Water-Soluble Truncated Fatty Acid–Porphyrin Conjugates Provide Photo-Sensitizer Activity for Photodynamic Therapy in Malignant Mesothelioma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Optical Spectroscopy
2.2. Synthesis
Porphyrin PS Stock Solution Preparation
2.3. Cell Culture
2.3.1. Cell Viability Assays Using WST-8
2.3.2. Cell Death Analysis Using Annexin V-FITC/PI
2.3.3. Data Analysis
2.3.4. Cellular Localization
2.4. Calculation of Fatty Acid Solvation Properties
3. Results
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mckenzie, L.K.; Bryant, H.E.; Weinstein, J.A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev. 2019, 379, 2–29. [Google Scholar] [CrossRef] [Green Version]
- Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 1995, 24, 19–33. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Fan, J.; Chao, H.; Peng, X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem. Soc. Rev. 2021, 50, 4185–4219. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.N.; Hsu, R.; Chen, H.; Wong, T.W. Daylight Photodynamic Therapy: An Update. Molecules 2020, 25, 5195. [Google Scholar]
- van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef]
- Mokoena, D.R.; George, B.P.; Abrahamse, H. Photodynamic Therapy Induced Cell Death Mechanisms in Breast Cancer. Int. J. Mol. Sci. 2021, 22, 10506. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Buncher, C.R. Latent period for malignant mesothelioma of occupational origin. J. Occup. Med. 1992, 34, 718–721. [Google Scholar]
- El Hossieny, H.A.; Aboulkasem, F.; Abdel Rahman, M. Analysis of the effect of radiotherapy on malignant pleural mesothelioma when given on adjuvant or palliative basis. Zhongguo Fei Ai Za Zhi 2010, 13, 54–59. [Google Scholar]
- Gomez, D.R.; Rimner, A.; Simone, C.B.; Cho, B.C.J.; de Perrot, M.; Adjei, A.A.; Bueno, R.; Gill, R.R.; Harpole, D.H.; Hesdorffer, M.; et al. The Use of Radiation Therapy for the Treatment of Malignant Pleural Mesothelioma: Expert Opinion from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation. J. Thorac. Oncol. 2019, 14, 1172–1183. [Google Scholar]
- Wu, L.; de Perrot, M. Radio-immunotherapy and chemo-immunotherapy as a novel treatment paradigm in malignant pleural mesothelioma. Transl. Lung Cancer Res. 2017, 6, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechner, J.F.; Tokiwa, T.; LaVeck, M.; Benedict, W.F.; Banks-Schlegel, S.; Yeager, H., Jr.; Banerjee, A.; Harris, C.C. Asbestos-Associated Chromosomal Changes in Human Mesothelial Cells. Proc. Natl. Acad. Sci. USA 1985, 82, 3884–3888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol. 2013, 23, 620–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, J.M.; Bilgin, M.D.; Grossweiner, L.I. Singlet oxygen generation by photodynamic agents. J. Photochem. Photobiol. 1997, 37, 131–140. [Google Scholar] [CrossRef]
- Bonnett, R.; White, R.D.; Winfield, U.J.; Berenbaum, M.C. Hydroporphyrins of the meso-tetra(hydroxyphenyl)porphyrin series as tumour photosensitizers. Biochem. J. 1989, 261, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Senge, M.O.; Brandt, J.C. Temoporfin (Foscan®, 5,10,15,20-Tetra(m-hydroxyphenyl)chlorin)-A Second-generation Photosensitizer. Photochem. Photobiol. 2011, 87, 1240–1296. [Google Scholar] [CrossRef]
- Pennington, F.C.; Strain, H.H.; Svec, W.A.; Katz, J.J. Preparation and Properties of Pyrochlorophyll a, Methyl Pyrochlorophyllide a, Pyropheophytin a, and Methyl Pyropheophorbide a Derived from Chlorophyll by Decarbomethoxylation. J. Am. Chem. Soc. 1964, 86, 1418–1426. [Google Scholar] [CrossRef]
