Early Postoperative Low Compliance to Enhanced Recovery Pathway in Rectal Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fearon, K.C.H.; Ljungqvist, O.; Von Meyenfeldt, M.; Revhaug, A.; Dejong, C.H.C.; Lassen, K.; Nygren, J.; Hausel, J.; Soop, M.; Andersen, J.; et al. Enhanced Recovery after Surgery: A Consensus Review of Clinical Care for Patients Undergoing Colonic Resection. Clin. Nutr. 2005, 24, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Spanjersberg, W.R.; Reurings, J.; Keus, F.; van Laarhoven, C.J. Fast Track Surgery versus Conventional Recovery Strategies for Colorectal Surgery. Cochrane Database Syst. Rev. 2011, 2, CD007635. [Google Scholar] [CrossRef] [PubMed]
- Varadhan, K.K.; Neal, K.R.; Dejong, C.H.C.; Fearon, K.C.H.; Ljungqvist, O.; Lobo, D.N. The Enhanced Recovery after Surgery (ERAS) Pathway for Patients Undergoing Major Elective Open Colorectal Surgery: A Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2010, 29, 434–440. [Google Scholar] [CrossRef]
- Launay-Savary, M.-V.; Mathonnet, M.; Theissen, A.; Ostermann, S.; Raynaud-Simon, A.; Slim, K. Are Enhanced Recovery Programs in Colorectal Surgery Feasible and Useful in the Elderly? A Systematic Review of the Literature. J. Visc. Surg. 2017, 154, 29–35. [Google Scholar] [CrossRef]
- Braga, M.; Pecorelli, N.; Scatizzi, M.; Borghi, F.; Missana, G.; Radrizzani, D. Enhanced Recovery Program in High-Risk Patients Undergoing Colorectal Surgery: Results from the PeriOperative Italian Society Registry. World J. Surg. 2017, 41, 860–867. [Google Scholar] [CrossRef]
- Currie, A.; Burch, J.; Jenkins, J.T.; Faiz, O.; Kennedy, R.H.; Ljungqvist, O.; Demartines, N.; Hjern, F.; Norderval, S.; Lassen, K.; et al. The Impact of Enhanced Recovery Protocol Compliance on Elective Colorectal Cancer Resection. Ann. Surg. 2015, 261, 1153–1159. [Google Scholar] [CrossRef]
- Gianotti, L.; Beretta, S.; Luperto, M.; Bernasconi, D.; Valsecchi, M.G.; Braga, M. Enhanced Recovery Strategies in Colorectal Surgery: Is the Compliance with the Whole Program Required to Achieve the Target? Int. J. Color. Dis. 2014, 29, 329–341. [Google Scholar] [CrossRef]
- Ceresoli, M.; Pedrazzani, C.; Pellegrino, L.; Ficari, F.; Braga, M.; Muratore, A.; Tamini, N.; Beretta, L.; Azzola, M.; Radrizzani, D.; et al. Early Non Compliance to Enhanced Recovery Pathway Might Be an Alert for Underlying Complications Following Colon Surgery. Eur. J. Surg. Oncol. 2022, in press. [Google Scholar] [CrossRef]
- Vlug, M.S.; Wind, J.; Hollmann, M.W.; Ubbink, D.T.; Cense, H.A.; Engel, A.F.; Gerhards, M.F.; van Wagensveld, B.A.; van der Zaag, E.S.; van Geloven, A.A.W.; et al. Laparoscopy in Combination with Fast Track Multimodal Management Is the Best Perioperative Strategy in Patients Undergoing Colonic Surgery. Ann. Surg. 2011, 254, 868–875. [Google Scholar] [CrossRef]
