Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Limitations of Classical Experimental Models Used for Cancer Research
3. Potential Protective Mechanisms Responsible for Cancer-Resistant Vertebrates
3.1. Naked Mole Rat
3.2. Blind Mole Rat
3.3. Bats
3.4. Elephant
3.5. Whales
3.6. Axolotls
4. Non-Model and Alternative Model Vertebrate Species Susceptible to Cancer
4.1. Carnivores
4.2. Poultry
4.3. Killifish
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seluanov, A.; Gladyshev, V.N.; Vijg, J.; Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 2018, 18, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tollis, M.; Boddy, A.M.; Maley, C.C. Peto’s Paradox: How has evolution solved the problem of cancer prevention? BMC Biol. 2017, 15, 60. [Google Scholar] [CrossRef] [Green Version]
- Szymanska, H.; Lechowska-Piskorowska, J.; Krysiak, E.; Strzalkowska, A.; Unrug-Bielawska, K.; Grygalewicz, B.; Skurzak, H.M.; Pienkowska-Grela, B.; Gajewska, M. Neoplastic and nonneoplastic lesions in aging mice of unique and common inbred strains contribution to modeling of human neoplastic diseases. Vet. Pathol. 2014, 51, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Abegglen, L.M.; Caulin, A.F.; Chan, A.; Lee, K.; Robinson, R.; Campbell, M.S.; Kiso, W.K.; Schmitt, D.L.; Waddell, P.J.; Bhaskara, S.; et al. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans. JAMA 2015, 314, 1850. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Caulin, A.F.; Maley, C.C. Peto’s Paradox: Evolution’s prescription for cancer prevention. Trends Ecol. Evol. 2011, 26, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.J.; Theriot, J.A.; Sood, P.; Marshall, W.F.; Landweber, L.F.; Fritz-Laylin, L.; Polka, J.; Oliferenko, S.; Gerbich, T.; Gladfelter, A.; et al. Non-model model organisms. BMC Biol. 2017, 15, 55. [Google Scholar] [CrossRef] [Green Version]
- Rangarajan, A.; Hong, S.J.; Gifford, A.; Weinberg, R.A. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 2004, 6, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Mak, I.W.; Evaniew, N.; Ghert, M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 2014, 6, 114–118. [Google Scholar]
- Hupp, T.R.; Meek, D.W.; Midgley, C.A.; Lane, D.P. Regulation of the Specific DNA Binding Function of p53. Cell 1992, 71, 875–886. [Google Scholar] [CrossRef]
- Hainaut, P.; Hollstein, M. p53 and Human Cancer: The First Ten Thousand Mutations. Adv. Cancer Res. 1999, 77, 81–137. [Google Scholar] [CrossRef]
- Sulak, M.; Fong, L.; Mika, K.; Chigurupati, S.; Yon, L.; Mongan, N.P.; Emes, R.D.; Lynch, V.J. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 2016, 5, e11994. [Google Scholar] [CrossRef] [PubMed]
- Austad, S.N. Methusaleh’s Zoo: How Nature provides us with Clues for Extending Human Health Span. J. Comp. Pathol. 2010, 142, S10–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffenstein, R.; Park, T.J.; Holmes, M.M. (Eds.) The Extraordinary Biology of the Naked Mole-Rat; Springer International Publishing: Cham, Switzerland, 2021; Volume 1319. [Google Scholar] [CrossRef]
- Buffenstein, R.; Jarvis, J.U.M. The Naked Mole Rat—A New Record for the Oldest Living Rodent. Sci. Aging Knowl. Environ. 2002, 2002, pe7. [Google Scholar] [CrossRef] [PubMed]
- Ruby, J.G.; Smith, M.; Buffenstein, R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. eLife 2018, 7, e31157. [Google Scholar] [CrossRef]
- Delaney, M.A.; Ward, J.M.; Walsh, T.F.; Chinnadurai, S.K.; Kerns, K.; Kinsel, M.J.; Treuting, P.M. Initial Case Reports of Cancer in Naked Mole-rats (Heterocephalus glaber). Vet. Pathol. 2016, 53, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Seluanov, A.; Hine, C.; Azpurua, J.; Feigenson, M.; Bozzella, M.; Mao, Z.; Catania, K.C.; Gorbunova, V. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc. Natl. Acad. Sci. USA 2009, 106, 19352–19357. [Google Scholar] [CrossRef] [Green Version]
