Should Preimplantation Genetic Testing (PGT) Systematically Be Proposed to BRCA Pathogenic Variant Carriers?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Feasibility of Pre-Implantation Genetic Testing for Monogenic Disorder (PGT) for BRCA Pathogenic Variant Carriers
2.1. Reasons for Allowing PGT for BRCA Pathogenic Variant Carriers
2.2. Fundamental Principles of PGT: Feasibility and Chances of Success According to Ovarian Reserve
2.3. Ovarian Reserve in Case of BRCA Pathogenic Variant
2.4. Response to Ovarian Stimulation in Case of BRCA Pathogenic Variant
2.5. Safety of Pregnancy and Hormonal Stimulation for BRCA Carriers
2.6. Implications for Reproductive Outcomes of BRCA-PGT
3. PGT for BRCA1/2 Pathogenic Variants: Literature Review
3.1. Healthcare Providers and Patients’ Levels of Awareness
3.2. Modalities of BRCA-PGT Announcement: Acceptance and Psychological Impact on Patients
3.3. Live Births after BRCA-PGT
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schrag, D.; Kuntz, K.M.; Garber, J.E.; Weeks, J.C. Life Expectancy Gains from Cancer Prevention Strategies for Women with Breast Cancer and BRCA1 or BRCA2 Mutations. JAMA 2000, 283, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titus, S.; Li, F.; Stobezki, R.; Akula, K.; Unsal, E.; Jeong, K.; Dickler, M.; Robson, M.; Moy, F.; Goswami, S.; et al. Impairment of BRCA1-Related DNA Double-Strand Break Repair Leads to Ovarian Aging in Mice and Humans. Sci. Transl. Med. 2013, 5, 172ra21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oktay, K.; Turan, V.; Titus, S.; Stobezki, R.; Liu, L. BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging. Biol. Reprod. 2015, 93, 67. [Google Scholar] [CrossRef]
- Peccatori, F.A.; Mangili, G.; Bergamini, A.; Filippi, F.; Martinelli, F.; Ferrari, F.; Noli, S.; Rabaiotti, E.; Candiani, M.; Somigliana, E. Fertility Preservation in Women Harboring Deleterious BRCA Mutations: Ready for Prime Time? Hum. Reprod. 2018, 33, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Lambertini, M.; Di Maio, M.; Poggio, F.; Pagani, O.; Curigliano, G.; Mastro, L.D.; Paluch-Shimon, S.; Loibl, S.; Partridge, A.H.; Azim, H.A.; et al. Knowledge, Attitudes and Practice of Physicians towards Fertility and Pregnancy-Related Issues in YoungBRCA-Mutated Breast Cancer Patients. Reprod. Biomed. Online 2019, 38, 835–844. [Google Scholar] [CrossRef] [Green Version]
- de Die-Smulders, C.E.M.; Land, J.A.; Dreesen, J.C.F.M.; Coonen, E.; Evers, J.L.H.; Geraedts, J.P.M. Results from 10 years of preimplantation-genetic diagnostics in The Netherlands. Ned. Tijdschr. Geneeskd. 2004, 148, 2491–2496. [Google Scholar]
- Shenfield, F.; Pennings, G.; Devroey, P.; Sureau, C.; Tarlatzis, B.; Cohen, J. ESHRE Ethics Task Force Taskforce 5: Preimplantation Genetic Diagnosis. Hum. Reprod. 2003, 18, 649–651. [Google Scholar] [CrossRef]
- Dyer, C. HFEA Widens Its Criteria for Preimplantation Genetic Diagnosis. BMJ 2006, 332, 1174. [Google Scholar] [CrossRef] [Green Version]
- Ben-Nagi, J.; Jones, B.; Naja, R.; Amer, A.; Sunkara, S.; SenGupta, S.; Serhal, P. Live Birth Rate Is Associated with Oocyte Yield and Number of Biopsied and Suitable Blastocysts to Transfer in Preimplantation Genetic Testing (PGT) Cycles for Monogenic Disorders and Chromosomal Structural Rearrangements. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 4, 100055. [Google Scholar] [CrossRef]
- Azria, É.; Grangé, G. Le diagnostic pré-implantatoire. Laennec 2007, 55, 34–41. [Google Scholar] [CrossRef]
