A Clinical Outcome of the Anti-PD-1 Therapy of Melanoma in Polish Patients Is Mediated by Population-Specific Gut Microbiome Composition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort and Data Collection
2.2. Questionnaire
2.3. Fecal Sample Collection and Stool Calprotectin Measurement
2.4. Metagenomic DNA Extraction and Metagenome Sequencing
3. Results
3.1. Characteristics of the Study Cohort
3.2. Baseline Gut Microbiota- and Immune Response-Modifying Agents Significance in the Response to Anti-PD-1 Therapy in the Cohort of Melanoma Patients
3.3. Baseline Gut Microbiota of Responders Was Enriched with Prevotella copri and Bacteroides Uniformis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, X.; Zhang, Y.; Wang, S.; Wei, H.; Yu, J. Immune Checkpoint Inhibitor (ICI) Combination Therapy Compared to Monotherapy in Advanced Solid Cancer: A Systematic Review. J. Cancer 2021, 12, 1318–1333. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin-Acevedo, J.A.; Kimbrough, E.M.O.; Lou, Y. Next Generation of Immune Checkpoint Inhibitors and Beyond. J. Hematol. Oncol. 2021, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Vukadin, S.; Khaznadar, F.; Kizivat, T.; Vcev, A.; Smolic, M. Biomedicines Molecular Mechanisms of Resistance to Immune Checkpoint Inhibitors in Melanoma Treatment: An Update. Biomedicines 2021, 9, 835. [Google Scholar] [CrossRef]
- Tomela, K.; Pietrzak, B.; Schmidt, M.; Mackiewicz, A. The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients. Life 2020, 10, 219. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Zhang, S.; Dong, L. Gut microbiota-mediated immunomodulation in tumor. J. Exp. Clin. Cancer Res. 2021, 40, 221. [Google Scholar] [CrossRef]
- Lee, K.A.; Thomas, A.M.; Bolte, L.A.; Björk, J.R.; de Ruijter, L.K.; Armanini, F.; Asnicar, F.; Blanco-Miguez, A.; Board, R.; Calbet-Llopart, N.; et al. Cross-Cohort Gut Microbiome Associations with Immune Checkpoint Inhibitor Response in Advanced Melanoma. Nat. Med. 2022, 28, 535–544. [Google Scholar] [CrossRef]
- Hussain, N.; Naeem, M.; Pinato, D.J. Concomitant Medications and Immune Checkpoint Inhibitor Therapy for Cancer: Causation or Association? Hum. Vaccin. Immunother. 2021, 17, 55–61. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Lv, X.; Hu, L.; Li, W.; Zi, M.; He, Y. Impact of Diets on Response to Immune Checkpoint Inhibitors (ICIs) Therapy against Tumors. Life 2022, 12, 409. [Google Scholar] [CrossRef]
- Szmulski, Ł. Obwieszczenie Nr 65 Ministra Zdrowia z Dnia 30 Sierpnia 2019 r. w Sprawie Wykazu Refundowanych Leków, Środków Spożywczych Specjalnego Przeznaczenia Żywieniowego Oraz Wyrobów Medycznych. Off. J. Minist. Health-Pol. 2019, 65, 906–913. [Google Scholar]
- Dore, J.; Ehrlich, S.D.; Levenez, F.; Pelletier, E.; Alberti, A.; Bertrand, L.; Bork, P.; Costea, P.I.; Sunagawa, S.; Guarner, F.; et al. IHMS_SOP 05 V1: Standard Operating Procedure for Fecal Samples Preserved in Stabilizing Solution Self-Collection, Laboratory Analysis Handled within 24 Hours to 7 Days (24 Hours ˂ x ≤ 7 Days); International Human Microbiome Standards; INRA—Département MICA: Paris, France, 2015. [Google Scholar]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Rg Peplies, J.; Quast, C.; Horn, M.; Glö Ckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- McLaren, M.R. Silva SSU Taxonomic Training Data Formatted for DADA2 (Silva Version 138). 2020. Available online: https://zenodo.org/record/3731176#.Y16A73bMJPY (accessed on 15 November 2021).