- Miyawaki, S.; Kawamura, Y.; Oiwa, Y.; Shimizu, A.; Hachiya, T.; Bono, H.; Koya, I.; Okada, Y.; Kimura, T.; Tsuchiya, Y.; et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat. Commun. 2016, 7, 11471. [Google Scholar] [CrossRef] [Green Version]
- Sharpless, N.E. INK4a/ARF: A multifunctional tumor suppressor locus. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2005, 576, 22–38. [Google Scholar] [CrossRef]
- Chinnam, M.; Goodrich, D.W. RB1, development, and cancer. Curr. Top. Dev. Biol. 2011, 94, 129–169. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Azpurua, J.; Ke, Z.; Augereau, A.; Zhang, Z.D.; Vijg, J.; Gladyshev, V.N.; Gorbunova, V.; Seluanov, A. INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc. Natl. Acad. Sci. USA 2015, 112, 1053–1058. [Google Scholar] [CrossRef] [Green Version]
- Tavianatou, A.G.; Caon, I.; Franchi, M.; Piperigkou, Z.; Galesso, D.; Karamanos, N.K. Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019, 286, 2883–2908. [Google Scholar] [CrossRef] [Green Version]
- Toole, B.P. Hyaluronan: From extracellular glue to pericellular cue. Nat. Rev. Cancer 2004, 4, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Azpurua, J.; Hine, C.; Vaidya, A.; Myakishev-Rempel, M.; Ablaeva, J.; Mao, Z.; Nevo, E.; Gorbunova, V.; Seluanov, A. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 2013, 499, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Mele, J.; Wu, Y.; Buffenstein, R.; Hornsby, P.J. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber): Oncogene resistance in naked mole-rat cells. Aging Cell 2010, 9, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tolg, C.; Turley, E. Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment. Front. Immunol. 2019, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-G.; Mikhalchenko, A.E.; Yim, S.H.; Lobanov, A.V.; Park, J.-K.; Choi, K.-H.; Bronson, R.T.; Lee, C.-K.; Park, T.J.; Gladyshev, V.N. Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera. Stem Cell Rep. 2017, 9, 1706–1720. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Ke, Z.; Tombline, G.; Macoretta, N.; Hayes, K.; Tian, X.; Lv, R.; Ablaeva, J.; Gilbert, M.; Bhanu, N.V.; et al. Naked Mole Rat Cells Have a Stable Epigenome that Resists iPSC Reprogramming. Stem Cell Rep. 2017, 9, 1721–1734. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Tian, X.; Zhu, Y.; Zhang, Z.; Rydkina, E.; Yuan, Y.; Zhang, H.; Roy, B.; Cornwell, A.; Nevo, E.; et al. Reply to: Transformation of naked mole-rat cells. Nature 2020, 583, 7814. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-X.; Pan, W.; Qian, J.-F.; Liu, F.; Dong, H.-Q.; Liu, Q.-J. MicroRNA-21 contributes to the puerarin-induced cardioprotection via suppression of apoptosis and oxidative stress in a cell model of ischemia/reperfusion injury. Mol. Med. Rep. 2019, 20, 719–727. [Google Scholar] [CrossRef]
- Schärer, O.D. Chemistry and Biology of DNA Repair. Angew. Chem. Int. Ed. 2003, 42, 2946–2974. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.N.; Wason, E.; Edrey, Y.H.; Kristan, D.M.; Nevo, E.; Buffenstein, R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc. Natl. Acad. Sci. USA 2015, 112, 3722–3727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evdokimov, A.; Kutuzov, M.; Petruseva, I.; Lukjanchikova, N.; Kashina, E.; Kolova, E.; Zemerova, T.; Romanenko, S.; Perelman, P.; Prokopov, D.; et al. Naked mole rat cells display more efficient excision repair than mouse cells. Aging 2018, 10, 1454–1473. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Yu, J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front. Cell Dev. Biol. 2020, 8, 657. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Nohara, S.; Nishikawa, Y.; Suzuki, Y.; Kawamura, Y.; Miura, K.; Tomonaga, K.; Ueda, K.; Honda, T. Characterization of an active LINE-1 in the naked mole-rat genome. Sci. Rep. 2021, 11, 5725. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, Y.; Zhang, Y.; Cao, H.; Lyu, J.; Wang, X.; Wylie, A.; Newkirk, S.J.; Jones, A.E.; Lee, M.; et al. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat. Genet. 2021, 53, 672–682. [Google Scholar] [CrossRef]