- Staton, A.D.; Kurian, A.W.; Cobb, K.; Mills, M.A.; Ford, J.M. Cancer Risk Reduction and Reproductive Concerns in Female BRCA1/2 Mutation Carriers. Fam. Cancer 2008, 7, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Fortuny, D.; Balmaña, J.; Graña, B.; Torres, A.; Ramón y Cajal, T.; Darder, E.; Gadea, N.; Velasco, A.; López, C.; Sanz, J.; et al. Opinion about Reproductive Decision Making among Individuals Undergoing BRCA1/2 Genetic Testing in a Multicentre Spanish Cohort. Hum. Reprod. 2009, 24, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Lipton, J.H.; Zargar, M.; Warner, E.; Greenblatt, E.E.; Lee, E.; Chan, K.K.W.; Wong, W.W.L. Cost Effectiveness of in Vitro Fertilisation and Preimplantation Genetic Testing to Prevent Transmission of BRCA1/2 Mutations. Hum. Reprod. 2020, 35, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Kuliev, A.; Rechitsky, S. Preimplantation Genetic Testing: Current Challenges and Future Prospects. Expert Rev. Mol. Diagn. 2017, 17, 1071–1088. [Google Scholar] [CrossRef]
- Vuković, P.; Peccatori, F.A.; Massarotti, C.; Miralles, M.S.; Beketić-Orešković, L.; Lambertini, M. Preimplantation Genetic Testing for Carriers of BRCA1/2 Pathogenic Variants. Crit. Rev. Oncol. Hematol. 2021, 157, 103201. [Google Scholar] [CrossRef]
- Mounts, E.L.; Besser, A.G. Chapter 6—Genetic Counseling for Preimplantation Genetic Testing (PGT): Practical and Ethical Challenges. In Human Embryos and Preimplantation Genetic Technologies; Sills, E.S., Palermo, G.D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 43–52. ISBN 978-0-12-816468-6. [Google Scholar]
- Sunkara, S.K.; Rittenberg, V.; Raine-Fenning, N.; Bhattacharya, S.; Zamora, J.; Coomarasamy, A. Association between the Number of Eggs and Live Birth in IVF Treatment: An Analysis of 400 135 Treatment Cycles. Hum. Reprod. 2011, 26, 1768–1774. [Google Scholar] [CrossRef] [Green Version]
- Law, Y.J.; Zhang, N.; Kolibianakis, E.M.; Costello, M.F.; Keller, E.; Chambers, G.M.; Venetis, C.A. Is There an Optimal Number of Oocytes Retrieved at Which Live Birth Rates or Cumulative Live Birth Rates per Aspiration Are Maximized after ART? A Systematic Review. Reprod. Biomed. Online 2021, 42, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Vandervorst, M.; Liebaers, I.; Sermon, K.; Staessen, C.; De Vos, A.; Van de Velde, H.; Van Assche, E.; Joris, H.; Van Steirteghem, A.; Devroey, P. Successful Preimplantation Genetic Diagnosis Is Related to the Number of Available Cumulus-Oocyte Complexes. Hum. Reprod. 1998, 13, 3169–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzepka-Górska, I.; Tarnowski, B.; Chudecka-Głaz, A.; Górski, B.; Zielińska, D.; Tołoczko-Grabarek, A. Premature Menopause in Patients with BRCA1 Gene Mutation. Breast Cancer Res. Treat. 2006, 100, 59–63. [Google Scholar] [CrossRef]
- Finch, A.; Valentini, A.; Greenblatt, E.; Lynch, H.T.; Ghadirian, P.; Armel, S.; Neuhausen, S.L.; Kim-Sing, C.; Tung, N.; Karlan, B.; et al. Frequency of Premature Menopause in Women Who Carry a BRCA1 or BRCA2 Mutation. Fertil. Steril. 2013, 99, 1724–1728. [Google Scholar] [CrossRef]
- Lin, W.T.; Beattie, M.; Chen, L.; Oktay, K.; Crawford, S.L.; Gold, E.B.; Cedars, M.; Rosen, M. Comparison of Age at Natural Menopause in BRCA1/2 Mutation Carriers with a Non–Clinic-Based Sample of Women in Northern California. Cancer 2013, 119, 1652–1659. [Google Scholar] [CrossRef]
- Collins, I.M.; Milne, R.L.; McLachlan, S.A.; Friedlander, M.; Hickey, M.; Weideman, P.C.; Birch, K.E.; Hopper, J.L.; Phillips, K.-A. Do BRCA1 and BRCA2 Mutation Carriers Have Earlier Natural Menopause than Their Noncarrier Relatives? Results from the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer. J. Clin. Oncol. 2013, 31, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Michaelson-Cohen, R.; Mor, P.; Srebnik, N.; Beller, U.; Levy-Lahad, E.; Eldar-Geva, T. BRCA Mutation Carriers Do Not Have Compromised Ovarian Reserve. Int. J. Gynecol. Cancer 2014, 24, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.T.; Pisarska, M.D.; Bresee, C.; Chen, Y.-D.I.; Lester, J.; Afshar, Y.; Alexander, C.; Karlan, B.Y. BRCA1 Germline Mutations May Be Associated with Reduced Ovarian Reserve. Fertil. Steril. 2014, 102, 1723–1728. [Google Scholar] [CrossRef] [Green Version]
