.; Delay, J.; Rimbert, A.; Folope, V.; Petit, A.; Grigioni, S.; Dechelotte, P.; Coeffier, M. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS ONE 2018, 13, e0200465. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.S.; Kim, J.W.; Kim, B.G.; Lee, K.L.; Lee, J.K.; Kim, J.S.; Koh, S.J. Sarcopenia is associated with an increased risk of advanced colorectal neoplasia. Int. J. Color. Dis. 2017, 32, 557–565. [Google Scholar] [CrossRef]
- Ong, M.L.; Holbrook, J.D. Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell 2014, 13, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.N.; Park, M.S.; Ryu, J.Y.; Choi, H.Y.; Hong, H.C.; Yoo, H.J.; Kang, H.J.; Song, W.; Park, S.W.; Baik, S.H.; et al. Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: The Korean Sarcopenic Obesity Study (KSOS). PLoS ONE 2014, 9, e115407. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kim, J.H.; Yoon, J.W.; Kang, S.M.; Choi, S.H.; Park, Y.J.; Kim, K.W.; Lim, J.Y.; Park, K.S.; Jang, H.C. Sarcopenic obesity: Prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 2010, 33, 1652–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckardt, K.; Gorgens, S.W.; Raschke, S.; Eckel, J. Myokines in insulin resistance and type 2 diabetes. Diabetologia 2014, 57, 1087–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardou, M.; Barkun, A.N.; Martel, M. Obesity and colorectal cancer. Gut 2013, 62, 933–947. [Google Scholar] [CrossRef] [Green Version]
- Ashktorab, H.; Paydar, M.; Yazdi, S.; Namin, H.H.; Sanderson, A.; Begum, R.; Semati, M.; Etaati, F.; Lee, E.; Brim, H.; et al. BMI and the risk of colorectal adenoma in African-Americans. Obesity 2014, 22, 1387–1391. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, E.T.; Gupta, S.; Baron, J.A.; Cross, A.J.; Lieberman, D.A.; Murphy, G.; Martínez, M.E. Family history of colorectal cancer in first-degree relatives and metachronous colorectal adenoma. Am. J. Gastroenterol. 2018, 113, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.H.; Jung, Y.S.; Park, J.H.; Park, D.I.; Sohn, C.I. Association between family history of colorectal cancer and the risk of metachronous colorectal neoplasia following polypectomy in patients aged <50 years. J. Gastroenterol. Hepatol. 2019, 34, 383–389. [Google Scholar] [CrossRef]
Total (n = 15,102) | No Adenoma (n = 8497) | Adenoma (n = 6605) | p Value | |
---|---|---|---|---|
Age (years) | 59.1 ± 6.5 | 58.3 ± 6.2 | 60.1 ± 6.6 | <0.001 |
Male, n (%) | 8651 (57.3) | 4246 (50.0) | 4405 (66.7) | <0.001 |
BMI (kg/m2) | 23.6 ± 2.9 | 23.3 ± 2.9 | 24.0 ± 2.9 | <0.001 |
WC (cm) | 85.9 ± 8.3 | 84.9 ± 8.3 | 87.3 ± 8.2 | <0.001 |
Hypertension, n (%) | 5450/15,084 (36.1) | 2721/8489 (32.1) | 2729/6595 (41.4) | <0.001 |
Diabetes, n (%) | 2134/15,084 (14.2) | 990/8489 (11.7) | 1144/6595 (17.4) | <0.001 |
Dyslipidemia, n (%) | 8159/15,084 (54.1) | 4434/8489 (52.2) | 3725/6595 (56.5) | <0.001 |
Alcohol intake, n (%) | 11,393 | 6310 | 5083 | <0.001 |
—None | 1308 (11.5) | 833 (13.2) | 475 (9.4) | |