- Nordling, C.O. A New Theory on the Cancer-inducing Mechanism. Br. J. Cancer 1953, 7, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.B.; Fang, X.; Fushan, A.A.; Huang, Z.; Lobanov, A.V.; Han, L.; Marino, S.M.; Sun, X.; Turanov, A.A.; Yang, P.; et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 2011, 479, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Tollis, M.; Schiffman, J.D.; Boddy, A.M. Evolution of cancer suppression as revealed by mammalian comparative genomics. Curr. Opin. Genet. Dev. 2017, 42, 40–47. [Google Scholar] [CrossRef]
- Gorbunova, V.; Hine, C.; Tian, X.; Ablaeva, J.; Gudkov, A.V.; Nevo, E.; Seluanov, A. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl. Acad. Sci. USA 2012, 109, 19392–19396. [Google Scholar] [CrossRef] [Green Version]
- Nevo, E. Mosaic Evolution of Subterranean Mammals: Tinkering, Regression, Progression, and Global Convergence. In Subterranean Rodents; Begall, S., Burda, H., Schleich, C.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 375–388. [Google Scholar] [CrossRef]
- Meredith, R.W.; Janečka, J.E.; Gatesy, J.; Ryder, O.A.; Fisher, C.A.; Teeling, E.C.; Goodbla, A.; Eizirik, E.; Simão, T.L.L.; Stadler, T.; et al. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Science 2011, 334, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Manov, I.; Hirsh, M.; Iancu, T.C.; Malik, A.; Sotnichenko, N.; Band, M.; Avivi, A.; Shams, I. Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: In vivo and in vitro evidence. BMC Biol. 2013, 11, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashur-Fabian, O.; Avivi, A.; Trakhtenbrot, L.; Adamsky, K.; Cohen, M.; Kajakaro, G.; Joel, A.; Amariglio, N.; Nevo, E.; Rechavi, G. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc. Natl. Acad. Sci. USA 2004, 101, 12236–12241. [Google Scholar] [CrossRef] [Green Version]
- Avivi, A.; Ashur-Fabian, O.; Joel, A.; Trakhtenbrot, L.; Adamsky, K.; Goldstein, I.; Amariglio, N.; Rechavi, G.; Nevo, E. P53 in blind subterranean mole rats—Loss-of-function versus gain-of-function activities on newly cloned Spalax target genes. Oncogene 2007, 26, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altwasser, R.; Paz, A.; Korol, A.; Manov, I.; Avivi, A.; Shams, I. The transcriptome landscape of the carcinogenic treatment response in the blind mole rat: Insights into cancer resistance mechanisms. BMC Genom. 2019, 20, 17. [Google Scholar] [CrossRef]
- Nasser, N.J.; Avivi, A.; Shafat, I.; Edovitsky, E.; Zcharia, E.; Ilan, N.; Vlodavsky, I.; Nevo, E. Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis. Proc. Natl. Acad. Sci. USA 2009, 106, 2253–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Oreskovic, E.; Zhang, Q.; Lu, Q.; Gilman, A.; Lin, Y.S.; He, J.; Zheng, Z.; Lu, J.Y.; Lee, J.; et al. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat. Immunol. 2021, 22, 1219–1230. [Google Scholar] [CrossRef]
- De Cecco, M.; Ito, T.; Petrashen, A.P.; Elias, A.E.; Skvir, N.J.; Criscione, S.W.; Caligiana, A.; Brocculi, G.; Adney, E.M.; Boeke, J.D.; et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019, 566, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Van Meter, M.; Ablaeva, J.; Ke, Z.; Gonzalez, R.S.; Taguchi, T.; De Cecco, M.; Leonova, K.I.; Kogan, V.; Helfand, S.L.; et al. LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation. Cell Metab. 2019, 29, 871–885.e5. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Korol, A.; Hubner, S.; Hernandez, A.G.; Thimmapuram, J.; Ali, S.; Glaser, F.; Paz, A.; Avivi, A.; Band, M. Transcriptome Sequencing of the Blind Subterranean Mole Rat, Spalax galili: Utility and Potential for the Discovery of Novel Evolutionary Patterns. PLoS ONE 2011, 6, e21227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamchur, A.; Leman, E.; Salah, S.; Avivi, A.; Shams, I.; Manov, I. Adipose-Derived Stem Cells of Blind Mole Rat Spalax Exhibit Reduced Homing Ability: Molecular Mechanisms and Potential Role in Cancer Suppression. Stem Cells 2018, 36, 1630–1642. [Google Scholar] [CrossRef] [PubMed]