- van Tilborg, T.C.; Derks-Smeets, I.A.P.; Bos, A.M.E.; Oosterwijk, J.C.; van Golde, R.J.; de Die-Smulders, C.E.; van der Kolk, L.E.; van Zelst-Stams, W.A.G.; Velthuizen, M.E.; Hoek, A.; et al. Serum AMH Levels in Healthy Women from BRCA1/2 Mutated Families: Are They Reduced? Hum. Reprod. 2016, 31, 2651–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambertini, M.; Goldrat, O.; Ferreira, A.R.; Dechene, J.; Azim, H.A.; Desir, J.; Delbaere, A.; t’Kint de Roodenbeke, M.-D.; de Azambuja, E.; Ignatiadis, M.; et al. Reproductive Potential and Performance of Fertility Preservation Strategies in BRCA-Mutated Breast Cancer Patients. Ann. Oncol. 2018, 29, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Grynberg, M.; Dagher Hayeck, B.; Papanikolaou, E.G.; Sifer, C.; Sermondade, N.; Sonigo, C. BRCA1/2 Gene Mutations Do Not Affect the Capacity of Oocytes from Breast Cancer Candidates for Fertility Preservation to Mature in Vitro. Hum. Reprod. 2018, 34, 374–379. [Google Scholar] [CrossRef]
- Gunnala, V.; Fields, J.; Irani, M.; D’Angelo, D.; Xu, K.; Schattman, G.; Rosenwaks, Z. BRCA Carriers Have Similar Reproductive Potential at Baseline to Noncarriers: Comparisons in Cancer and Cancer-Free Cohorts Undergoing Fertility Preservation. Fertil. Steril. 2019, 111, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Son, K.-A.; Lee, D.-Y.; Choi, D. Association of BRCA Mutations and Anti-Müllerian Hormone Level in Young Breast Cancer Patients. Front. Endocrinol. 2019, 10, 235. [Google Scholar] [CrossRef]
- Ponce, J.; Fernandez-Gonzalez, S.; Calvo, I.; Climent, M.; Peñafiel, J.; Feliubadaló, L.; Teulé, A.; Lázaro, C.; Brunet, J.M.; Candás-Estébanez, B.; et al. Assessment of Ovarian Reserve and Reproductive Outcomes in BRCA1 or BRCA2 Mutation Carriers. Int. J. Gynecol. Cancer 2020, 30, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Porcu, E.; Cillo, G.M.; Cipriani, L.; Sacilotto, F.; Notarangelo, L.; Damiano, G.; Dirodi, M.; Roncarati, I. Impact of BRCA1 and BRCA2 Mutations on Ovarian Reserve and Fertility Preservation Outcomes in Young Women with Breast Cancer. J. Assist. Reprod. Genet. 2020, 37, 709–715. [Google Scholar] [CrossRef]
- Turan, V.; Lambertini, M.; Lee, D.-Y.; Wang, E.; Clatot, F.; Karlan, B.Y.; Demeestere, I.; Bang, H.; Oktay, K. Association of Germline BRCA Pathogenic Variants With Diminished Ovarian Reserve: A Meta-Analysis of Individual Patient-Level Data. J. Clin. Oncol. 2021, 39, 2016–2024. [Google Scholar] [CrossRef] [PubMed]
- Gal, I.; Sadetzki, S.; Gershoni-Baruch, R.; Oberman, B.; Carp, H.; Papa, M.Z.; Diestelman-Menachem, T.; Eisenberg-Barzilai, S.; Friedman, E. Offspring Gender Ratio and the Rate of Recurrent Spontaneous Miscarriages in Jewish Women at High Risk for Breast/Ovarian Cancer. Am. J. Hum. Genet. 2004, 74, 1270–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambertini, M.; Olympios, N.; Lequesne, J.; Calbrix, C.; Fontanilles, M.; Loeb, A.; Leheurteur, M.; Demeestere, I.; Di Fiore, F.; Perdrix, A.; et al. Impact of Taxanes, Endocrine Therapy, and Deleterious Germline BRCA Mutations on Anti-Müllerian Hormone Levels in Early Breast Cancer Patients Treated With Anthracycline- and Cyclophosphamide-Based Chemotherapy. Front. Oncol. 2019, 9, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.R.; Hanson, H.A.; Mineau, G.P.; Buys, S.S. Effects of BRCA1 and BRCA2 Mutations on Female Fertility. Proc. Biol. Sci. 2012, 279, 1389–1395. [Google Scholar] [CrossRef] [Green Version]