- Wu, Y.-W.; Higgins, B.; Yu, C.; Reddy, A.P.; Ceballos, S.; Joh, L.D.; Simmons, B.A.; Singer, S.W.; VanderGheynst, J.S.; Wu, Y.-W.C. Ionic Liquids Impact the Bioenergy Feedstock-Degrading Microbiome and Transcription of Enzymes Relevant to Polysaccharide Hydrolysis. mSystems 2016, 1, e00120-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arkin, A.P.; Cottingham, R.W.; Henry, C.S.; Harris, N.L.; Stevens, R.L.; Maslov, S.; Dehal, P.; Ware, D.; Perez, F.; Canon, S.; et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 2018, 36, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Deckers, E.A.; Kruijff, S.; Brouwers, A.H.; van der Steen, K.; Hoekstra, H.J.; Thompson, J.F.; Vállez García, D.; Wevers, K.P. The Association between Active Tumor Volume, Total Lesion Glycolysis and Levels of S-100B and LDH in Stage IV Melanoma Patients. Eur. J. Surg. Oncol. 2020, 46, 2147–2153. [Google Scholar] [CrossRef] [PubMed]
- Dzutsev, A.; Goldszmid, R.S.; Viaud, S.; Zitvogel, L.; Trinchieri, G. The Role of the Microbiota in Inflammation, Carcinogenesis, and Cancer Therapy. Eur. J. Immunol. 2015, 45, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Mazmanian, S.K.; Round, J.L.; Kasper, D.L. A Microbial Symbiosis Factor Prevents Intestinal Inflammatory Disease. Nature 2008, 453, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Delday, M.; Mulder, I.; Logan, E.T.; Grant, G. Bacteroides Thetaiotaomicron Ameliorates Colon Inflammation in Preclinical Models of Crohn’s Disease. Inflamm. Bowel Dis. 2019, 25, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Nomura, K.; Ishikawa, D.; Okahara, K.; Ito, S.; Haga, K.; Takahashi, M.; Arakawa, A.; Shibuya, T.; Osada, T.; Kuwahara-Arai, K.; et al. Clinical Medicine Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis. J. Clin. Med. 2021, 10, 1749. [Google Scholar] [CrossRef]
- Finotello, F.; Mastrorilli, E.; di Camillo, B. Measuring the Diversity of the Human Microbiota with Targeted Next-Generation Sequencing. Brief. Bioinform. 2018, 19, 679–692. [Google Scholar] [CrossRef]
- Jeanmougin, M.; de Reynies, A.; Marisa, L.; Paccard, C.; Nuel, G.; Guedj, M. Should We Abandon the T-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies. PLoS ONE 2010, 5, e12336. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Babraham Bioinformatics. FastQC a Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 15 November 2021).
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. MetaSPAdes: A New Versatile Metagenomic Assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-W.; Simmons, B.A.; Singer, S.W. MaxBin 2.0: An Automated Binning Algorithm to Recover Genomes from Multiple Metagenomic Datasets. Bioinformatics 2016, 32, 605–607. [Google Scholar] [CrossRef] [PubMed]
- Alneberg, J.; Bjarnason, B.S.; de Bruijn, I.; Schirmer, M.; Quick, J.; Ijaz, U.Z.; Lahti, L.; Loman, N.J.; Andersson, A.F.; Quince, C. Binning Metagenomic Contigs by Coverage and Composition. Nat. Methods 2014, 11, 1144–1146. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kang, D.D.; Froula, J.; Egan, R. MetaBAT, an Efficient Tool for Accurately Reconstructing Single Genomes from Complex Microbial Communities. PeerJ 2015, 3, e1165. [Google Scholar] [CrossRef] [Green Version]
- Sieber, C.M.K.; Probst, A.J.; Sharrar, A.; Thomas, B.C.; Hess, M.; Tringe, S.G.; Banfield, J.F. Recovery of Genomes from Metagenomes via a Dereplication, Aggregation and Scoring Strategy. Nat. Microbiol. 2018, 3, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A Toolkit to Classify Genomes with the Genome Taxonomy Database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef]
- Tett, A.; Huang, K.D.; Asnicar, F.; Fehlner-Peach, H.; Pasolli, E.; Karcher, N.; Armanini, F.; Manghi, P.; Bonham, K.; Zolfo, M.; et al. The Prevotella Copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations. Cell. Host. Microbe 2019, 26, 666–679.e7. [Google Scholar] [CrossRef] [PubMed]