- Seim, I.; Fang, X.; Xiong, Z.; Lobanov, A.V.; Huang, Z.; Ma, S.; Feng, Y.; Turanov, A.A.; Zhu, Y.; Lenz, T.L.; et al. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 2013, 4, 2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Jebb, D.; Teeling, E.C. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis. BMC Genom. 2016, 17, 906. [Google Scholar] [CrossRef] [Green Version]
- Podlutsky, A.J.; Khritankov, A.M.; Ovodov, N.D.; Austad, S.N. A New Field Record for Bat Longevity. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 1366–1368. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-F.; Walker, P.J.; Poon, L.L.M. Mass extinctions, biodiversity and mitochondrial function: Are bats ‘special’ as reservoirs for emerging viruses? Curr. Opin. Virol. 2011, 1, 649–657. [Google Scholar] [CrossRef]
- Mandl, J.N.; Schneider, C.; Schneider, D.S.; Baker, M.L. Going to Bat(s) for Studies of Disease Tolerance. Front. Immunol. 2018, 9, 2112. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Zhao, K.; Shi, Z.-L.; Zhou, P. Bat Coronaviruses in China. Viruses 2019, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Bradford, C.; Jennings, R.; Ramos-Vara, J. Gastrointestinal Leiomyosarcoma in an Egyptian Fruit Bat (Rousettus Aegyptiacus). J. Vet. Diagn. Investig. 2010, 22, 462–465. [Google Scholar] [CrossRef]
- McLelland, D.J.; Dutton, C.J.; Barker, I.K. Sarcomatoid Carcinoma in the Lung of an Egyptian Fruit Bat (Rousettus Aegyptiacus). J. Vet. Diagn. Investig. 2009, 21, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Siegal-Willott, J.; Heard, D.; Sliess, N.; Naydan, D.; Roberts, J. Microchip-associated Leiomyosarcoma in an Egyptian Fruit Bat (Rousettus Aegyptiacus). J. Zoo Wildl. Med. 2007, 38, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, J.; Purkayastha, S.; Tang, Y.; Zhang, H.; Yin, Y.; Li, B.; Liu, G.; Cai, D. Hypothalamic Programming of Systemic Aging Involving IKKβ/NF-κB and GnRH. Nature 2013, 497, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunet-Rossinni, A.K. Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech. Ageing Dev. 2004, 125, 11–20. [Google Scholar] [CrossRef]
- Valenzano, D.R.; Benayoun, B.A.; Singh, P.P.; Zhang, E.; Etter, P.D.; Hu, C.-K.; Clément-Ziza, M.; Willemsen, D.; Cui, R.; Harel, I.; et al. The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan. Cell 2015, 163, 1539–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Węsierska-Gądek, J. mTOR and its link to the picture of Dorian Gray—Re-activation of mTOR promotes aging. Aging 2010, 2, 892–893. [Google Scholar] [CrossRef]
- Guevara-Aguirre, J.; Balasubramanian, P.; Guevara-Aguirre, M.; Wei, M.; Madia, F.; Cheng, C.-W.; Hwang, D.; Martin-Montalvo, A.; Saavedra, J.; Ingles, S.; et al. Growth Hormone Receptor Deficiency Is Associated with a Major Reduction in Pro-Aging Signaling, Cancer, and Diabetes in Humans. Sci. Transl. Med. 2011, 3, 70ra13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blagosklonny, M.V. Once again on rapamycin-induced insulin resistance and longevity: Despite of or owing to. Aging 2012, 4, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.J.; Portfors, C.V. Adaptive sequence convergence of the tumor suppressor ADAMTS9 between small-bodied mammals displaying exceptional longevity. Aging 2017, 9, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Gladyshev, V.N. Molecular signatures of longevity: Insights from cross-species comparative studies. Semin. Cell Dev. Biol. 2017, 70, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Tachedjian, M.; Wynne, J.W.; Boyd, V.; Cui, J.; Smith, I.; Cowled, C.; Ng, J.H.J.; Mok, L.; Michalski, W.P.; et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc. Natl. Acad. Sci. USA 2016, 113, 2696–2701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zeng, L.