- Pal, T.; Keefe, D.; Sun, P.; Narod, S.A. Hereditary Breast Cancer Clinical Study Group Fertility in Women with BRCA Mutations: A Case-Control Study. Fertil. Steril. 2010, 93, 1805–1808. [Google Scholar] [CrossRef]
- Moslehi, R.; Singh, R.; Lessner, L.; Friedman, J.M. Impact of BRCA Mutations on Female Fertility and Offspring Sex Ratio. Am. J. Hum. Biol. 2010, 22, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, F.; Arbre, M.; Bidet, Y.; Laquet, C.; Uhrhammer, N.; Bignon, Y.-J. BRCA Mutations Increase Fertility in Families at Hereditary Breast/Ovarian Cancer Risk. PLoS ONE 2015, 10, e0127363. [Google Scholar] [CrossRef]
- Foulkes, W.D.; Shuen, A.Y. In Brief: BRCA1 and BRCA2. J. Pathol. 2013, 230, 347–349. [Google Scholar] [CrossRef]
- Subramanian, V.V.; Hochwagen, A. The Meiotic Checkpoint Network: Step-by-Step through Meiotic Prophase. Cold Spring Harb. Perspect. Biol. 2014, 6, a016675. [Google Scholar] [CrossRef] [PubMed]
- Turan, V.; Oktay, K. BRCA-Related ATM-Mediated DNA Double-Strand Break Repair and Ovarian Aging. Hum. Reprod. Update 2020, 26, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Kalmbach, K.H.; Fontes Antunes, D.M.; Dracxler, R.C.; Knier, T.W.; Seth-Smith, M.L.; Wang, F.; Liu, L.; Keefe, D.L. Telomeres and Human Reproduction. Fertil. Steril. 2013, 99, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oktay, K.; Kim, J.Y.; Barad, D.; Babayev, S.N. Association of BRCA1 Mutations with Occult Primary Ovarian Insufficiency: A Possible Explanation for the Link between Infertility and Breast/Ovarian Cancer Risks. J. Clin. Oncol. 2010, 28, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derks-Smeets, I.A.; van Tilborg, T.C.; van Montfoort, A.; Smits, L.; Torrance, H.L.; Meijer-Hoogeveen, M.; Broekmans, F.; Dreesen, J.C.F.M.; Paulussen, A.D.C.; Tjan-Heijnen, V.C.G.; et al. BRCA1 Mutation Carriers Have a Lower Number of Mature Oocytes after Ovarian Stimulation for IVF/PGD. J. Assist. Reprod. Genet. 2017, 34, 1475–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turan, V.; Bedoschi, G.; Emirdar, V.; Moy, F.; Oktay, K. Ovarian Stimulation in Patients with Cancer: Impact of Letrozole and BRCA Mutations on Fertility Preservation Cycle Outcomes. Reprod. Sci. 2018, 25, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; Kim, T.H.; Han, J.Y.; Kim, S.K.; Lee, J.R.; Jee, U.C.; Suh, C.S.; Kim, S.H. Impact of BRCA Mutations and Hormone Receptor Status on Reproductive Potential in Breast Cancer Patients Undergoing Fertility Preservation. Gynecol. Endocrinol. 2022, 38, 227–230. [Google Scholar] [CrossRef]
- Shapira, M.; Raanani, H.; Feldman, B.; Srebnik, N.; Dereck-Haim, S.; Manela, D.; Brenghausen, M.; Geva-Lerner, L.; Friedman, E.; Levi-Lahad, E.; et al. BRCA Mutation Carriers Show Normal Ovarian Response in in Vitro Fertilization Cycles. Fertil. Steril. 2015, 104, 1162–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volodarsky-Perel, A.; Cai, E.; Tulandi, T.; Son, W.-Y.; Suarthana, E.; Buckett, W. Influence of Stage and Grade of Breast Cancer on Fertility Preservation Outcome in Reproductive-Aged Women. Reprod. Biomed. Online 2020, 40, 215–222. [Google Scholar] [CrossRef]
- Azim, H.A.; Kroman, N.; Paesmans, M.; Gelber, S.; Rotmensz, N.; Ameye, L.; De Mattos-Arruda, L.; Pistilli, B.; Pinto, A.; Jensen, M.-B.; et al. Prognostic Impact of Pregnancy after Breast Cancer According to Estrogen Receptor Status: A Multicenter Retrospective Study. J. Clin. Oncol. 2013, 31, 73–79. [Google Scholar] [CrossRef]