- Olm, M.R.; Brown, C.T.; Brooks, B.; Banfield, J.F. DRep: A Tool for Fast and Accurate Genomic Comparisons That Enables Improved Genome Recovery from Metagenomes through de-Replication. ISME J. 2017, 11, 2864–2868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast Genome and Metagenome Distance Estimation Using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef] [Green Version]
- Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M.; et al. Baseline Gut Microbiota Predicts Clinical Response and Colitis in Metastatic Melanoma Patients Treated with Ipilimumab. Ann. Oncol. 2017, 28, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, S.; Berlec, A.; Štrukelj, B. Microorganisms The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel Disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Hiippala, K.; Kainulainen, V.; Suutarinen, M.; Heini, T.; Bowers, J.R.; Jasso-Selles, D.; Lemmer, D.; Valentine, M.; Barnes, R.; Engelthaler, D.M.; et al. Isolation of Anti-Inflammatory and Epithelium Reinforcing Bacteroides and Parabacteroides Spp. from A Healthy Fecal Donor. Nutrients 2020, 12, 935. [Google Scholar] [CrossRef] [Green Version]
- Ponziani, F.R.; de Luca, A.; Picca, A.; Marzetti, E.; Petito, V.; del Chierico, F.; Reddel, S.; Sterbini, F.P.; Sanguinetti, M.; Putignani, L.; et al. Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma. Hepatol. Commun. 2022, 6, 1492–1501. [Google Scholar] [CrossRef]
- Joshi, S.; Lewis, S.J.; Creanor, S.; Ayling, R.M. Age-Related Faecal Calprotectin, Lactoferrin and Tumour M2-PK Concentrations in Healthy Volunteers. Ann. Clin. Biochem. 2010, 47, 259–263. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R.; et al. Gut Microbiome Affects the Response to Anti-PD-1 Immunotherapy in Patients with Hepatocellular Carcinoma. J. Immunother. Cancer 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.A.; Wilson, M.; Moran, U.; Pavlick, A.; Izsak, A.; Wechter, T.; Weber, J.S.; Osman, I.; Ahn, J. Relating the Gut Metagenome and Metatranscriptome to Immunotherapy Responses in Melanoma Patients. Genome Med. 2019, 11, 61. [Google Scholar] [CrossRef]
- Jin, Y.; Dong, H.; Xia, L.; Yang, Y.; Zhu, Y.; Shen, Y.; Zheng, H.; Yao, C.; Wang, Y.; Lu, S. The Diversity of Gut Microbiome Is Associated With Favorable Responses to Anti–Programmed Death 1 Immunotherapy in Chinese Patients with NSCLC. J. Thorac. Oncol. 2019, 14, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Precup, G.; Vodnar, D.-C. Gut Prevotella as a Possible Biomarker of Diet and Its Eubiotic versus Dysbiotic Roles: A Comprehensive Literature Review. Br. J. Nutr. 2019, 122, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.M. The Immune Response to Prevotella Bacteria in Chronic Inflammatory Disease. Immunology 2017, 151, 363–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scher, J.U.; Sczesnak, A.; Longman, R.S.; Segata, N.; Ubeda, C.; Bielski, C.; Rostron, T.; Cerundolo, V.; Pamer, E.G.; Abramson, S.B.; et al. Expansion of Intestinal Prevotella Copri Correlates with Enhanced Susceptibility to Arthritis. eLife 2013, 2, e01202. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Kurakawa, T.; Umemoto, E.; Motooka, D.; Ito, Y.; Gotoh, K.; Hirota, K.; Matsushita, M.; Furuta, Y.; Narazaki, M.; et al. Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine. Arthritis Rheumatol. 2016, 68, 2646–2661. [Google Scholar] [CrossRef]
- Pianta, A.; Arvikar, S.; Strle, K.; Drouin, E.E.; Wang, Q.; Costello, C.E.; Steere, A.C. Evidence of the Immune Relevance of Prevotella Copri, a Gut Microbe, in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2017, 69, 964–975. [Google Scholar] [CrossRef] [Green Version]
- Dillon, S.M.; Lee, E.J.; Kotter, C.V.; Austin, G.L.; Gianella, S.; Siewe, B.; Smith, D.M.; Landay, A.L.; Mcmanus, M.C.; Robertson, C.E.; et al. Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T-Cell Activation in Untreated HIV-1 Infection. Mucosal Immunol. 2016, 9, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; de Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Björck, I.; Bäckhed, F. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015, 22, 971–982. [Google Scholar] [CrossRef] [Green Version]
- Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.; et al. Anticancer Immunotherapy by CTLA-4blockade Relies on the Gut Microbiota. Science 2015, 350, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Frankel, A.E.; Coughlin, L.A.; Kim, J.; Froehlich, T.W.; Xie, Y.; Frenkel, E.P.; Koh, A.Y. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia 2017, 19, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Cano, P.G.; Santacruz, A.; Ngela Moya, Á.; Sanz, Y. Bacteroides Uniformis CECT 7771 Ameliorates Metabolic and Immunological Dysfunction in Mice with High-Fat-Diet Induced Obesity. PLoS ONE 2012, 7, e41079. [Google Scholar] [CrossRef] [Green Version]
- Fabersani, E.; Portune, K.; Campillo, I.; López-Almela, I.; Montserrat-De La Paz, S.; Romaní-Pérez, M.; Benítez-Páez, A.; Sanz, Y. Bacteroides Uniformis CECT 7771 Alleviates Inflammation within the Gut-Adipose Tissue Axis Involving TLR5 Signaling in Obese Mice. Sci. Rep. 2021, 11, 11788. [Google Scholar] [CrossRef] [PubMed]
- López-Almela, I.; Romaní-Pérez, M.; Bullich-Vilarrubias, C.; Benítez-Páez, A.; Gómez, E.M.; Pulgar, D.; Francés, R.; Liebisch, G.; Sanz, Y. Bacteroides Uniformis Combined with Fiber Amplifies Metabolic and Immune Benefits in Obese Mice. Gut Microbes 2021, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhao, Y.; Cui, Y.; Zhong, C.; Zha, Y.; Li, S.; Cao, G.; Li, M.; Zhang, L.; Ning, K.; et al. Stage-Specific Roles of Microbial Dysbiosis and Metabolic Disorders in Rheumatoid Arthritis. Ann. Rheum. Dis. 2022, 0, 1–9. [Google Scholar] [CrossRef]
- Coutzac, C.; Jouniaux, J.-M.; Paci, A.; Schmidt, J.; Mallardo, D.; Seck, A.; Asvatourian, V.; Cassard, L.; Saulnier, P.; Lacroix, L.; et al. Systemic Short Chain Fatty Acids Limit Antitumor Effect of CTLA-4 Blockade in Hosts with Cancer. Nat. Commun. 2020, 11, 2168. [Google Scholar] [CrossRef]
- Rey, F.E.; Gonzalez, M.D.; Cheng, J.; Wu, M.; Ahern, P.P.; Gordon, J.I. Metabolic Niche of a Prominent Sulfate-Reducing Human Gut Bacterium. Proc. Natl. Acad. Sci. USA 2013, 110, 13582–13587. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, J.; Sass, H.; Babenzien, H.D.; Kuhnigk, T.; Varma, A.; Saxena, S.; Nalepa, C.; Pfeiffer, P.; König, H. Isolation of Desulfovibrio intestinalis sp. Nov. from the Hindgut of the Lower Termite Mastotermes Darwiniensis. Can. J. Microbiol. 1999, 45, 145–152. [Google Scholar] [CrossRef]
- Ran, S.; Mu, C.; Zhu, W. Diversity and Community Pattern of Sulfate-Reducing Bacteria in Piglet Gut. J. Anim. Sci. Biotechnol. 2019, 10, 40. [Google Scholar] [CrossRef]
- Dilek, N.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen Sulfide: An Endogenous Regulator of the Immune System. Pharmacol. Res. 2020, 161, 105119. [Google Scholar] [CrossRef] [PubMed]
- Loubinoux, J.; Bronowicki, J.-P.; Pereira, I.A.C.; Mougenel, J.-L.; le Faou, A.E. Sulfate-Reducing Bacteria in Human Feces and Their Association with Inflammatory Bowel Diseases. FEMS Microbiol. Ecol. 2002, 40, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Kushkevych, I.; Dordević, D.; Vítězová, M. Possible Synergy Effect of Hydrogen Sulfide and Acetate Produced by Sulfate-Reducing Bacteria on Inflammatory Bowel Disease Development. J. Adv. Res. 2021, 27, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-R.; Jing, Q.-L.; Chen, F.-L.; Zheng, H.; Chen, L.-D.; Yang, Z.-C. Desulfovibrio Is Not Always Associated with Adverse Health Effects in the Guangdong Gut Microbiome Project. PeerJ 2021, 9, e12033. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, M.; Matuszyk, D.; Prażmowska, B. Poród domowy w opinii położnych. Probl. Pielęgniarstwa 2011, 19, 153–161. [Google Scholar]
- Radzikowska, U.; Rinaldi, A.O.; Sözener, Z.Ç.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef] [Green Version]