-P.; Zhou, P.; Irving, A.T.; Li, S.; Shi, Z.-L.; Wang, L.-F. IFNAR2-dependent gene expression profile induced by IFN-α in Pteropus alecto bat cells and impact of IFNAR2 knockout on virus infection. PLoS ONE 2017, 12, e0182866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, J.; Itahana, Y.; Mendenhall, I.H.; Low, D.; Soh, E.X.Y.; Guo, A.K.; Chionh, Y.T.; Wang, L.-F.; Itahana, K. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nat. Commun. 2019, 10, 2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Whelan, C.V.; Foley, N.M.; Jebb, D.; Touzalin, F.; Petit, E.J.; Puechmaille, S.J.; Teeling, E.C. Longitudinal comparative transcriptomics reveals unique mechanisms underlying extended healthspan in bats. Nat. Ecol. Evol. 2019, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Caulin, A.F.; Graham, T.A.; Wang, L.-S.; Maley, C.C. Solutions to Peto’s paradox revealed by mathematical modelling and cross-species cancer gene analysis. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140222. [Google Scholar] [CrossRef] [Green Version]
- Padariya, M.; Jooste, M.-L.; Hupp, T.; Fåhraeus, R.; Vojtesek, B.; Vollrath, F.; Kalathiya, U.; Karakostis, K. The Elephant Evolved p53 Isoforms that Escape MDM2-Mediated Repression and Cancer. Mol. Biol. Evol. 2022, 39, msac149. [Google Scholar] [CrossRef]
- Halder, S.; Parte, S.; Kshirsagar, P.; Muniyan, S.; Nair, H.B.; Batra, S.K.; Seshacharyulu, P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim. Biophys. Acta (BBA) Rev. Cancer 2022, 1877, 188737. [Google Scholar] [CrossRef]
- Vazquez, J.M.; Sulak, M.; Chigurupati, S.; Lynch, V.J. A Zombie LIF Gene in Elephants Is Upregulated by TP53 to Induce Apoptosis in Response to DNA Damage. Cell Rep. 2018, 24, 1765–1776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Tombline, G.; Ablaeva, J.; Zhang, L.; Zhou, X.; Smith, Z.; Zhao, Y.; Xiaoli, A.M.; Wang, Z.; Lin, J.-R.; et al. Genomic expansion of Aldh1a1 protects beavers against high metabolic aldehydes from lipid oxidation. Cell Rep. 2021, 37, 109965. [Google Scholar] [CrossRef]
- Zhang, Q.; Tombline, G.; Ablaeva, J.; Zhang, L.; Zhou, X.; Smith, Z.; Xiaoli, A.M.; Wang, Z.; Lin, J.-R.; Jabalameli, M.R.; et al. The genome of North American beaver provides insights into the mechanisms of its longevity and cancer resistance. bioRxiv 2020. [Google Scholar] [CrossRef]
- George, J.C.; Bockstoce, J.R. Two historical weapon fragments as an aid to estimating the longevity and movements of bowhead whales. Polar Biol. 2008, 31, 751–754. [Google Scholar] [CrossRef]
- Jensen, F.B. The role of nitrite in nitric oxide homeostasis: A comparative perspective. Biochim. Biophys. Acta (BBA) Bioenerg. 2009, 1787, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Seim, I.; Ma, S.; Zhou, X.; Gerashchenko, M.V.; Lee, S.-G.; Suydam, R.; George, J.C.; Bickham, J.W.; Gladyshev, V.N. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging 2014, 6, 879–899. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, B.A.; Gradinger, R. Regional Variability in Food Availability for Arctic Marine Mammals. Ecol. Appl. 2008, 18, S77–S96. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Karpac, J.; Jasper, H. Promoting longevity by maintaining metabolic and proliferative homeostasis. J. Exp. Biol. 2014, 217, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Holm, S.; Larsen, R.M.; Holst, C.M.; Heide-Jørgensen, M.P.; Steffensen, J.F.; Stevnsner, T.; Larsen, K. Bowhead NEIL1: Molecular cloning, characterization, and enzymatic properties. Biochimie 2022, in press. [Google Scholar] [CrossRef]