- Braga, M.; Scatizzi, M.; Borghi, F.; Missana, G.; Radrizzani, D.; Gemma, M.; Beretta, L.; Bona, S.; Monzani, R.; Azzola, M.; et al. Identification of Core Items in the Enhanced Recovery Pathway. Clin. Nutr. ESPEN 2018, 25, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Özdemir-van Brunschot, D.M.D.; van Laarhoven, K.C.J.H.M.; Scheffer, G.J.; Pouwels, S.; Wever, K.E.; Warlé, M.C. What Is the Evidence for the Use of Low-Pressure Pneumoperitoneum? A Systematic Review. Surg. Endosc. 2016, 30, 2049–2065. [Google Scholar] [CrossRef] [Green Version]
- Albers, K.I.; Polat, F.; Helder, L.; Panhuizen, I.F.; Snoeck, M.M.J.; Polle, S.B.W.; de Vries, H.; Dias, E.M.; Slooter, G.D.; de Boer, H.D.; et al. Quality of Recovery and Innate Immune Homeostasis in Patients Undergoing Low- Versus Standard Pressure Pneumoperitoneum During Laparoscopic Colorectal Surgery (RECOVER). Ann. Surg. 2022, 276, e664–e673. [Google Scholar] [CrossRef]
- Shaibu, Z.; Chen, Z.; Theophilus, A.; Mzee, S.A.S. Preservation of the Arterial Arc Formed by Left Colic Artery, Proximal Inferior Mesenteric Artery, and the First Branch of Sigmoid Arteries in Anus Saving Treatment of Low Rectal Cancer. Am. Surg. 2021, 87, 1956–1964. [Google Scholar] [CrossRef]
- Liu, K.-Y.; Lu, Y.-J.; Lin, Y.-C.; Wei, P.-L.; Kang, Y.-N. Transversus Abdominis Plane Block for Laparoscopic Colorectal Surgery: A Meta-Analysis of Randomised Controlled Trials. Int. J. Surg. 2022, 104, 106825. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef] [Green Version]
- Bozzetti, F.; Braga, M.; Gianotti, L.; Gavazzi, C.; Mariani, L. Postoperative Enteral versus Parenteral Nutrition in Malnourished Patients with Gastrointestinal Cancer: A Randomised Multicentre Trial. Lancet 2001, 358, 1487–1492. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Fiore, J.F.; Faragher, I.G.; Bialocerkowski, A.; Browning, L.; Denehy, L. Time to Readiness for Discharge Is a Valid and Reliable Measure of Short-Term Recovery After Colorectal Surgery. World J. Surg. 2013, 37, 2927–2934. [Google Scholar] [CrossRef]
- Myles, P.S.; Andrews, S.; Nicholson, J.; Lobo, D.N.; Mythen, M. Contemporary Approaches to Perioperative IV Fluid Therapy. World J. Surg. 2017, 41, 2457–2463. [Google Scholar] [CrossRef]
- Bragg, D.; El-Sharkawy, A.M.; Psaltis, E.; Maxwell-Armstrong, C.A.; Lobo, D.N. Postoperative Ileus: Recent Developments in Pathophysiology and Management. Clin. Nutr. 2015, 34, 367–376. [Google Scholar] [CrossRef]
- Guay, J.; Nishimori, M.; Kopp, S.L. Epidural Local Anesthetics Versus Opioid-Based Analgesic Regimens for Postoperative Gastrointestinal Paralysis, Vomiting, and Pain After Abdominal Surgery. Anesth. Analg. 2016, 123, 1591–1602. [Google Scholar] [CrossRef]