- Jernström, H.; Lerman, C.; Ghadirian, P.; Lynch, H.T.; Weber, B.; Garber, J.; Daly, M.; Olopade, O.I.; Foulkes, W.D.; Warner, E.; et al. Pregnancy and Risk of Early Breast Cancer in Carriers of BRCA1 and BRCA2. Lancet 1999, 354, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, N.; Goldgar, D.E.; Easton, D.F.; Rookus, M.; Brohet, R.; Antoniou, A.C.; Peock, S.; Evans, G.; Eccles, D.; Douglas, F.; et al. Pregnancies, Breast-Feeding, and Breast Cancer Risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). J. Natl. Cancer Inst. 2006, 98, 535–544. [Google Scholar] [CrossRef]
- Antoniou, A.C.; Shenton, A.; Maher, E.R.; Watson, E.; Woodward, E.; Lalloo, F.; Easton, D.F.; Evans, D.G. Parity and Breast Cancer Risk among BRCA1 and BRCA2 Mutation Carriers. Breast Cancer Res. 2006, 8, R72. [Google Scholar] [CrossRef] [Green Version]
- Valentini, A.; Lubinski, J.; Byrski, T.; Ghadirian, P.; Moller, P.; Lynch, H.T.; Ainsworth, P.; Neuhausen, S.L.; Weitzel, J.; Singer, C.F.; et al. The Impact of Pregnancy on Breast Cancer Survival in Women Who Carry a BRCA1 or BRCA2 Mutation. Breast Cancer Res. Treat. 2013, 142, 177–185. [Google Scholar] [CrossRef]
- Lambertini, M.; Ameye, L.; Hamy, A.-S.; Zingarello, A.; Poorvu, P.D.; Carrasco, E.; Grinshpun, A.; Han, S.; Rousset-Jablonski, C.; Ferrari, A.; et al. Pregnancy After Breast Cancer in Patients With Germline BRCA Mutations. J. Clin. Oncol. 2020, 38, 3012–3023. [Google Scholar] [CrossRef]
- Kotsopoulos, J.; Librach, C.L.; Lubinski, J.; Gronwald, J.; Kim-Sing, C.; Ghadirian, P.; Lynch, H.T.; Moller, P.; Foulkes, W.D.; Randall, S.; et al. Infertility, Treatment of Infertility, and the Risk of Breast Cancer among Women with BRCA1 and BRCA2 Mutations: A Case-Control Study. Cancer Causes Control 2008, 19, 1111–1119. [Google Scholar] [CrossRef]
- Derks-Smeets, I.A.P.; Schrijver, L.H.; de Die-Smulders, C.E.M.; Tjan-Heijnen, V.C.G.; van Golde, R.J.T.; Smits, L.J.; Caanen, B.; van Asperen, C.J.; Ausems, M.; Collée, M.; et al. Ovarian Stimulation for IVF and Risk of Primary Breast Cancer in BRCA1/2 Mutation Carriers. Br. J. Cancer 2018, 119, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Perri, T.; Lifshitz, D.; Sadetzki, S.; Oberman, B.; Meirow, D.; Ben-Baruch, G.; Friedman, E.; Korach, J. Fertility Treatments and Invasive Epithelial Ovarian Cancer Risk in Jewish Israeli BRCA1 or BRCA2 Mutation Carriers. Fertil. Steril. 2015, 103, 1305–1312. [Google Scholar] [CrossRef]
- Gronwald, J.; Glass, K.; Rosen, B.; Karlan, B.; Tung, N.; Neuhausen, S.L.; Moller, P.; Ainsworth, P.; Sun, P.; Narod, S.A.; et al. Treatment of Infertility Does Not Increase the Risk of Ovarian Cancer among Women with a BRCA1 or BRCA2 Mutation. Fertil. Steril. 2016, 105, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Turan, V.; Oktay, K. Long-Term Safety of Letrozole and Gonadotropin Stimulation for Fertility Preservation in Women With Breast Cancer. J. Clin. Endocrinol. Metab. 2016, 101, 1364–1371. [Google Scholar] [CrossRef] [Green Version]
- Jasper, M.J.; Liebelt, J.; Hussey, N.D. Preimplantation Genetic Diagnosis for BRCA1 Exon 13 Duplication Mutation Using Linked Polymorphic Markers Resulting in a Live Birth. Prenat. Diagn. 2008, 28, 292–298. [Google Scholar] [CrossRef]
- Quinn, G.; Vadaparampil, S.; Wilson, C.; King, L.; Choi, J.; Miree, C.; Friedman, S. Attitudes of High-Risk Women toward Preimplantation Genetic Diagnosis. Fertil. Steril. 2009, 91, 2361–2368. [Google Scholar] [CrossRef]
- Gietel-Habets, J.J.G.; de Die-Smulders, C.E.M.; Derks-Smeets, I.A.P.; Tibben, A.; Tjan-Heijnen, V.C.G.; van Golde, R.; Gomez-Garcia, E.; Kets, C.M.; van Osch, L.A.D.M. Awareness and Attitude Regarding Reproductive Options of Persons Carrying a BRCA Mutation and Their Partners. Hum. Reprod. 2017, 32, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Gietel-Habets, J.J.G.; de Die-Smulders, C.E.M.; Tjan-Heijnen, V.C.G.; Derks-Smeets, I.A.P.; van Golde, R.; Gomez-Garcia, E.; van Osch, L.A.D.M. Professionals’ Knowledge, Attitude and Referral Behaviour of Preimplantation Genetic Diagnosis for Hereditary Breast and Ovarian Cancer. Reprod. BioMed. Online 2018, 36, 137–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, U.; Harper, J.; Sharma, A.; Fraser, L.; Burnell, M.; ElMasry, K.; Rodeck, C.; Jacobs, I. Views of BRCA Gene Mutation Carriers on Preimplantation Genetic Diagnosis as a Reproductive Option for Hereditary Breast and Ovarian Cancer. Hum. Reprod. 2007, 22, 1573–1577. [Google Scholar] [CrossRef] [Green Version]