—Mild | 8347 (73.3) | 4668 (74.0) | 3679 (72.4) | |
—Heavy | 1738 (15.3) | 809 (12.8) | 929 (18.3) | |
Smoking, n (%) | 13,862 | 7816 | 6046 | <0.001 |
—Nonsmoker | 7458 (53.8) | 4693 (60.0) | 2765 (45.7) | |
—Ex-smoker | 4366 (31.5) | 2163 (27.7) | 2203 (36.4) | |
—Current smoker | 2038 (14.7) | 960 (12.3) | 1078 (17.8) | |
Purpose of colonoscopy, n (%) | 14,979 | 8489 | 6595 | 0.240 |
—Screening | 1168 (7.8) | 639 (7.6) | 529 (8.1) | |
—Surveillance | 13,811 (92.2) | 7801 (92.4) | 6010 (91.9) | |
Family history of CRC, n (%) | 1143/15,084 (7.6) | 642/8489 (7.6) | 501/6595 (7.6) | 0.938 |
Skeletal muscle index | 0.30 ± 0.04 | 0.30 ± 0.03 | 0.31 ± 0.03 | <0.001 |
Fat mass index | 0.27 ± 0.07 | 0.28 ± 0.07 | 0.27 ± 0.07 | <0.001 |
Muscle/fat ratio | 1.61 ± 0.63 | 1.59 ± 0.61 | 1.64 ± 0.64 | <0.001 |
VFI (cm2/kg) | 1.32 ± 0.34 | 1.33 ± 0.35 | 1.32 ± 0.34 | 0.002 |
SVR (kg/cm2) | 0.34 ± 0.18 | 0.34 ± 0.18 | 0.34 ± 0.19 | <0.001 |
SMI | FMI | MFR | VFI | SVR | |
---|---|---|---|---|---|
Adenoma | |||||
Q1 | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 0.85 (0.76–0.94) | 1.02 (0.93–1.12) | 0.87 (0.79–0.97) | 1.10 (1.00–1.21) | 0.87 (0.79–0.97) |
Q3 | 0.82 (0.72–0.93) | 1.15 (1.04–1.28) | 0.76 (0.68–0.85) | 1.16 (1.05–1.28) | 0.80 (0.71–0.89) |
Q4 | 0.74 (0.65–0.85) | 1.35 (1.20–1.52) | 0.76 (0.68–0.86) | 1.32 (1.18–1.48) | 0.76 (0.67–0.86) |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
High-risk adenoma | |||||
Q1 | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 0.72 (0.59–0.89) | 1.13 (0.96–1.32) | 0.78 (0.65–0.94) | 1.09 (0.93–1.28) | 0.79 (0.66–0.96) |
Q3 | 0.70 (0.56–0.88) | 1.30 (1.09–1.54) | 0.70 (0.58–0.86) | 1.24 (1.05–1.47) | 0.69 (0.57–0.84) |
Q4 | 0.62 (0.49–0.79) | 1.58 (1.29–1.93) | 0.64 (0.52–0.79) | 1.50 (1.22–1.82) | 0.65 (0.53–0.80) |
p value | 0.001 | <0.001 | <0.001 | 0.001 | <0.001 |
Advanced neoplasm | |||||
Q1 | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) | 1 (reference) |
Q2 | 0.68 (0.49–0.94) | 1.06 (0.82–1.38) | 0.60 (0.45–0.81) | 1.03 (0.78–1.34) | 0.74 (0.55–0.99) |
Q3 | 0.62 (0.43–0.89) | 1.19 (0.89–1.58) | 0.58 (0.43–0.80) | 1.18 (0.89–1.55) | 0.63 (0.46–0.86) |
Q4 | 0.64 (0.44–0.93) | 1.60 (1.16–2.22) | 0.61 (0.44–0.84) | 1.48 (1.08–2.04) | 0.61 (0.44–0.85) |
p value | 0.061 | 0.025 | 0.002 | 0.073 | 0.017 |
Univariate Model | Multivariate Model 1 | Multivariate Model 2 | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Sex (Male) | 2.01(1.88–2.14) | <0.001 | 2.07 (1.82–2.35) | <0.001 | 2.07 (1.81–2.36) | <0.001 |
Age (years) | <0.001 | <0.001 | <0.001 | |||
50–69 | 1 (reference) | 1 (reference) | 1 (reference) | |||
70–75 | 1.66 (1.48–1.86) | 1.61 (1.37–1.89) | 1.62 (1.38–1.91) | |||
Hypertension | 1.50 (1.40–1.60) | <0.001 | 1.16 (1.07–1.26) | <0.001 | 1.17 (1.07–1.27) | <0.001 |
Diabetes mellitus | 1.59 (1.45–1.74) | <0.001 | 1.22 (1.09–1.37) | <0.001 | 1.23 (1.10–1.37) | <0.001 |
Dyslipidemia | 1.19 (1.11–1.27) | <0.001 | 1.02 (0.95–1.11) | 0.569 | 1.03 (0.95–1.11) | 0.509 |