- Kennedy, R.H.; Francis, E.A.; Wharton, R.; Blazeby, J.M.; Quirke, P.; West, N.P.; Dutton, S.J. Multicenter Randomized Controlled Trial of Conventional Versus Laparoscopic Surgery for Colorectal Cancer Within an Enhanced Recovery Programme: EnROL. J. Clin. Oncol. 2014, 32, 1804–1811. [Google Scholar] [CrossRef]
- Braga, M.; Frasson, M.; Zuliani, W.; Vignali, A.; Pecorelli, N.; Di Carlo, V. Randomized Clinical Trial of Laparoscopic versus Open Left Colonic Resection. Br. J. Surg. 2010, 97, 1180–1186. [Google Scholar] [CrossRef]
- Zaouter, C.; Kaneva, P.; Carli, F. Less Urinary Tract Infection by Earlier Removal of Bladder Catheter in Surgical Patients Receiving Thoracic Epidural Analgesia. Reg. Anesth. Pain Med. 2009, 34, 542–548. [Google Scholar] [CrossRef]
Variable | Median | IQR | N | % | |
---|---|---|---|---|---|
Age | 68.00 | 59.76–76.5 | |||
Sex | M | 276 | 62.9% | ||
F | 163 | 37.1% | |||
BMI | 24.82 | 22.59–27.68 | |||
BMI class | <25 | 223 | 50.8 | ||
25–29 | 164 | 37.4 | |||
>30 | 52 | 11.8 | |||
ASA score | 1 | 60 | 13.7% | ||
2 | 238 | 54.2% | |||
3 | 127 | 28.9% | |||
4 | 14 | 3.2% | |||
Diabetes | 53 | 12.1% | |||
Preoperative Haemoglobin | 13.40 | 12.2–14.5 | |||
Neoadjuvant | CT-RT | 113 | 25.7% | ||
Mechanical bowel preparation | 172 | 39.3% | |||
Surgery | Anterior resection | 403 | 91.8% | ||
Abdominoperineal amputation | 36 | 8.2% | |||
Duration of Surgery (min) | 243 | 191–300 | |||
Intraoperative inotropes | 23 | 5.3% | |||
Successful laparoscopy | 363 | 82.7% | |||
Laparoscopy converted to open surgery | 10 | 2.7% | |||
Diverting Stoma | 241 | 54.9% | |||
Drain | 345 | 78.8% |
Item | POD | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |
Naso-gastric tube removal | 90.8 | 96.6 | 97.5 | 99.1 | 99.5 |
Solid Diet | 7.3 | 60.0 | 81.2 | 91.8 | 95.4 |
Stop IV infusion | 1.6 | 41.2 | 65.0 | 79.2 | 85.4 |
Urinary Catheter removal | 1.7 | 41.1 | 64.5 | 84.9 | 91.7 |
Mobilization > 4 h | 8.0 | 43.2 | 65.0 | 74.6 | 81.4 |
Variable | Postoperative Compliance | Univariate Analysis | Multivariate Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High Compliance | Low Compliance | OR | 95% CI | Sign. | OR | 95% CI | Sign. | ||||||
N/Median | %/IQR | N/Median | %/IQR | ||||||||||
Men | 67 | 38.1% | 36 | 40.9% | 1.126 | 0.668 | 1.899 | 0.656 | |||||
Age (years) | 67 | 58.22–75 | 71.95 | 61–77.74 | 1.032 | 1.007 | 1.057 | 0.011 | 1.036 | 1.006 | 1.067 | 0.018 | |
BMI | 24.82 | 22.2–27.39 | 24.10 | 22.12–27.14 | 0.992 | 0.926 | 1.062 | 0.808 | |||||
BMI class | <25 | 89 | 51.4% | 51 | 58.0% | 1 (ref) | |||||||
25–29 | 65 | 37.6% | 27 | 30.7% | 0.725 | 0.412 | 1.276 | 0.265 | |||||
>30 | 19 | 11.0% | 10 | 11.4% | 0.918 | 0.397 | 2.127 | 0.843 | |||||
ASA score | 1 | 27 | 15.3% | 10 | 11.4% | 1 (ref) | |||||||
2 | 99 | 56.3% | 48 | 54.5% | 1.309 | 0.586 | 2.923 | 0.511 | |||||
3 | 42 | 23.9% | 29 | 33.0% | 1.864 | 0.784 | 4.433 | 0.159 | |||||
4 | 8 | 4.5% | 1 | 1.1% | 0.338 | 0.037 | 3.052 | 0.334 | |||||