- MacDonald, I.J.; Morgan, J.; Bellnier, D.A.; Paszkiewicz, G.M.; Whitaker, J.E.; Litchfield, D.J.; Dougherty, T.J. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem. Photobiol. 1999, 70, 789–797. [Google Scholar] [CrossRef]
- Matzi, V.; Maier, A.; Sankin, O.; Lindenmann, J.Ö.; Woltsche, M.; Smolle, J.; Smolle-Jüttner, F.M. Photodynamic therapy enhanced by hyperbaric oxygenation in palliation of malignant pleural mesothelioma: Clinical experience. Photodiagn. Photodyn. Ther. 2004, 1, 57–64. [Google Scholar] [CrossRef]
- Friedberg, J.S.; Culligan, M.J.; Mick, R.; Stevenson, J.; Hahn, S.M.; Sterman, D.; Punekar, S.; Glatstein, E.; Cengel, K. Radical Pleurectomy and Intraoperative Photodynamic Therapy for Malignant Pleural Mesothelioma. Ann. Thorac. Surg. 2012, 93, 1658–1667. [Google Scholar] [CrossRef] [Green Version]
- Rice, S.R.; Li, Y.R.; Busch, T.M.; Kim, M.M.; McNulty, S.; Dimofte, A.; Zhu, T.C.; Cengel, K.A.; Simone, C.B. A Novel Prospective Study Assessing the Combination of Photodynamic Therapy and Proton Radiation Therapy: Safety and Outcomes When Treating Malignant Pleural Mesothelioma. Photochem. Photobiol. 2019, 95, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.C.; Ong, Y.; Kim, M.M.; Liang, X.; Finlay, J.C.; Dimofte, A.; Simone, C.B.; Friedberg, J.S.; Busch, T.M.; Glatstein, E.; et al. Evaluation of Light Fluence Distribution Using an IR Navigation System for HPPH-mediated Pleural Photodynamic Therapy (pPDT). Photochem. Photobiol. 2020, 96, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Mroz, P.; Yaroslavsky, A.; Kharkwal, G.B.; Hamblin, M.R. Cell death pathways in photodynamic therapy of cancer. Cancers 2011, 3, 2516–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef]
- Xiao, T.; Fan, J.; Zhou, H.; Lin, Q.; Yang, D. Local Unfolding of Fatty Acid Binding Protein to Allow Ligand Entry for Binding. Angew.Chem.Int. Ed. 2016, 55, 6869–6872. [Google Scholar] [CrossRef]
- Serrano, L.; Kellis, J.T.; Cann, P.; Matouschek, A.; Fersht, A.R. The folding of an enzyme: II. Substructure of barnase and the contribution of different interactions to protein stability. J. Mol. Biol. 1992, 224, 783–804. [Google Scholar] [CrossRef]
- Whitehead, M.; Turega, S.; Stephenson, A.; Hunter, C.A.; Ward, M.D. Quantification of solvent effects on molecular recognition in polyhedral coordination cage hosts. Chem. Sci. 2013, 4, 2744–2751. [Google Scholar] [CrossRef] [Green Version]
- Turega, S.; Cullen, W.; Whitehead, M.; Hunter, C.A.; Ward, M.D. Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries. J. Am. Chem. Soc. 2014, 136, 8475–8483. [Google Scholar] [CrossRef]
- Hudspith, L.; Shmam, F.; Dalton, C.F.; Princivalle, A.; Turega, S.M. Neurotransmitter selection by monoamine oxidase isoforms, dissected in terms of functional groups by mixed double mutant cycles. Org. Biomol. Chem. 2019, 17, 8871–8877. [Google Scholar] [CrossRef]
- Aprà, E.; Bylaska, E.J.; de Jong, W.A.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Valiev, M.; van Dam, H.J.J.; Alexeev, Y.; Anchell, J.; et al. NWChem: Past, present, and future. J. Chem. Phys. 2020, 152, 184102. [Google Scholar] [CrossRef]
- Driver, M.D.; Williamson, M.J.; Cook, J.L.; Hunter, C.A. Functional group interaction profiles: A general treatment of solvent effects on non-covalent interactions. Chem. Sci. 2020, 11, 4456–4466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driver, M.D.; Williamson, M.J.; De Mitri, N.; Nikolov, T.; Hunter, C.A. SSIPTools: Software and Methodology for Surface Site Interaction Point (SSIP) Approach and Applications. J. Chem. Inf. Model. 2021, 61, 5331–5335. [Google Scholar] [CrossRef] [PubMed]