- Ravasco, P.; Van, M.; Merwe, D.; Theys, J.; Westheim, A.J.F.; Stoffels, L.M.; Dubois, L.J.; van Bergenhenegouwen, J.; van Helvoort, A.; Langen, R.C.J.; et al. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front. Nutr. 2022, 1, 868436. [Google Scholar] [CrossRef]
- Hosseini, B.; Berthon, B.S.; Saedisomeolia, A.; Starkey, M.R.; Collison, A.; Wark, P.A.; Wood, L.G. Effects of Fruit and Vegetable Consumption on Inflammatory Biomarkers and Immune Cell Populations: A Systematic Literature Review and Meta-Analysis. Am. J. Clin. Nutr. 2018, 108, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Spencer, C.N.; McQuade, J.L.; Gopalakrishnan, V.; McCulloch, J.A.; Vetizou, M.; Cogdill, A.P.; Wadud Khan, M.A.; Zhang, X.; White, M.G.; Peterson, C.B.; et al. Dietary Fiber and Probiotics Influence the Gut Microbiome and Melanoma Immunotherapy Response. Science 2021, 374, 1632–1640. [Google Scholar] [CrossRef]
- Hayase, E.; Jenq, R.R. Role of the Intestinal Microbiome and Microbial-Derived Metabolites in Immune Checkpoint Blockade Immunotherapy of Cancer. Genome Med. 2021, 13, 107. [Google Scholar] [CrossRef]
- Botticelli, A.; Vernocchi, P.; Marini, F.; Quagliariello, A.; Cerbelli, B.; Reddel, S.; del Chierico, F.; di Pietro, F.; Giusti, R.; Tomassini, A.; et al. Gut Metabolomics Profiling of Non-Small Cell Lung Cancer (NSCLC) Patients under Immunotherapy Treatment. J. Transl. Med. 2020, 18, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, M.; Nagatomo, R.; Doi, K.; Shimizu, J.; Baba, K.; Saito, T.; Matsumoto, S.; Inoue, K.; Muto, M. Association of Short-Chain Fatty Acids in the Gut Microbiome With Clinical Response to Treatment With Nivolumab or Pembrolizumab in Patients With Solid Cancer Tumors Key Points. JAMA Netw. Open 2020, 3, e202895. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary Fibre in Foods: A Review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Dougkas, A.; Barr, S.; Reddy, S.; Summerbell, C.D. A Critical Review of the Role of Milk and Other Dairy Products in the Development of Obesity in Children and Adolescents. Nutr. Res. Rev. 2018, 32, 106–127. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Givens, D.I.; Astrup, A.; Bakker, S.J.L.; Goossens, G.H.; Kratz, M.; Marette, A.; Pijl, H.; Soedamah-Muthu, S.S. The Impact of Dairy Products in the Development of Type 2 Diabetes: Where Does the Evidence Stand in 2019? Adv. Nutr. 2019, 10, 1066–1075. [Google Scholar] [CrossRef] [Green Version]
- Soedamah-Muthu, S.S.; de Goede, J. Dairy Consumption and Cardiometabolic Diseases: Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Curr. Nutr. Rep. 2018, 7, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Aslam, H.; Marx, W.; Rocks, T.; Loughman, A.; Chandrasekaran, V.; Ruusunen, A.; Dawson, S.L.; West, M.; Mullarkey, E.; Pasco, J.A.; et al. The Effects of Dairy and Dairy Derivatives on the Gut Microbiota: A Systematic Literature Review. Gut Microbes 2020, 12, 1799533. [Google Scholar] [CrossRef]
- Shuai, M.; Zuo, L.-S.; Miao, Z.; Gou, W.; Xu, F.; Jiang, Z.; Ling, C.-W.; Fu, Y.; Xiong, F.; Chen, Y.-M.; et al. Multi-Omics Analyses Reveal Relationships among Dairy Consumption, Gut Microbiota and Cardiometabolic Health. EBioMedicine 2021, 66, 103284. [Google Scholar] [CrossRef]
- Rossi Perazza, L.; Daniel, N.; Dubois, M.-J.; Pilon, G.; Vincent Varin, T.; Blais, M.; Luis Martinez Gonzales, J.; Bouchard, M.; Asselin, C.; Lessard, M.; et al. The Journal of Nutrition Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions Distinct Effects of Milk-Derived and Fermented Dairy Protein on Gut Microbiota and Cardiometabolic Markers in Diet-Induced Obese Mice. J. Nutr. 2020, 150, 2673–2686. [Google Scholar] [CrossRef]
- Culpepper, T. The Effects of Kefir and Kefir Components on Immune and Metabolic Physiology in Pre-Clinical Studies: A Narrative Review. Cureus 2022, 14, e27768. [Google Scholar] [CrossRef]