Alcohol intake | <0.001 | 0.002 | 0.002 | |||
—None | 1 (reference) | 1 (reference) | 1 (reference) | |||
—Mild | 1.38 (1.23–1.56) | <0.001 | 1.09 (0.96–1.25) | 0.194 | 1.10 (0.96–1.25) | 0.194 |
—Heavy | 2.01 (1.74–2.33) | <0.001 | 1.31 (1.10–1.54) | 0.002 | 1.31 (1.11–1.55) | 0.002 |
Smoking | <0.001 | 0.003 | 0.002 | |||
—Nonsmoker | 1 (reference) | 1 (reference) | 1 (reference) | |||
—Ex-smoker | 1.73 (1.60–1.87) | <0.001 | 1.13 (1.01–1.26) | 0.028 | 1.13 (1.02–1.26) | 0.028 |
—Current smoker | 1.91 (1.73–2.10) | <0.001 | 1.25 (1.10–1.42) | 0.001 | 1.26 (1.10–1.43) | 0.001 |
Purpose | 0.239 | |||||
—Screening | 1 (reference) | |||||
—Surveillance | 0.93 (0.83–1.05) | |||||
FHx of CRC | 1.01 (0.89–1.14) | 0.938 | ||||
SMI | <0.001 | |||||
—Q1 | 1 (reference) | |||||
—Q2 | 1.21 (1.11–1.32) | <0.001 | ||||
—Q3 | 1.56 (1.42–1.71) | <0.001 | ||||
—Q4 | 1.48 (1.35–1.63) | <0.001 | ||||
FMI | <0.001 | |||||
—Q1 | 1 (reference) | |||||
—Q2 | 0.93 (0.85–1.02) | 0.111 | ||||
—Q3 | 0.85 (0.78–0.94) | 0.001 | ||||
—Q4 | 0.77 (0.70–0.85) | <0.001 | ||||
MFR | <0.001 | |||||
—Q1 | 1 (reference) | |||||
—Q2 | 1.16 (1.05–1.27) | 0.003 | ||||
—Q3 | 1.25 (1.14–1.37) | <0.001 | ||||
—Q4 | 1.36 (1.24–1.50) | <0.001 | ||||
VFI | <0.001 | <0.001 | N/A | N/A | ||
—Q1 | 1 (reference) | 1 (reference) | ||||
—Q2 | 1.11 (1.02–1.22) | 0.024 | 1.07 (0.97–1.19) | 0.195 | ||
—Q3 | 1.02 (0.92–1.12) | 0.758 | 1.14 (1.02–1.28) | 0.019 | ||
—Q4 | 0.89 (0.81–0.97) | 0.010 | 1.40 (1.22–1.61) | <0.001 | ||
SVR | <0.001 | <0.001 | ||||
—Q1 | 1 (reference) | 1 (reference) | ||||
—Q2 | 1.17 (1.06–1.28) | 0.002 | 0.83 (0.73–0.95) | 0.195 | ||
—Q3 | 1.29 (1.17–1.41) | <0.001 | 0.76 (0.66–0.87) | 0.019 | ||
—Q4 | 1.22 (1.11–1.34) | <0.001 | 0.74 (0.64–0.85) | <0.001 |
Univariate Model | Multivariate Model 1 | Multivariate Model 2 | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Sex (Male) | 2.29 (2.02–2.59) | <0.001 | 2.29(1.79–2.91) | <0.001 | 2.31(1.80–2.96) | <0.001 |
Age (years) | <0.001 | <0.001 | <0.001 | |||
50–69 | 1 (reference) | 1 (reference) | 1 (reference) | |||
70–75 | 2.06 (1.76–2.42) | 1.92 (1.54–2.40) | 1.94 (1.56–2.42) | |||
Hypertension | 1.55 (1.39–1.73) | <0.001 | 1.16 (1.01–1.33) | 0.042 | 1.16 (1.01–1.33) | 0.038 |
Diabetes mellitus | 1.86 (1.63–2.13) | <0.001 | 1.41 (1.19–1.66) | 0.042 | 1.41 (1.19–1.66) | 0.038 |
Dyslipidemia | 1.26 (1.13–1.41) | <0.001 | 1.10 (0.96–1.26) | 0.185 | 1.10 (0.96–1.26) | 0.172 |
Alcohol intake | <0.001 | 0.065 | 0.063 | |||
—None | 1 (reference) | 1 (reference) | 1 (reference) | |||
—Mild | 1.57 (1.24–1.99) | <0.001 | 1.23 (0.95–1.60) | 0.125 | 1.23 (0.95–1.61) | 0.120 |
—Heavy | 2.15 (1.65–2.81) | <0.001 | 1.42 (1.05–1.92) | 0.024 | 1.42 (1.05–1.93) | 0.023 |
Smoking | <0.001 | 0.017 | 0.016 | |||
—Nonsmoker | 1 (reference) | 1 (reference) | 1 (reference) | |||
—Ex-smoker | 1.91 (1.67–2.17) | <0.001 | 1.23 (1.02–1.48) | 0.031 | 1.23 (1.02–1.48) | 0.030 |
—Current smoker | 2.06 (1.76–2.42) | <0.001 | 1.35 (1.10–1.67) | 0.005 | 1.35 (1.10–1.67) | 0.005 |