Diabetes | 15 | 8.5% | 14 | 15.9% | 2.031 | 0.932 | 4.424 | 0.075 | |||||
Haemoglobin (g/dL) | 13.70 | 12.8–14.6 | 13.10 | 12.3–14.3 | 0.829 | 0.696 | 0.989 | 0.037 | 0.913 | 0.742 | 1.124 | 0.392 | |
Neoadjuvant CT/RT | 36 | 20.5% | 19 | 21.6% | 1.071 | 0.573 | 2.003 | 0.830 | |||||
Mechanical bowel preparation | 71 | 40.6% | 33 | 37.5% | 0.879 | 0.519 | 1.488 | 0.631 | |||||
Preoperative glucidic drink | 108 | 61.4% | 59 | 67.0% | 1.281 | 0.748 | 2.194 | 0.367 | |||||
Epidural catheter | 47 | 26.9% | 26 | 29.5% | 1.142 | 0.648 | 2.013 | 0.646 | |||||
Intraoperative advanced volemia monitoring | 59 | 33.7% | 13 | 14.8% | 0.341 | 0.175 | 0.664 | 0.002 | 0.48 | 0.222 | 1.036 | 0.062 | |
Operative inotropes | 5 | 2.9% | 4 | 4.5% | 1.619 | 0.424 | 6.186 | 0.481 | |||||
Operative warming | 172 | 98.3% | 88 | 100.0% | 1.760 | 0.769 | 2.356 | 0.897 | |||||
Duration of Surgery | 215 | 175.5–275 | 263 | 210–317.5 | 1.006 | 1.003 | 1.009 | 0.000 | 1.006 | 1.002 | 1.010 | 0.002 | |
Open Surgery | 15 | 8.5% | 20 | 22.7% | 3.157 | 1.526 | 6.531 | 0.002 | 2.732 | 1.173 | 6.362 | 0.02 | |
Abdominoperineal amputation | 12 | 6.8% | 12 | 13.6% | 1 (ref) | ||||||||
Anterior resection | 164 | 93.2% | 76 | 86.4% | 0.463 | 0.199 | 1.079 | 0.074 | |||||
Diverting stoma | 70 | 39.8% | 58 | 65.9% | 2.928 | 1.716 | 4.995 | 0.000 | 1.907 | 1.033 | 3.518 | 0.039 | |
Drain | 141 | 80.1% | 76 | 86.4% | 1.572 | 0.771 | 3.206 | 0.213 | 1.293 | 0.573 | 2.916 | 0.536 |
Variable | Median | IQR | N | % | |
---|---|---|---|---|---|
Postoperative Pain (NRS) | POD 1 | 2 | 1–4 | ||
POD 2 | 2 | 0–3 | |||
POD 3 | 1 | 0–2 | |||
POD 4 | 0 | 0–1 | |||
Overall morbidity | 149 | 32.6% | |||
Major complication | 27 | 6.2% | |||
Clavien-Dindo grade | 0 | 290 | 67.0% | ||
1 | 54 | 12.5% | |||
2 | 44 | 10.2% | |||
IIIa | 18 | 4.2% | |||
IIIb | 22 | 5.1% | |||
Iva | 3 | 0.7% | |||
Ivb | 2 | 0.5% | |||
V | 0 | 0.0% | |||
Anastomotic leak | 27 | 6.2% | |||
Abdominal abscess | 8 | 1.8% | |||
Respiratory complication | 11 | 2.5% | |||
Wound infection | 16 | 3.7% | |||
Urinary infection | 12 | 2.8% | |||
Reoperation | 24 | 5.5% | |||
Readmission | 13 | 3.0% | |||
Day Fit for Discharge | 5 | 4–8 | |||
Length of stay | 6 | 5–8 |
Variables | Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | Sign. | OR | 95% CI | Sign. | ||||
ASA score 3–4 | 1.211 | 0.793 | 1.849 | 0.375 | |||||
Age | 1.000 | 0.983 | 1.018 | 0.968 | |||||
Men | 1.513 | 0.990 | 2.312 | 0.056 | |||||
Diabetes | 1.420 | 0.787 | 2.564 | 0.245 | |||||
BMI < 25 | 1 (ref) | ||||||||
BMI 25–29 | 1.142 | 0.735 | 1.774 | 0.555 | |||||
BMI ≥ 30 | 1.707 | 0.918 | 3.175 | 0.091 | |||||
Neadjuvant CT/RT | 1.388 | 0.888 | 2.170 | 0.150 | |||||
Mechanical bowel preparation | 1.037 | 0.690 | 1.561 | 0.860 | |||||
Surgery | Anterior resection | 1 (ref) | |||||||
Abdominoperineal amputation | 1.107 | 0.529 | 2.318 | 0.787 | |||||