- Katayama, Y.; Yamada, T.; Tanimura, K.; Yoshimura, A.; Takeda, T.; Chihara, Y.; Tamiya, N.; Kaneko, Y.; Uchino, J.; Takayama, K. Impact of Bowel Movement Condition on Immune Checkpoint Inhibitor Efficacy in Patients with Advanced Non-Small Cell Lung Cancer. Thorac. Cancer 2019, 10, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Sassa, N.; Kato, T.; Yamauchi, Y.; Hirabayashi, T.; Yuguchi, Y.; Maeda, M.; Soeda, Y.; Hattori, R.; Gotoh, M. Presence of Constipation Predicts the Therapeutic Efficacy of Pembrolizumab in Metastatic Urothelial Cancer Patients. Int. J. Urol. 2020, 27, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Tito, R.Y.; Joossens, M.; Raes, J. Stool Consistency Is Strongly Associated with Gut Microbiota Richness and Composition, Enterotypes and Bacterial Growth Rates. Gut 2016, 65, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.J.; Lim, J.H.; Kang, D.; Lim, S.; Park, S.J.; Kim, J.H. Is Stool Frequency Associated with the Richness and Community Composition of Gut Microbiota? Intest. Res. 2019, 17, 419–426. [Google Scholar] [CrossRef] [PubMed]
Subjects Characteristics | Responders (R; n = 28) | Non-Responders (NR; n = 36) | p Value (R~NR) | Controls (C; n = 10) | p Value (C~R + NR) |
---|---|---|---|---|---|
Sex, n (%) | 0.2 a | 0.732 a | |||
Male | 15 (54) | 25 (69) | 5 (50) | ||
Female | 13 (46) | 11 (31) | 5 (50) | ||
Age (years), | 0.2 b | 0.0193 b | |||
median (range) | 64 (41–84) | 69 (32–92) | 52.5 (36–67) | ||
M-stage at diagnosis c, n (%) | 0.3 a | NA | NA | ||
IV M1a | 7 (25) | 9 (23) | |||
IV M1b | 5 (18) | 5 (14) | |||
IV M1c | 9 (32) | 13 (36) | |||
IV M1d | 4 (14) | 9 (25) | |||
IIIc | 3 (11) | 0 (0) | |||
Serum LDH, n (%) | 0.1 a | NA | NA | ||
Normal | |||||
(≤250 U/L) | 22 (79) | 21 (58) | |||
Elevated | |||||
(>250 U/L) | 6 (21) | 15 (42) | |||
Serum LDH, | 0.04 b | NA | NA | ||
median (range) | 197.5 (121–474) | 238 (141–1173) |
Demography | Responders (R, n = 25) | Non-Responders (NR, n = 32) | Controls (C, n = 10) | p Value (R~NR) | p Value (C~R + NR) | Clinical Benefit (CB, n = 34) | No Clinical Benefit (NB, n = 23) | p Value (CB~NB) |
---|---|---|---|---|---|---|---|---|
Sex, (n) | 0.163 a | 0.191 a | 0.401 a | |||||
Male | 14 | 24 | 5 | 21 | 17 | |||
Female | 11 | 8 | 5 | 13 | 6 | |||
Age (years), median (range) | 64 (40–84) | 67.5 (32–92) | 52.5 (36–67) | 0.239 b 0.183 a | 0.0193 b 0.073 a | 63 (32–85) | 70 (38–92) | 0.163 b 0.578 a |
31–40 | 0 | 2 | 1 | 1 | 1 | |||
41–50 | 4 | 0 | 2 | 4 | 0 | |||
51–60 | 5 | 6 | 3 | 7 | 4 | |||
61–70 | 7 | 7 | 4 | 9 | 5 | |||
71–80 | 7 | 9 | 0 | 8 | 8 | |||
>80 | 2 | 6 | 0 | 4 | 4 | |||
BMI, median (range) | 27.8 (20–34.9) | 27.5 (17.5–56.2) | 25.1 (19.1–29) | 0.526 b 0.497 a | 0.273 b 0.194 a | 27.1 (20–41.9) | 27.8 (17.5–56.2) | 0.612 b 0.401 a |
Underweight (<18.5 kg/m2) | 0 | 1 | 0 | 0 | 1 | |||
Normal (18.5–24.9 kg/m2) | 9 | 6 | 5 | 5 | 2 | |||
Overweight (25.0–29.9 kg/m2) | 9 | 13 | 5 | 6 | 2 | |||
Obese (≥30 kg/m2) | 7 | 10 | 0 | 22 | 17 | |||
Blood group: | 0.635 a | 0.407 a | 0.323 a | |||||
O | 6 | 3 | 1 | 6 | 3 | |||
A | 8 | 10 | 3 | 13 | 5 | |||
AB | 1 | 2 | 3 | 1 | 2 | |||
B | 6 | 9 | 2 | 7 | 8 | |||
Blood Rh-type: | 0.101 a | 0.127 a | 0.041 a | |||||
“−” | 3 | 9 | 4 | 4 | 8 | |||
“+” | 18 | 15 | 5 | 23 | 10 | |||
Antibiotic treatment: | 0.804 a | 0.455 a | 0.850 a | |||||
During last 2 months | 3 | 2 | 0 | 4 | 1 | |||
2–6 months ago | 6 | 6 | 0 | 8 | 4 | |||
6–12 months ago | 3 | 6 | 2 | 5 | 4 | |||
Over 12 months ago | 11 | 13 | 8 | 14 | 10 | |||
PPI usage: | 1.0 a | 0.889 a | 1.0 a | |||||
No | 20 | 26 | 8 | 27 | 19 | |||
Occasionally | 3 | 3 | 2 | 4 | 2 | |||
Regularly | 1 | 1 | 0 | 1 | 1 | |||
Antacid usage: | 0.687 a | 0.267 a | 1.0 a | |||||
No | 21 | 26 | 7 | 27 | 20 | |||
Occasionally | 2 | 4 | 3 | 4 | 2 | |||
Regularly | 0 | 0 | 0 | 1 | 0 | |||
Oral NSAID usage: | 0.837 a | 0.523 a | 0.767 a | |||||
No | 13 | 15 | 3 | 18 | 10 | |||
Occasionally | 11 | 12 | 7 | 13 | 10 | |||
Regularly | 1 | 3 | 0 | 2 | 2 | |||