Purpose | <0.001 | <0.001 | <0.001 | |||
—Screening | 1 (reference) | 1 (reference) | 1 (reference) | |||
—Surveillance | 0.55 (0.47–0.66) | 0.46 (0.37–0.57) | 0.46 (0.37–0.57) | |||
FHx of CRC | 1.06 (0.87–1.30) | 0.575 | ||||
SMI | <0.001 | |||||
—Q1 | 1 (reference) | |||||
—Q2 | 1.24 (1.06–1.46) | 0.009 | ||||
—Q3 | 1.59 (1.35–1.87) | <0.001 | ||||
—Q4 | 1.47 (1.25–1.74) | <0.001 | ||||
FMI | 0.038 | |||||
—Q1 | 1 (reference) | |||||
—Q2 | 1.03 (0.88–1.21) | 0.688 | ||||
—Q3 | 0.97 (0.82–1.14) | 0.668 | ||||
—Q4 | 0.82 (0.70–0.98) | 0.025 | ||||
MFR | 0.007 | |||||
—Q1 | 1 (reference) | |||||
—Q2 | 1.16 (0.99–1.38) | 0.074 | ||||
—Q3 | 1.29 (1.10–1.52) | 0.002 | ||||
—Q4 | 1.28 (1.09–1.51) | 0.003 | ||||
VFI | 0.066 | 0.006 | N/A | N/A | ||
—Q1 | 1 (reference) | 1 (reference) | ||||
—Q2 | 1.13 (0.97–1.33) | 0.120 | 1.09 (0.91–1.30) | 0.350 | ||
—Q3 | 1.13 (0.97–1.33) | 0.124 | 1.27 (1.06–1.54) | 0.011 | ||
—Q4 | 0.95 (0.81–1.12) | 0.547 | 1.47 (1.16–1.87) | 0.001 | ||
SVR | 0.043 | 0.016 | ||||
—Q1 | 1 (reference) | 1 (reference) | ||||
—Q2 | 1.20 (1.02–1.41) | 0.031 | 0.84 (0.67–1.06) | 0.148 | ||
—Q3 | 1.25 (1.07–1.47) | 0.006 | 0.73 (0.58–0.93) | 0.011 | ||
—Q4 | 1.14 (0.96–1.34) | 0.132 | 0.69 (0.53–0.88) | 0.003 |
Adenoma | High-Risk Adenoma | |||
---|---|---|---|---|
BMI < 25 kg/m2 | OR (95% CI) | p value | OR (95% CI) | p value |
VFI | 0.005 | 0.006 | ||
—Q1 | 1 (reference) | 1 (reference) | ||
—Q2 | 1.10 (0.97–1.24) | 0.127 | 1.11 (0.90–1.37) | 0.332 |
—Q3 | 1.15 (0.99–1.32) | 0.060 | 1.28 (1.00–1.64) | 0.051 |
—Q4 | 1.37 (1.16–1.63) | <0.001 | 1.80 (1.29–2.50) | 0.001 |
BMI ≥ 25 kg/m2 | OR (95% CI) | p value | OR (95% CI) | p value |
VFI | 0.342 | 0.468 | ||
—Q1 | 1 (reference) | 1 (reference) | ||
—Q2 | 0.97 (0.78–1.21) | 0.816 | 1.09 (0.76–1.56) | 0.649 |
—Q3 | 1.06 (0.85–1.33) | 0.588 | 1.28 (0.90–1.83) | 0.167 |
—Q4 | 1.21 (0.92–1.59) | 0.177 | 1.14 (0.75–1.75) | 0.538 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.Y.; Han, Y.M.; Chung, S.J.; Lim, S.H.; Bae, J.H.; Chung, G.E. Visceral Obesity Is a More Important Factor for Colorectal Adenomas than Skeletal Muscle or Body Fat. Cancers 2022, 14, 5256. https://doi.org/10.3390/cancers14215256
Seo JY, Han YM, Chung SJ, Lim SH, Bae JH, Chung GE. Visceral Obesity Is a More Important Factor for Colorectal Adenomas than Skeletal Muscle or Body Fat. Cancers. 2022; 14(21):5256. https://doi.org/10.3390/cancers14215256
Chicago/Turabian StyleSeo, Ji Yeon, Yoo Min Han, Su Jin Chung, Seon Hee Lim, Jung Ho Bae, and Goh Eun Chung. 2022. "Visceral Obesity Is a More Important Factor for Colorectal Adenomas than Skeletal Muscle or Body Fat" Cancers 14, no. 21: 5256. https://doi.org/10.3390/cancers14215256
APA StyleSeo, J. Y., Han, Y. M., Chung, S. J., Lim, S. H., Bae, J. H., & Chung, G. E. (2022). Visceral Obesity Is a More Important Factor for Colorectal Adenomas than Skeletal Muscle or Body Fat. Cancers, 14(21), 5256. https://doi.org/10.3390/cancers14215256