Neoadjuvant Therapy Is Associated with Improved Chemotherapy Delivery and Overall Survival Compared to Upfront Resection in Pancreatic Cancer without Increasing Perioperative Complications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics and Clinicopathologic Characteristics
3.2. Association of NAT with Oncologic Outcomes and Pathologic Response
3.3. Association of Neoadjuvant Therapy with Early and Late Surgical Complications
3.4. Association between Systemic Therapy and Oncologic Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2019. [Google Scholar]
- Grossberg, A.J.; Chu, L.C.; Deig, C.R.; Fishman, E.K.; Hwang, W.L.; Maitra, A.; Marks, D.L.; Mehta, A.; Nabavizadeh, N.; Simeone, D.M.; et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 2020, 70, 375–403. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.L.; Chone, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Mayo, S.C.; Gilson, M.M.; Herman, J.M.; Cameron, J.L.; Nathan, H.; Edil, B.H.; Choti, M.A.; Schulick, R.D.; Wolfgang, C.L.; Pawlik, T.M. Management of patients with pancreatic adenocarcinoma: National trends in patient selection, operative management, and use of adjuvant therapy. J. Am. Coll. Surg. 2012, 214, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Merkow, R.P.; Bilimoria, K.Y.; Tomlinson, J.S.; Paruch, J.L.; Fleming, J.B.; Talamonti, M.S.; Ko, C.Y.; Bentrem, D.J. Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann. Surg. 2014, 260, 372–377. [Google Scholar] [CrossRef]
- Feeney, G.; Sehgal, R.; Sheehan, M.; Hogan, A.; Regan, M.; Joyce, M.; Kerin, M. Neoadjuvant radiotherapy for rectal cancer management. World J. Gastroenterol. 2019, 25, 4850–4869. [Google Scholar] [CrossRef]
- Shapiro, J.; Van Lanschot JJ, B.; Hulshof, M.C.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; van Laarhoven, H.W.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Schorn, S.; Demir, I.E.; Reyes, C.M.; Saricaoglu, C.; Samm, N.; Schirren, R.; Tieftrunk, E.; Hartmann, D.; Friess, H.; Ceyhan, G.O. The impact of neoadjuvant therapy on the histopathological features of pancreatic ductal adenocarcinoma—A systematic review and meta-analysis. Cancer Treat. Rev. 2017, 55, 96–106. [Google Scholar] [CrossRef]
- Fathi, A.; Christians, K.K.; George, B.; Ritch, P.S.; Erickson, B.A.; Tolat, P.; Johnston, F.M.; Evans, D.B.; Tsai, S. Neoadjuvant therapy for localized pancreatic cancer: Guiding principles. J. Gastrointest. Oncol. 2015, 6, 418–429. [Google Scholar]
- Kaufmann, B.; Hartmann, D.; D’Haese, J.G.; Stupakov, P.; Radenkovic, D.; Gloor, B.; Friess, H. Neoadjuvant Treatment for Borderline Resectable Pancreatic Ductal Adenocarcinoma. Dig. Surg. 2019, 36, 455–461. [Google Scholar] [CrossRef]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
- Truty, M.J.; Kendrick, M.L.; Nagorney, D.M.; Smoot, R.L.; Cleary, S.P.; Graham RP Goenka, A.H.; Hallemeier, C.L.; Haddock, M.G.; Harmsen, W.S.; Mahipal, A.; et al. Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer. Ann. Surg. 2021, 273, 341–349. [Google Scholar] [CrossRef]
- Kharofa, J.; Tsai, S.; Kelly, T.; Wood, C.; George, B.; Ritch, P.; Wiebe, L.; Christians, K.; Evans, D.B.; Erickson, B. Neoadjuvant chemoradiation with IMRT in resectable and borderline resectable pancreatic cancer. Radiother. Oncol. 2014, 113, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Berriochoa, C.A.; Abdel-Wahab, M.; Leyrer, C.M.; Khorana, A.; Matthew Walsh, R.; Kumar, A.M.S. Neoadjuvant chemoradiation for non-metastatic pancreatic cancer increases margin-negative and node-negative rates at resection. J. Dig. Dis. 2017, 18, 642–649. [Google Scholar] [CrossRef]