Low-dose ASA: | 0.741 a | 0.825 a | 1.0 a | |||||
No | 21 | 24 | 9 | 27 | 18 | |||
Yes | 4 | 6 | 1 | 6 | 4 | |||
Birth: | 1.0 a | 0.907 a | 0.738 a | |||||
Natural | 24 | 29 | 9 | 32 | 21 | |||
Caesarean section | 0 | 1 | 0 | 0 | 1 | |||
Birthplace: | 0.264 a | 0.058 a | 0.172 a | |||||
Home | 9 | 14 | 3 | 12 | 11 | |||
Hospital | 16 | 12 | 7 | 20 | 8 | |||
Breastfed: | 1.0 a | 1.0 a | 1.0 a | |||||
No | 0 | 0 | 0 | 0 | 0 | |||
Yes | 19 | 22 | 6 | 23 | 23 | |||
Breastfed duration (months): | 0.785 a 0.670 a,h | 0.708 a 1.0 a,h | 0.829 a 0.547 a,h | |||||
24 | 8 | 9 | 2 | 10 | 7 | |||
1 | 8 | 6 | 4 | 8 | 6 | |||
0.25 | 1 | 0 | 0 | 1 | 0 | |||
0.1 | 0 | 1 | 0 | 0 | 1 | |||
Prevailing dietary fat type: | 0.033 a | 0.092 a | 0.064 a | |||||
Plant-based | 12 | 19 | 7 | 16 | 15 | |||
Mixed | 9 | 2 | 1 | 10 | 1 | |||
Animal-based | 4 | 8 | 2 | 7 | 5 | |||
Meat portions consumed: | 0.53 a | 0.391 a | 0.801 a | |||||
1 or fewer weekly | 5 | 4 | 4 | 5 | 4 | |||
2–6 weekly | 15 | 23 | 6 | 22 | 16 | |||
1 or more daily | 3 | 2 | 0 | 4 | 1 | |||
Vegetable portions consumed: | 0.705 a | 0.695 a | 0.523 a | |||||
1 or fewer daily | 6 | 5 | 1 | 6 | 5 | |||
2–3 daily | 13 | 19 | 5 | 18 | 14 | |||
4–5 daily | 6 | 6 | 4 | 9 | 3 | |||
Over 5 daily | 0 | 0 | 0 | 0 | 0 | |||
Fruit portions consumed: | 0.768 a | 0.948 a | 0.422 a | |||||
1 or fewer daily | 8 | 7 | 3 | 10 | 5 | |||
2–3 daily | 13 | 20 | 6 | 17 | 16 | |||
4–5 daily | 3 | 2 | 1 | 4 | 1 | |||
Over 5 daily | 1 | 1 | 0 | 2 | 0 | |||
Plant portions consumed c: | 0.082 a 0.058 a,d 0.041 a,e 0.033 a,d,e | 0.190 a 0.132 a,d 0.041 a,e 0.032 a,d,e | 0.031 a 0.044 a,d 0.041 a,e 0.032 a,d,e | |||||
Low | 2 | 11 | 1 | 4 | 9 | |||
Recommended | 10 | 14 | 5 | 13 | 11 | |||
High | 7 | 5 | 3 | 10 | 2 | |||
Fermented veg. consumption: | 0.835 a | 0.815 a 0.403 a,d | 1.0 a 0.820 a,d | |||||
No | 3 | 2 | 0 | 3 | 2 | |||
Rarely | 6 | 8 | 4 | 8 | 6 | |||
Often | 16 | 20 | 6 | 22 | 14 | |||
Salt consumption: | 0.316 a | 0.596 a | 0.216 a | |||||
Low | 10 | 12 | 5 | 12 | 10 | |||
Average | 14 | 13 | 4 | 19 | 8 | |||
High | 1 | 5 | 1 | 2 | 4 | |||
Dairy portions consumed: | 0.072 a 0.050 a,g | 0.217 a | 0.037 a 0.024 a,g | |||||
1 or fewer daily | 14 | 8 | 4 | 17 | 5 | |||
2–3 daily | 10 | 19 | 5 | 13 | 16 | |||
4–5 daily | 1 | 1 | 1 | 1 | 1 | |||
Over 5 daily | 0 | 2 | 0 | 2 | 0 | |||
Bread type consumption: | 0.55 a 0.200 a,d | 0.744 a 0.507 a,d | 0.181 a 0.266 a,d | |||||
Light only | 2 | 5 | 1 | 4 | 3 | |||
Mostly white | 9 | 13 | 6 | 11 | 11 | |||
Mostly wholemeal | 11 | 8 | 2 | 15 | 4 | |||
Wholemeal only | 2 | 3 | 1 | 2 | 3 | |||
Cereal consumption: | 0.93 a 0.821 a,d 0.764 a,h | 0.866 a 0.581 a,d | 0.769 a 0.725 a,d 0.547 a,h | |||||
Breakfast cereals, white rice | 3 | 3 | 0 | 3 | 3 | |||
Mostly listed above | 6 | 5 | 3 | 7 | 4 | |||
Mostly listed below | 5 | 8 | 1 | 8 | 5 | |||
Oatmeal, muesli, brown rice | 9 | 9 | 4 | 13 | 5 | |||
Beverage sweetening habits: | 0.293 a | 0.366 a 0.194 a,d | 0.353 a 0.164 a,d | |||||
Do not sweeten | 12 | 20 | 7 | 18 | 14 | |||
Use artificial sweetener | 1 | 2 | 1 | 1 | 2 | |||
Use sugar | 12 | 8 | 2 | 14 | 6 | |||
Soft drink consumption: | 0.71 a | 0.469 a 0.446 a,d | 0.976 a 0.909 a,d | |||||
1 or fewer servings/month | 10 | 14 | 5 | 15 | 9 | |||
2–3 servings/month | 3 | 6 | 4 | 5 | 4 | |||
1–3 servings/week | 5 | 6 | 0 | 6 | 5 | |||
More than 3 servings/week | 5 | 3 | 1 | 5 | 3 | |||
Defecation frequency: | 0.01 a | 0.038 a | 0.720 a | |||||
Twice or more per day | 5 | 4 | 3 | 3 | 1 | |||
Once a day | 15 | 13 | 5 | 6 | 7 | |||
Every second day | 1 | 12 | 2 | 17 | 11 | |||
Seldom | 3 | 1 | 0 | 6 | 3 | |||
Bristol Stool Form Scale: | 0.689 a | 0.713 a | 0.747 a | |||||
Type 1 | 1 | 5 | 2 | 3 | 3 | |||
Type 2 | 2 | 2 | 0 | 3 | 1 | |||
Type 3 | 3 | 6 | 2 | 9 | 3 | |||
Type 4 | 13 | 14 | 5 | 15 | 12 | |||
Type 5 | 2 | 2 | 0 | 2 | 2 | |||
Type 6 | 0 | 0 | 0 | 0 | 0 | |||
Type 7 | 0 | 0 | 1 | 0 | 0 | |||