- Vadaparampil, S.T.; Quinn, G.P.; Knapp, C.; Malo, T.L.; Friedman, S. Factors Associated with Preimplantation Genetic Diagnosis Acceptance among Women Concerned about Hereditary Breast and Ovarian Cancer. Genet. Med. 2009, 11, 757–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julian-Reynier, C.; Fabre, R.; Coupier, I.; Stoppa-Lyonnet, D.; Lasset, C.; Caron, O.; Mouret-Fourme, E.; Berthet, P.; Faivre, L.; Frenay, M.; et al. BRCA1/2 Carriers: Their Childbearing Plans and Theoretical Intentions about Having Preimplantation Genetic Diagnosis and Prenatal Diagnosis. Genet. Med. 2012, 14, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodson, A.H.; Muse, K.I.; Lin, H.; Jackson, M.; Mattair, D.N.; Schover, L.; Woodard, T.; McKenzie, L.; Theriault, R.L.; Hortobágyi, G.N.; et al. Breast Cancer, BRCA Mutations, and Attitudes Regarding Pregnancy and Preimplantation Genetic Diagnosis. Oncologist 2014, 19, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, I.; Prodromou, N.; Coupier, I.; Huiart, L.; Moretta, J.; Noguès, C.; Julian-Reynier, C. Having a child and PND/PGD access in women with a BRCA1/2 mutation? Different approach whether ill or healthy. Bull. Cancer 2014, 101, 1001–1008. [Google Scholar] [CrossRef]
- Chan, J.L.; Johnson, L.N.C.; Sammel, M.D.; DiGiovanni, L.; Voong, C.; Domchek, S.M.; Gracia, C.R. Reproductive Decision-Making in Women with BRCA1/2 Mutations. J. Genet. Couns. 2017, 26, 594–603. [Google Scholar] [CrossRef]
- Mor, P.; Brennenstuhl, S.; Metcalfe, K.A. Uptake of Preimplantation Genetic Diagnosis in Female BRCA1 and BRCA2 Mutation Carriers. J. Genet. Couns. 2018, 27, 1386–1394. [Google Scholar] [CrossRef]
- Dekeuwer, C.; Bateman, S. Much More than a Gene: Hereditary Breast and Ovarian Cancer, Reproductive Choices and Family Life. Med. Health Care Philos. 2013, 16, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Derks-Smeets, I.A.P.; Gietel-Habets, J.J.G.; Tibben, A.; Tjan-Heijnen, V.C.G.; Meijer-Hoogeveen, M.; Geraedts, J.P.M.; van Golde, R.; Gomez-Garcia, E.; van den Bogaart, E.; van Hooijdonk, M.; et al. Decision-Making on Preimplantation Genetic Diagnosis and Prenatal Diagnosis: A Challenge for Couples with Hereditary Breast and Ovarian Cancer. Hum. Reprod. 2014, 29, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Quinn, G.P.; Vadaparampil, S.T.; Tollin, S.; Miree, C.A.; Murphy, D.; Bower, B.; Silva, C. BRCA Carriers’ Thoughts on Risk Management in Relation to Preimplantation Genetic Diagnosis and Childbearing: When Too Many Choices Are Just as Difficult as None. Fertil. Steril. 2010, 94, 2473–2475. [Google Scholar] [CrossRef]
- Hurley, K.; Rubin, L.R.; Werner-Lin, A.; Sagi, M.; Kemel, Y.; Stern, R.; Phillips, A.; Cholst, I.; Kauff, N.; Offit, K. Incorporating Information Regarding Preimplantation Genetic Diagnosis into Discussions Concerning Testing and Risk Management for BRCA1/2 Mutations: A Qualitative Study of Patient Preferences. Cancer 2012, 118, 6270–6277. [Google Scholar] [CrossRef] [Green Version]