- Keane, M.; Semeiks, J.; Webb, A.E.; Li, Y.; Quesada, V.; Craig, T.; Madsen, L.B.; van Dam, S.; Brawand, D.; Marques, P.I.; et al. Insights into the Evolution of Longevity from the Bowhead Whale Genome. Cell Rep. 2015, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Tejada-Martinez, D.; de Magalhães, J.P.; Opazo, J.C. Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer. Proc. R. Soc. B 2021, 288, 20202592. [Google Scholar] [CrossRef] [PubMed]
- Ruben, L.N.; Johnson, R.O.; Clothier, R.H.; Balls, M. Resistance to Cancer in Amphibians: A Role for Apoptosis? Altern. Lab. Anim. 2013, 41, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Pesic, M.; Greten, F.R. Inflammation and cancer: Tissue regeneration gone awry. Curr. Opin. Cell Biol. 2016, 43, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Godwin, J.W.; Debuque, R.; Salimova, E.; Rosenthal, N.A. Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. npj Regen. Med. 2017, 2, 22. [Google Scholar] [CrossRef]
- Nowoshilow, S.; Schloissnig, S.; Fei, J.-F.; Dahl, A.; Pang, A.W.C.; Pippel, M.; Winkler, S.; Hastie, A.R.; Young, G.; Roscito, J.G.; et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 2018, 554, 7690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suleiman, S.; Schembri-Wismayer, P.; Calleja-Agius, J. The axolotl model for cancer research: A mini-review. J. Balk. Union Oncol. 2019, 24, 2227–2231. [Google Scholar]
- McCusker, C.D.; Gardiner, D.M. Positional Information Is Reprogrammed in Blastema Cells of the Regenerating Limb of the Axolotl (Ambystoma mexicanum). PLoS ONE 2013, 8, e77064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makanae, A.; Hirata, A.; Honjo, Y.; Mitogawa, K.; Satoh, A. Nerve independent limb induction in axolotls. Dev. Biol. 2013, 381, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Makanae, A.; Mitogawa, K.; Satoh, A. Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians. Dev. Biol. 2014, 396, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dall’Agnese, A.; Puri, P.L. Could we also be regenerative superheroes, like salamanders? BioEssays 2016, 38, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.J.; Suárez-Castillo, E.C.; Ortiz-Zuazaga, H.; Knapp, D.; Tanaka, E.M.; Crews, C.M. Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Dev. Dyn. 2011, 240, 1826–1840. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, S.; di Fiore, R.; Cassar, A.; Formosa, M.M.; Schembri-Wismayer, P.; Calleja-Agius, J. Axolotl Ambystoma mexicanum extract induces cell cycle arrest and differentiation in human acute myeloid leukemia HL-60 cells. Tumour Biol. 2020, 42. [Google Scholar] [CrossRef]
- Kubiak, M.; Denk, D.; Stidworthy, M.F. Retrospective review of neoplasms of captive lizards in the United Kingdom. Vet. Rec. 2020, 186, 28. [Google Scholar] [CrossRef]
- Fang, X.; Seim, I.; Huang, Z.; Gerashchenko, M.; Xiong, Z.; Turanov, A.A.; Zhu, Y.; Lobanov, A.V.; Fan, D.; Yim, S.H.; et al. Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes. Cell Rep. 2014, 8, 1354–1364. [Google Scholar] [CrossRef]
- Martineau, D.; Lemberger, K.; Dallaire, A.; Labelle, P.; Lipscomb, T.P.; Michel, P.; Mikaelian, I. Cancer in wildlife, a case study: Beluga from the St. Lawrence estuary, Québec, Canada. Environ. Health Perspect. 2002, 110, 285–292. [Google Scholar] [CrossRef] [PubMed]
- McAloose, D.; Munson, L.; Naydan, D.K. Histologic Features of Mammary Carcinomas in Zoo Felids Treated with Melengestrol Acetate (MGA) Contraceptives. Vet. Pathol. 2007, 44, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Munson, L.; Moresco, A. Comparative Pathology of Mammary Gland Cancers in Domestic and Wild Animals. Breast Dis. 2007, 28, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, S.S.; Carvalho, S.; Cabral, J.; Reis, C.A.; Gärtner, F. Canine tumors: A spontaneous animal model of human carcinogenesis. Transl. Res. 2012, 159, 165–172. [Google Scholar] [CrossRef]
- Dobson, J.M. Breed-Predispositions to Cancer in Pedigree Dogs. ISRN Vet. Sci. 2013, 2013, 941275. [Google Scholar] [CrossRef]