Diet alterations: | 0.362 a | 0.182 a | 0.373 a | |||||
No | 23 | 25 | 8 | 30 | 18 | |||
Yes, during last 2 weeks | 1 | 4 | 1 | 0 | 0 | |||
Yes, during last month | 0 | 0 | 1 | 0 | 0 | |||
Yes, over 1 month ago | 0 | 0 | 0 | 2 | 3 | |||
Current probiotics use: | 1.0 a | 1.0 a | 0.362 a | |||||
No | 21 | 23 | 9 | 28 | 16 | |||
Yes | 2 | 3 | 1 | 2 | 3 | |||
Probiotic use history: | 0.649 a | 0.740 a | 0.218 a | |||||
In last 2–3 weeks | 0 | 1 | 1 | 0 | 1 | |||
Over 3 weeks ago | 1 | 2 | 0 | 3 | 0 | |||
In last 6 months | 1 | 2 | 1 | 2 | 1 | |||
Over 6 months ago | 3 | 1 | 3 | 4 | 0 | |||
Tobacco smoking: | 1.0 a | 0.494 a | 1.0 a | |||||
No | 20 | 26 | 7 | 27 | 19 | |||
Yes | 4 | 4 | 3 | 5 | 3 | |||
Smoking cessation: | 1.0 a | 0.339 a | 0.251 a | |||||
Less than 1 year ago | 0 | 1 | 0 | 0 | 1 | |||
1 to 2 years ago | 1 | 1 | 1 | 2 | 0 | |||
Over 2 years ago | 7 | 8 | 3 | 10 | 5 | |||
Alcohol consumption history: | 0.253 a | 0.430 a | 0.740 a | |||||
Never | 3 | 5 | 1 | 5 | 3 | |||
In the past | 8 | 12 | 3 | 11 | 9 | |||
Currently | 14 | 8 | 6 | 15 | 7 | |||
Alcohol consumption freq. f: | 0.495 a | 0.748 a | 0.491 a | |||||
1 or fewer servings/month | 6 | 1 | 0 | 6 | 1 | |||
2–4 servings/month | 5 | 4 | 3 | 6 | 3 | |||
1–6 servings/week | 1 | 2 | 2 | 1 | 2 | |||
1–2 servings/day | 1 | 1 | 0 | 1 | 1 | |||
3 or more servings/day | 1 | 0 | 0 | 1 | 0 |
log2FC | p-Value | FDR p-Value | Phylum Class | Order Family | Genus Species | |
---|---|---|---|---|---|---|
ASV621 | −24.39 | 3.29 × 10−28 | 6.24 × 10−25 | Firmicutes Bacilli | Izemoplasmatales NA | NA NA |
ASV865 | −23.52 | 9.94 × 10−23 | 9.41 × 10−20 | Firmicutes Clostridia | Oscillospirales Oscillospiraceae | NA NA |
ASV147 | −23.73 | 3.19 × 10−20 | 2.01 × 10−17 | Firmicutes Clostridia | Clostridia UCG-014 NA | NA NA |
ASV338 | −25.25 | 1.29 × 10−17 | 6.11 × 10−15 | Firmicutes Clostridia | Clostridia UCG-014 NA | NA NA |
ASV166 | −23.70 | 1.06 × 10−15 | 4.03 × 10−13 | Firmicutes Clostridia | Oscillospirales Ruminococcaceae | Faecalibacterium prausnitzii |
ASV85 | 23.48 | 1.62 × 10−15 | 4.89 × 10−13 | Bacteroidota Bacteroidia | Bacteroidales Prevotellaceae | Prevotella copri |
ASV112 | 23.44 | 1.81 × 10−15 | 4.89 × 10−13 | Bacteroidota Bacteroidia | Bacteroidales Prevotellaceae | Prevotella copri |
ASV394 | 22.61 | 1.69 × 10−14 | 4.00 × 10−12 | Bacteroidota Bacteroidia | Bacteroidales Bacteroidaceae | Bacteroides uniformis |
ASV809 | −22.22 | 5.49 × 10−14 | 1.15 × 10−11 | Desulfobacterota Desulfovibrionia | Desulfovibrionales Desulfovibrionaceae | Desulfovibrio intestinalis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, B.; Tomela, K.; Olejnik-Schmidt, A.; Galus, Ł.; Mackiewicz, J.; Kaczmarek, M.; Mackiewicz, A.; Schmidt, M. A Clinical Outcome of the Anti-PD-1 Therapy of Melanoma in Polish Patients Is Mediated by Population-Specific Gut Microbiome Composition. Cancers 2022, 14, 5369. https://doi.org/10.3390/cancers14215369
Pietrzak B, Tomela K, Olejnik-Schmidt A, Galus Ł, Mackiewicz J, Kaczmarek M, Mackiewicz A, Schmidt M. A Clinical Outcome of the Anti-PD-1 Therapy of Melanoma in Polish Patients Is Mediated by Population-Specific Gut Microbiome Composition. Cancers. 2022; 14(21):5369. https://doi.org/10.3390/cancers14215369
Chicago/Turabian StylePietrzak, Bernadeta, Katarzyna Tomela, Agnieszka Olejnik-Schmidt, Łukasz Galus, Jacek Mackiewicz, Mariusz Kaczmarek, Andrzej Mackiewicz, and Marcin Schmidt. 2022. "A Clinical Outcome of the Anti-PD-1 Therapy of Melanoma in Polish Patients Is Mediated by Population-Specific Gut Microbiome Composition" Cancers 14, no. 21: 5369. https://doi.org/10.3390/cancers14215369
APA StylePietrzak, B., Tomela, K., Olejnik-Schmidt, A., Galus, Ł., Mackiewicz, J., Kaczmarek, M., Mackiewicz, A., & Schmidt, M. (2022). A Clinical Outcome of the Anti-PD-1 Therapy of Melanoma in Polish Patients Is Mediated by Population-Specific Gut Microbiome Composition. Cancers, 14(21), 5369. https://doi.org/10.3390/cancers14215369