- Sagi, M.; Weinberg, N.; Eilat, A.; Aizenman, E.; Werner, M.; Girsh, E.; Siminovsky, Y.; Abeliovich, D.; Peretz, T.; Simon, A.; et al. Preimplantation Genetic Diagnosis for BRCA1/2--a Novel Clinical Experience. Prenat. Diagn. 2009, 29, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Derks-Smeets, I.A.P.; de Die-Smulders, C.E.M.; Mackens, S.; van Golde, R.; Paulussen, A.D.; Dreesen, J.; Tournaye, H.; Verdyck, P.; Tjan-Heijnen, V.C.G.; Meijer-Hoogeveen, M.; et al. Hereditary Breast and Ovarian Cancer and Reproduction: An Observational Study on the Suitability of Preimplantation Genetic Diagnosis for Both Asymptomatic Carriers and Breast Cancer Survivors. Breast Cancer Res. Treat. 2014, 145, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Dagan, E.; Birenbaum-Carmeli, D.; Friedman, E.; Feldman, B. Performing and Declining PGD: Accounts of Jewish Israeli Women Who Carry a BRCA1/2 Mutation or Partners of Male Mutation Carriers. J. Genet. Couns. 2017, 26, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
Study | Design | BRCA Group (n, Average Age) | Control Group (n, Average Age) | AMH for BRCA Group (ng/mL) | AMH for Control Group (ng/mL) | p |
---|---|---|---|---|---|---|
Titus et al., (2013) [2] | Cross-sectional | BC (n = 24, 34.8) | BC (n= 60, 36.3) | 1.22 | 2.23 | <0.0001 |
Michaelson-C et al., (2014) [24] | Cross-sectional | ø cancer (n = 41, 33.2) | ø cancer (n = 324, NA) | 2.71 | 2.02 | 0.27 |
Wang et al., (2014) [25] | Cross-sectional | ø cancer (n = 89, 35.5) | ø cancer (n = 54, 35.6) | 0.53 (BRCA1) 0.73 (BRCA2) | 1.05 | 0.026 (BRCA1) 0.634 (BRCA2) |
van Tilborg et al., (2016) [26] | Cross-sectional | ø cancer (n = 124, 29) | ø cancer (n = 131, 31) | 1.9 | 1.8 | 0.34 |
Lambertini et al., (2018) [27] | Retrospective | BC (n = 29, 31) | BC (n= 72, 30) | 1.8 | 2.6 | 0.109 |
Grynberg et al., (2019) [28] | Retrospective | BC (n = 52, 31.7) | BC (n= 277, 32.3) | 3.6 | 4.1 | 0.3 |
Gunnala et al., (2019) [29] | Retrospective | BC (n = 38) ø cancer (n = 19) 32.4 | BC (n = 53) OM (n = 85) EEF (n = 600) 35.5 | 2.8 (overall) 2.4 (BRCA1) 3.6 (BRCA2) 2.6 (BC) 3.2 (ø cancer) | 2.4 (overall) 2.4 (BC) 2.9 (OM) 2.3 (EEF) | 0.22 0.6 |
Son et al., (2019) [30] | Retrospective | BC (n = 52, 34.0) | BC (n = 264, 34.0) | 2.6 | 3.85 | 0.004 |
Lambertini et al., (2019) [35] | Prospective | BC (n = 35, 34.0) | BC (n = 113, 36.0) | 2.82 | 2.46 | 0.53 |
Ponce et al., (2020) [31] | Prospective | ø cancer (n = 69, 32.3) | ø cancer (n = 66, 32.7) | 3 (BRCA1) 2.54 (BRCA2) | 2.27 | 0.28 |
Porcu et al., (2020) [32] | Prospective | BC (n = 11 BRCA1, 31.5) (n = 11 BRCA2, 33.2) | BC (n = 24, 32.5) ø cancer (n = 181, 32.4) | 1.2 (BRCA1) 4.4 (BRCA2) | 4.5 (BC) 3.8 (ø cancer) | ≤0.05 |
Study | Design | BRCA Group (n) | Control Group (n, Average Age) | Number of Collected Oocytes for BRCA Group * | Number of Collected Oocytes for Control Group * | p |
---|---|---|---|---|---|---|
Oktay et al., (2010) [44] | Prospective | FP for BC (n = 8 BRCA1; n = 4 BRCA2) | FP for BC (n = 68) (33 negative, 35 untested) | 7.9 (overall) 95% CI [4.6–13.8] 7.4 (BRCA1) 95% CI [3.1–17.7] | 11.3 (BRCA neg) 95% CI [9.1–14.1] 12.4 (BRCA neg + ø) 95% CI [10.8–14.2] | 0.025 0.03 |
Shapira et al., (2015) [48] | Retrospective | FP for BC (n = 21) no cancer, IVF with PGT (n = 41) | FP for BC (n = 21) IVF with PGT non BRCA (n = 41) | 13.75 ± 7.6 | 14.75 ± 8.8 | 0.49 |
Derks et al., (2017) [45] | Retrospective | no cancer, IVF with PGT (n = 18 BRCA1; n = 20 BRCA2) | IVF with PGT non BRCA (n = 154) | 7.0 [IQR 4–9] (overall) 6.5 [IQR 4–8] (BRCA1) 7.5 [IQR 5.5–9] (BRCA2) | 8.0 [IQR 6–11] | 0.02 0.01 0.2 |
Lambertini et al., (2018) [27] | Retrospective | FP for BC n = 10 | FP for BC n = 19 | 6.5 [IQR 3–7] | 9.0 [IQR 5–13] | 0.145 |
Turan et al., (2018) [46] | Prospective | FP for BC n = 21 | FP for BC n = 97 | 7.4 ± 5.7 | 10.6 ± 5.1 | 0.047 |
Gunnala et al., (2019) [29] | Retrospective | FP for BC (n = 38) no cancer (n = 19) | FP for BC (n = 53) OM (n = 85) EEF (n = 600) | 14.0 ± 7.9 (overall) 13.5 ± 7.3 (BRCA1) 14.2 ± 6.1 (BRCA2) 14.4 ± 9.1 (BC) 13.2 ± 4.7 (ø cancer) | 10.4 ± 6.9 (overall) 13.1 ± 8.4 (BC) 14.2 ± 8.9 (OM) 9.6 ± 6.2 (EEF) | >0.05 |