- Tzeng, C.W.D.; Cao, H.S.T.; Lee, J.E.; Pisters, P.W.; Varadhachary, G.R.; Wolff, R.A.; Abbruzzese, J.L.; Crane, C.H.; Evans, D.B.; Wang, H. Treatment sequencing for resectable pancreatic cancer: Influence of early metastases and surgical complications on multimodality therapy completion and survival. J. Gastrointest. Surg. 2014, 18, 16–24. [Google Scholar] [CrossRef]
- Fuks, D.; Piessen, G.; Huet, E.; Tavernier, M.; Zerbib, P.; Michot, F.; Scotte, M.; Triboulet, J.-P.; Mariette, C.; Chiche, L.; et al. Life-threatening postoperative pancreatic fistula (grade C) after pancreaticoduodenectomy: Incidence, prognosis, and risk factors. Am. J. Surg. 2009, 197, 702–709. [Google Scholar] [CrossRef]
- Tabchouri, N.; Bouquot, M.; Hermand, H.; Benoit, O.; Loiseau, J.C.; Dokmak, S.; Aussilhou, B.; Gaujoux, S.; Turrini, O.; Delpero, J.R.; et al. A Novel Pancreatic Fistula Risk Score Including Preoperative Radiation Therapy in Pancreatic Cancer Patients. J. Gastrointest. Surg. 2021, 25, 991–1000. [Google Scholar] [CrossRef]
- Hank, T.; Sandini, M.; Ferrone, C.R.; Rodrigues, C.; Weniger, M.; Qadan, M.; Warshaw, A.L.; Lillemoe, K.D.; Fernandez-del Castillo, C. Association Between Pancreatic Fistula and Long-term Survival in the Era of Neoadjuvant Chemotherapy. JAMA Surg. 2019, 154, 943–951. [Google Scholar] [CrossRef]
- Vento, P.; Mustonen, H.; Joensuu, T.; Karkkainen, P.; Kivilaakso, E.; Kiviluoto, T. Impact of preoperative chemoradiotherapy on survival in patients with resectable pancreatic cancer. World J. Gastroenterol. 2007, 13, 2945–2951. [Google Scholar] [CrossRef]
- Dahdaleh, F.S.; Naffouje, S.A.; Hanna, M.H.; Salti, G.I. Impact of Neoadjuvant Systemic Therapy on Pancreatic Fistula Rates Following Pancreatectomy: A Population-Based Propensity-Matched Analysis. J. Gastrointest. Surg. 2021, 25, 747–756. [Google Scholar] [CrossRef]
- Pecorelli, N.; Pagnanelli, M.; Cinelli, L.; Di Salvo, F.; Partelli, S.; Crippa, S.; Tamburrino, D.; Castoldi, R.; Belfiori, G.; Reni, M.; et al. Postoperative Outcomes and Functional Recovery After Preoperative Combination Chemotherapy for Pancreatic Cancer: A Propensity Score-Matched Study. Front. Oncol. 2019, 9, 1299. [Google Scholar] [CrossRef]
- Tempero, M.; Malafa, M.; Al-Hawary, M.; Berhman, S.; Benson, A.B.; Cardin, D. NCCN Guidelines—Pancreatic Adenocarcinoma. 2021. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 10 March 2021).
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Hilal, M.A.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Compton, C.C.; Henson, D.E. Protocol for the examination of specimens removed from patients with carcinoma of the exocrine pancreas: A basis for checklists. Cancer Committee, College of American Pathologists. Arch. Pathol. Lab. Med. 1997, 121, 1129–1136. [Google Scholar]
- O’Sullivan, B.; Davis, A.M.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Kandel, R.; Goddard, K.; Sadura, A.; et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: A randomised trial. Lancet 2002, 359, 2235–2241. [Google Scholar] [CrossRef]
- Cho, S.W.; Tzeng CW, D.; Johnston, W.C.; Cassera, M.A.; Newell, P.H.; Hammill, C.W.; Wolf, R.F.; Aloia, T.A.; Hansen, P.D. Neoadjuvant radiation therapy and its impact on complications after pancreaticoduodenectomy for pancreatic cancer: Analysis of the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). HPB 2014, 16, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Tuli, R.; David, J.; Lobaugh, S.; Zhang, Z.; O’Reilly, E.M. Duration of therapy for locally advanced pancreatic cancer: Does it matter? Cancer Med. 2020, 9, 4572–4580. [Google Scholar] [CrossRef]