- Davis, B.W.; Ostrander, E.A. Domestic Dogs and Cancer Research: A Breed-Based Genomics Approach. ILAR J. 2014, 55, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.M. Cats, Cancer and Comparative Oncology. Vet. Sci. 2015, 2, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Cekanova, M.; Rathore, K. Animal models and therapeutic molecular targets of cancer: Utility and limitations. Drug Des. Devel. Ther. 2014, 8, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Breen, M.; Modiano, J.F. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—Man and his best friend share more than companionship. Chromosome Res. 2008, 16, 145–154. [Google Scholar] [CrossRef]
- Park, J.C.; Hahn, N.M. Bladder Cancer: A Disease Ripe for Major Advances. Clin. Adv. Hematol. Oncol. 2014, 12, 838–845. [Google Scholar]
- Marconato, L.; Gelain, M.E.; Comazzi, S. The dog as a possible animal model for human non-Hodgkin lymphoma: A review. Hematol. Oncol. 2013, 31, 1–9. [Google Scholar] [CrossRef]
- Paoloni, M.; Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer 2008, 8, 147–156. [Google Scholar] [CrossRef]
- Morrison, W.B. Inflammation and cancer: A comparative view. J. Vet. Intern. Med. 2012, 26, 18–31. [Google Scholar] [CrossRef]
- Huber, M.A.; Tantiwongkosi, B. Oral and Oropharyngeal Cancer. Med. Clin. N. Am. 2014, 98, 1299–1321. [Google Scholar] [CrossRef]
- Sorenmo, K.U.; Worley, D.R.; Goldschmidt, M.H. Tumors of the mammary gland. In Withrow and MacEwen’s Small Animal Clinical Oncology; WB Saunders: Philadelphia, PA, USA, 2012. [Google Scholar]
- Schiffman, J.D.; Breen, M. Comparative oncology: What dogs and other species can teach us about humans with cancer. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140231. [Google Scholar] [CrossRef] [PubMed]
- Bourne, D.C.; Cracknell, J.M.; Bacon, H.J. Veterinary issues related to bears (Ursidae). Int. Zoo Yearb. 2010, 44, 16–32. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, C.; Li, D.; Zhang, H.; Deng, L.; Li, C.; Chen, Z. A case of giant panda ovarian cancer diagnosis and histopathology. BMC Vet. Res. 2018, 14, 311. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.; Anderson, K.; Ashwell, C.; Petitte, J.; Mozdziak, P.E. CA125 expression in spontaneous ovarian adenocarcinomas from laying hens. Gynecol. Oncol. 2007, 104, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Hakim, A.A.; Barry, C.P.; Barnes, H.J.; Anderson, K.E.; Petitte, J.; Whitaker, R.; Lancaster, J.M.; Wenham, R.M.; Carver, D.K.; Turbov, J.; et al. Ovarian Adenocarcinomas in the Laying Hen and Women Share Similar Alterations in p53, ras, and HER-2/neu. Cancer Prev. Res. 2009, 2, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Bosquet, J.G.; Peedicayil, A.; Maguire, J.; Chien, J.; Rodriguez, G.C.; Whitaker, R.; Petitte, J.N.; Anderson, K.E.; Barnes, H.J.; Shridhar, V.; et al. Comparison of gene expression patterns between avian and human ovarian cancers. Gynecol. Oncol. 2011, 120, 256–264. [Google Scholar] [CrossRef]
- Geiger, B.; Ayalon, O. Cadherin. Annu. Rev. Cell Biol. 1992, 8, 307–332. [Google Scholar] [CrossRef] [PubMed]
- Auersperg, N.; Wong, A.S.T.; Choi, K.-C.; Kang, S.K.; Leung, P.C.K. Ovarian Surface Epithelium: Biology, Endocrinology, and Pathology. Endocr. Rev. 2001, 22, 255–288. [Google Scholar]
- Tiwari, A.; Hadley, J.A.; Iii, G.L.H.; Elkin, R.G.; Cooper, T.; Ramachandran, R. Characterization of Ascites-Derived Ovarian Tumor Cells from Spontaneously Occurring Ovarian Tumors of the Chicken: Evidence for E-Cadherin Upregulation. PLoS ONE 2013, 8, e57582. [Google Scholar] [CrossRef] [PubMed]
- Hawkridge, A.M. The chicken model of spontaneous ovarian cancer. Prot. Clin. Appl. 2014, 8, 689–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- di Cicco, E.; Tozzini, E.T.; Rossi, G.; Cellerino, A. The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp. Gerontol. 2011, 46, 249–256. [Google Scholar] [CrossRef]