Porcu et al., (2020) [32] | Prospective | FP for BC (n = 11 BRCA1); (n = 11 BRCA2) | FP for BC (n = 24) ø cancer (n = 181) | 6.7 ± 4.9 (BRCA1) 10 ± 6.8 (BRCA2) | 9.1 ± 6.1 (BC) 8.8 ± 4.3 (no cancer) | >0.05 |
Kim et al. (2022) [47] | Retrospective | FP for BC (n = 25 BRCA1; n = 35 BRCA2; n = 21 BRCA 1 + 2) | FP for BC n = 57 | 8.3 ± 5.4 (BRCA 1- 2) | 15.3 ± 8.7 (BC) | 0 .002 |
Study | n | Population | Acceptance Rate for other BRCA Carriers | Acceptance Rate for Oneself |
---|---|---|---|---|
Menon et al. (2007) [65] | 52 | BRCA mutation carriers attending a Familial Cancer Clinic, with and without personal cancer history | 75% | 37.5% (retrospectively) 14% |
Staton et al. (2008) [11] | 213 | BRCA mutation carriers with and without personal cancer history (online questionnaire) | 75% | 13% |
Vadaparampil et al. (2009) [66] | 962 | Members of a national organization dedicated to empowering women at high risk for developing breast or ovarian cancer (web-based survey) | NA | 33% |
Fortuny et al. (2009) [12] | 77 | Individuals undergoing BRCA1/2 testing | 61% (74% if cancer history, 44% if cancer free) | 48% (61% if cancer history, 30% if cancer free) |
Quinn et al. (2009) [62] | 111 | Attendees of a national conference for individuals and families affected by hereditary breast and ovarian cancer | 57% | NA |
Dekeuwer et al. (2011) [72] | 20 | 20 BRCA mutation carriers (13 of childbearing age; BC or ovarian cancer) | NA | 35% |
Reynier et al. (2012) [67] | 605 | Unaffected BRCA1/2 mutation carriers of childbearing age, included at least 1 year after the disclosure of their test results | 85% | 32.5% |
Woodson et al. (2014) [68] | 148 114 | Awaiting for genetic result (BC family history) After genetic results (Family history of BC) | NA | 28% 24% |
Pellegrini et al. (2014) [69] | 20 | BRCA mutation carriers, 31 to 57 years old, including 12 with a history of breast/ovarian cancer | NA | 70% |
Chan et al. (2016) [70] | 1081 | BRCA mutated women with a history of breast/ovarian cancer for 36% | 59% | 35% |
Gietel et al. (2017) [63] | 191 | BRCA mutation carriers | 80% | 39% |
Mor et al. (2018) [71] | 70 | Married Israeli and healthy BRCA mutated women who wanted children before and after receiving BRCA test results | NA | 25,7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laot, L.; Sonigo, C.; Nobre, J.; Benachi, A.; Dervin, T.; El Moujahed, L.; Mayeur, A.; Stoppa-Lyonnet, D.; Steffann, J.; Grynberg, M. Should Preimplantation Genetic Testing (PGT) Systematically Be Proposed to BRCA Pathogenic Variant Carriers? Cancers 2022, 14, 5769. https://doi.org/10.3390/cancers14235769
Laot L, Sonigo C, Nobre J, Benachi A, Dervin T, El Moujahed L, Mayeur A, Stoppa-Lyonnet D, Steffann J, Grynberg M. Should Preimplantation Genetic Testing (PGT) Systematically Be Proposed to BRCA Pathogenic Variant Carriers? Cancers. 2022; 14(23):5769. https://doi.org/10.3390/cancers14235769
Chicago/Turabian StyleLaot, Lucie, Charlotte Sonigo, Julie Nobre, Alexandra Benachi, Traicie Dervin, Lina El Moujahed, Anne Mayeur, Dominique Stoppa-Lyonnet, Julie Steffann, and Michael Grynberg. 2022. "Should Preimplantation Genetic Testing (PGT) Systematically Be Proposed to BRCA Pathogenic Variant Carriers?" Cancers 14, no. 23: 5769. https://doi.org/10.3390/cancers14235769
APA StyleLaot, L., Sonigo, C., Nobre, J., Benachi, A., Dervin, T., El Moujahed, L., Mayeur, A., Stoppa-Lyonnet, D., Steffann, J., & Grynberg, M. (2022). Should Preimplantation Genetic Testing (PGT) Systematically Be Proposed to BRCA Pathogenic Variant Carriers? Cancers, 14(23), 5769. https://doi.org/10.3390/cancers14235769