- Bepler, G.; Koehler, A.; Kiefer, P.; Havemann, K.; Beisenherz, K.; Jaques, G.; Gropp, C.; Haeder, M. Characterization of the state of differentiation of six newly established human non-small-cell lung cancer cell lines. Differentiation 1988, 37, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Phelps, R.M.; Johnson, B.E.; Ihde, D.C.; Gazdar, A.F.; Carbone, D.P.; McClintock, P.R.; Linnoila, R.I.; Matthews, M.J.; Bunn, P.A., Jr.; Carney, D.; et al. NCI-Navy Medical Oncology Branch cell line data base. J. Cell. Biochem. Suppl. 1996, 24, 32–91. [Google Scholar] [CrossRef] [PubMed]
- Reddel, R.R.; Yang, K.; Rhim, J.S.; Brash, D.; Su, R.T.; Lechner, J.F.; Gerwin, B.I.; Harris, C.C.; Amstad, P. Immortalized Human Bronchial Epithelial Mesothelial Cell Lines. U.S. Patent 4,885,238, 5 December 1989. [Google Scholar]
- Hunter, C.A.; Misuraca, M.C.; Turega, S.M. Dissection of complex molecular recognition interfaces. J. Am. Chem. Soc. 2011, 133, 582. [Google Scholar] [CrossRef]
- Hunter, C.A.; Sanders, J.K.M. The nature of π–π interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Pasternack, R.F.; Fleming, C.; Herring, S.; Collings, P.J.; de Paula, J.; DeCastro, G.; Gibbs, E.J. Aggregation Kinetics of Extended Porphyrin and Cyanine Dye Assemblies. Biophys. J. 2000, 79, 550–560. [Google Scholar] [CrossRef] [Green Version]
- Macchi, S.; Zubair, M.; Hill, R.; Alwan, N.; Khan, Y.; Ali, N.; Guisbiers, G.; Berry, B.; Siraj, N. Improved Photophysical Properties of Ionic Material-Based Combination Chemo/PDT Nanomedicine. ACS Appl. Bio Mater. 2021, 4, 7708–7718. [Google Scholar] [CrossRef]
- Sobanski, T.; Rose, M.; Suraweera, A.; O’Byrne, K.; Richard, D.J.; Bolderson, E. Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy. Front. Cell Dev. Biol. 2021, 9, 633305. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Hynds, R.E.; Vladimirou, E.; Janes, S.M. The secret lives of cancer cell lines. Dis. Model. Mech. 2018, 11, dmm037366. [Google Scholar] [CrossRef] [PubMed]
MSTO-211H | NCI-H28 | Met-5a | ||
---|---|---|---|---|
PS | Treatment time/h | EC50 μg/mL | EC50 μg/mL | EC50 μg/mL |
C5SHU | 24 | 7.8 ± 3 | 7.7 ± 1 | >20 a |
C6SHU | 24 | 14 ± 1 | >20 a | >20 a |
C7SHU | 24 | 9.6 ± 3 | >20 a | >20 a |
C5SHU | 48 | 2.8 ± 1.5 | 6 ± 1 | 5.1 ± 1 |
C6SHU | 48 | 14 ± 4 | >20 a | >20 a |
C7SHU | 48 | 7.7 ± 2 | >20 a | >20 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonsall, S.; Hubbard, S.; Jithin, U.; Anslow, J.; Todd, D.; Rowding, C.; Filarowski, T.; Duly, G.; Wilson, R.; Porter, J.; et al. Water-Soluble Truncated Fatty Acid–Porphyrin Conjugates Provide Photo-Sensitizer Activity for Photodynamic Therapy in Malignant Mesothelioma. Cancers 2022, 14, 5446. https://doi.org/10.3390/cancers14215446
Bonsall S, Hubbard S, Jithin U, Anslow J, Todd D, Rowding C, Filarowski T, Duly G, Wilson R, Porter J, et al. Water-Soluble Truncated Fatty Acid–Porphyrin Conjugates Provide Photo-Sensitizer Activity for Photodynamic Therapy in Malignant Mesothelioma. Cancers. 2022; 14(21):5446. https://doi.org/10.3390/cancers14215446
Chicago/Turabian StyleBonsall, Sam, Simeon Hubbard, Uthaman Jithin, Joseph Anslow, Dylan Todd, Callum Rowding, Tom Filarowski, Greg Duly, Ryan Wilson, Jack Porter, and et al. 2022. "Water-Soluble Truncated Fatty Acid–Porphyrin Conjugates Provide Photo-Sensitizer Activity for Photodynamic Therapy in Malignant Mesothelioma" Cancers 14, no. 21: 5446. https://doi.org/10.3390/cancers14215446
APA StyleBonsall, S., Hubbard, S., Jithin, U., Anslow, J., Todd, D., Rowding, C., Filarowski, T., Duly, G., Wilson, R., Porter, J., Turega, S., & Haywood-Small, S. (2022). Water-Soluble Truncated Fatty Acid–Porphyrin Conjugates Provide Photo-Sensitizer Activity for Photodynamic Therapy in Malignant Mesothelioma. Cancers, 14(21), 5446. https://doi.org/10.3390/cancers14215446