Successful_laparoscopy | 0.693 | 0.416 | 1.155 | 0.159 | |||||
Failure to remove NG tube on POD2 | 1.784 | 0.535 | 5.949 | 0.346 | |||||
Failure to have solid diet on POD2 | 2.113 | 1.293 | 3.452 | 0.003 | 1.357 | 0.737 | 2.498 | 0.327 | |
Failure to stop IV fluids on POD2 | 2.191 | 1.445 | 3.321 | 0.000 | 1.518 | 0.895 | 2.574 | 0.122 | |
Failure to remove urinary catehter on POD2 | 2.359 | 1.550 | 3.591 | 0.000 | 1.806 | 1.133 | 2.878 | 0.013 | |
Failure to mobilize >4 h on POD 2 | 1.835 | 1.206 | 2.793 | 0.005 | 1.466 | 0.936 | 2.295 | 0.095 | |
Poorly controlled pain on POD2 (NRS > 3) | 1.882 | 1.142 | 3.101 | 0.013 | 1.430 | 0.839 | 2.438 | 0.189 |
Variable | Value | Median | IQR | N | % |
---|---|---|---|---|---|
Men | 18 | 51 | |||
Age | 71 | 61.5–80 | |||
BMI class | <25 | 16 | 46 | ||
25–29 | 11 | 31 | |||
≥30 | 8 | 23 | |||
ASA score | 1 | 2 | 5.7 | ||
2 | 13 | 37 | |||
3 | 19 | 54 | |||
4 | 2 | 5.7 | |||
IMA sparing | 35 | 100 | |||
TAP-block | 35 | 100 | |||
Failure Low Pneumop. | 5 | 8.6 | |||
Successful laparoscopy | 35 | 100 | |||
Lymph nodes harvested | 15 | 12–21 | |||
NRS | POD 1 | 2 | 2–5 | ||
POD 2 | 2 | 2–5 | |||
POD 3 | 1 | 1–3 | |||
POD 4 | 0 | 0–2 | |||
Mobilization > 4 h POD2 | 32 | 91 | |||
Clavien Dindo | 0 | 21 | 60 | ||
1 | 4 | 11 | |||
2 | 6 | 17 | |||
3a | 1 | 2.8 | |||
3b | 1 | 2.8 | |||
4 | 0 | 0 | |||
5 | 0 | 0 | |||
Anastomotic leak | 0 | 0 | |||
Fit for discharge, d | 6 | 4–7 | |||
LOS, d | 7 | 5–8 | |||
Readmission | 3 | 8.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceresoli, M.; Pedrazzani, C.; Pellegrino, L.; Muratore, A.; Ficari, F.; Polastri, R.; Scatizzi, M.; Totis, M.; Tamini, N.; Ripamonti, L.; et al. Early Postoperative Low Compliance to Enhanced Recovery Pathway in Rectal Cancer Patients. Cancers 2022, 14, 5736. https://doi.org/10.3390/cancers14235736
Ceresoli M, Pedrazzani C, Pellegrino L, Muratore A, Ficari F, Polastri R, Scatizzi M, Totis M, Tamini N, Ripamonti L, et al. Early Postoperative Low Compliance to Enhanced Recovery Pathway in Rectal Cancer Patients. Cancers. 2022; 14(23):5736. https://doi.org/10.3390/cancers14235736
Chicago/Turabian StyleCeresoli, Marco, Corrado Pedrazzani, Luca Pellegrino, Andrea Muratore, Ferdinando Ficari, Roberto Polastri, Marco Scatizzi, Mauro Totis, Nicolò Tamini, Lorenzo Ripamonti, and et al. 2022. "Early Postoperative Low Compliance to Enhanced Recovery Pathway in Rectal Cancer Patients" Cancers 14, no. 23: 5736. https://doi.org/10.3390/cancers14235736
APA StyleCeresoli, M., Pedrazzani, C., Pellegrino, L., Muratore, A., Ficari, F., Polastri, R., Scatizzi, M., Totis, M., Tamini, N., Ripamonti, L., & Braga, M. (2022). Early Postoperative Low Compliance to Enhanced Recovery Pathway in Rectal Cancer Patients. Cancers, 14(23), 5736. https://doi.org/10.3390/cancers14235736