- Kim, Y.; Nam, H.G.; Valenzano, D.R. The short-lived African turquoise killifish: An emerging experimental model for ageing. Dis. Model. Mech. 2016, 9, 115–129. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, L. An aquatic organism as time machine: Nothobranchius furzeri. J. Gerontol. Geriatr. 2017, 65, 307–310. [Google Scholar]
- Godoy, R.S.; Lanés, L.E.K.; Weber, V.; Stenert, C.; Nóblega, H.G.; Oliveira, G.T.; Maltchik, L. Age-associated liver alterations in wild populations of Austrolebias minuano, a short-lived Neotropical annual killifish. Biogerontology 2019, 20, 687–698. [Google Scholar] [CrossRef]
- Terzibasi, E.; Valenzano, D.R.; Benedetti, M.; Roncaglia, P.; Cattaneo, A.; Domenici, L.; Cellerino, A. Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS ONE 2008, 3, e3866. [Google Scholar] [CrossRef] [Green Version]
- Dyková, I.; Blažek, R.; Součková, K.; Reichard, M.; Slabý, O. Spontaneous adenocarcinoma of the gas gland in Nothobranchius fishes. Dis. Aquat. Org. 2020, 137, 205–210. [Google Scholar] [CrossRef]
- Tozzini, E.T.; Cellerino, A. Nothobranchius annual killifishes. EvoDevo 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Dyková, I.; Žák, J.; Reichard, M.; Součková, K.; Slabý, O.; Bystrý, V.; Blažek, R. Histopathology of laboratory-reared Nothobranchius fishes: Mycobacterial infections versus neoplastic lesions. J. Fish Dis. 2021, 44, 1179–1190. [Google Scholar] [CrossRef]
- Wrighton, P.J.; Oderberg, I.M.; Goessling, W. There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Higginbotham, S.; Wong, W.R.; Linington, R.G.; Spadafora, C.; Iturrado, L.; Arnold, A.E. Sloth Hair as a Novel Source of Fungi with Potent Anti-Parasitic, Anti-Cancer and Anti-Bacterial Bioactivity. PLoS ONE 2014, 9, e84549. [Google Scholar] [CrossRef]
Species | Cellular Mechanisms |
---|---|
Naked mole rats (captive populations) | Rapid apoptosis in case of p53, Rb1 or p19ARF loss [19] |
Early contact inhibition [19] | |
High molecular mass hyaluronan [26] | |
Differential microRNA expression [32] | |
Tumor suppressor Arf increased expression [20] | |
Elevated activity of antioxidant enzymes, heat shock proteins and DNA repair enzymes [33,34,35] | |
Lower expression of genes involved in insulin/IGF1 signaling or GH signaling [71] | |
Blind mole rats (captive populations) | p53 mutation [47] |
High molecular mass hyaluronan [26,45] | |
Heparanase [49] | |
Concerted cell death [102] | |
Adipose tissue stem cells low capacity of migration leading to a decrease of tumor microenvironment development [54] | |
Bats (wild and captive) | MicroRNA [56,75] |
DNA repair and antioxidant enzymes [65] | |
Unique expression of INF [73] | |
Downregulated insulin signaling [70] | |
Elephant (captive populations and frozen zoo *) | p53 retrogenes [5,13] |
3 LIF transcripts [79] | |
Whale (wild populations) | Downregulated insulin signaling [84] |
PCNA and ERCC1 increase [88] | |
Duplication in 71 genes [89] | |
Genetic turnover increase [89] | |
At least 7 tumor suppressor genes [89] | |
Axolotl (captive populations) | Error free tissue regeneration and lesion repair [91,92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schraverus, H.; Larondelle, Y.; Page, M.M. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers 2022, 14, 6177. https://doi.org/10.3390/cancers14246177
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers. 2022; 14(24):6177. https://doi.org/10.3390/cancers14246177
Chicago/Turabian StyleSchraverus, Hélène, Yvan Larondelle, and Melissa M. Page. 2022. "Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals" Cancers 14, no. 24: 6177. https://doi.org/10.3390/cancers14246177
APA StyleSchraverus, H., Larondelle, Y., & Page, M. M. (2022). Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers, 14(24), 6177. https://doi.org/10.3390/cancers14246177