- Ma, S.J.; Iovoli, A.J.; Hermann, G.M.; Prezzano, K.M.; Singh, A.K. Duration of chemotherapy prior to chemoradiation affects survival outcomes for resected stage I-II or unresected stage III pancreatic cancer. Cancer Med. 2019, 8, 4110–4123. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Rashid, A.; Gong, Y.; Katz, M.H.; Lee, J.E.; Wolf, R.; Balachandran, A.; Varadhachary, G.R.; Pisters, P.W.; Wang, H.; et al. Pathologic complete response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma is associated with a better prognosis. Ann. Diagn. Pathol. 2012, 16, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Jolissaint, J.S.; Reyngold, M.; Bassmann, J.; Seier, K.P.; Gönen, M.; Varghese, A.M.; Kenneth, H.Y.; Park, W.; O’Reilly, E.M.; Balachandran, V.P.; et al. Local Control and Survival After Induction Chemotherapy and Ablative Radiation Versus Resection for Pancreatic Ductal Adenocarcinoma with Vascular Involvement. Ann. Surg. 2021, 274, 894–901. [Google Scholar] [CrossRef]
- Reyngold, M.; O’Reilly, E.M.; Varghese, A.M.; Fiasconaro, M.; Zinovoy, M.; Romesser, P.B.; Wu, A.; Hajj, C.; Cuaron, J.J.; Tuli, R.; et al. Association of Ablative Radiation Therapy With Survival Among Patients with Inoperable Pancreatic Cancer. JAMA Oncol. 2021, 7, 735–738. [Google Scholar] [CrossRef]
- Hall, W.A.; Dawson, L.A.; Hong, T.S.; Palta, M.; Herman, J.M.; Evans, D.B.; Tsai, S.; Ferrone, C.R.; Fleming, J.B.; Chang, D.T.; et al. Value of Neoadjuvant Radiation Therapy in the Management of Pancreatic Adenocarcinoma. J. Clin. Oncol. 2021, 39, 3773. [Google Scholar] [CrossRef]
Variable | Overall (N = 314) | No NAT (N = 233) | NAT (N = 81) | p |
---|---|---|---|---|
Age | ||||
<65 year | 134 (42.7) | 93 (39.9) | 41 (50.6) | 0.09 |
≥65 year | 180 (57.3) | 140 (60.1) | 40 (49.4) | |
Biological sex | ||||
Female | 140 (44.6) | 105 (45.1) | 35 (43.2) | 0.77 |
Male | 174 (55.4) | 128 (54.9) | 46 (56.8) | |
Body Mass Index (BMI) | ||||
BMI 18–24.9 | 112 (35.8) | 83 (35.8) | 29 (35.8) | 0.49 |
BMI 25–29.9 | 107 (34.2) | 83 (35.8) | 24 (29.6) | |
BMI ≥ 30 | 94 (30) | 66 (28.5) | 28 (34.6) | |
Stage on presentation | ||||
uR-PDAC | 243 (77.4) | 233 (100) | 10 (12.4) | <0.001 * |
bR-PDAC | 71 (22.6) | 0 (0) | 71 (87.7) | |
Diabetes at diagnosis | ||||
Yes | 99 (31.5) | 74 (31.8) | 25 (30.9) | 0.88 |
No | 215 (68.5) | 159 (68.2) | 56 (69.1) | |
Neoadjuvant Treatment | ||||
Chemotherapy alone | 48 (15.3) | 0 (0) | 47 (59.3) | NA |
Chemotherapy + chemoradiotherapy | 31 (9.9) | 0 (0) | 31 (38.3) | |
Chemoradiotherapy alone | 2 (0.6) | 0 (0) | 2 (2.5) | |
None | 233 (74.2) | 233 (100) | 0 (0) | |
Operation Performed | ||||
Pylorus-preserving Whipple | 124 (39.5%) | 98 (42.0%) | 26 (32.1%) | 0.45 |
Standard Whipple | 125 (39.8%) | 86 (36.9%) | 39 (38.1%) | |
Radical anterograde modular pancreatosplenectomy (RAMPS) +/− Appleby | 45 (14.3%) | 35 (15.0%) | 10 (12.3%) | |
Distal pancreatectomy +/− splenectomy | 17 (5.4%) | 12 (5.2%) | 5 (6.2%) | |
Operative report unavailable | 3 (1.0%) | 2 (1.0%) | 1 (1.2%) | |
Resection margin | ||||
R0 | 249 (79.3) | 189 (81.1) | 60 (74.1) | 0.18 |
R1 | 65 (20.7) | 44 (18.9) | 21 (25.9) | |
Grade Differentiation | ||||
G1 | 10 (3.6) | 7 (3.1) | 3 (5.5) | 0.40 (a) |
G2 | 166 (59.5) | 137 (61.2) | 29 (52.7) | |
G3 | 101 (36.2) | 80 (35.7) | 21 (38.2) | |
G4 | 2 (0.7) | 0 (0) | 2 (3.6) | |
Pancreatectomy vascular resection | ||||
Vein | 77 (24.8) | 50 (21.6) | 27 (34.6) | <0.001 * |
Artery | 9 (2.9) | 7 (3) | 2 (2.6) | |
Both | 10 (3.2) | 2 (0.9) | 8 (10.3) | |
None | 214 (69) | 173 (74.6) | 41 (52.6) | |
Type of first recurrence | ||||
Local | 55 (17.6) | 40 (17.2) | 15 (18.8) | 0.30 |
Distant | 140 (44.7) | 103 (44.2) | 37 (46.3) | |
Regional | 12 (3.8) | 10 (4.3) | 2 (2.5) | |
No Recurrence | 125 (39.9) | 97 (41.6) | 28 (35) |
Variable | Overall (N = 314) | No NAT (N = 233) | NAT (N = 81) | p |
---|---|---|---|---|
Type of Neoadjuvant Chemotherapy | ||||
Nab-paclitaxel/gemcitabine | 32 (39.5) | NA | ||
Modified oxaliplatin, leucovorin, irinotecan and fluorouracil (mFOLFIRINOX) | 37 (45.7) | |||
Other | 12 (14.8) | |||
Receipt of Adjuvant Chemotherapy | ||||
Yes | 204 (65.2) | 160 (68.7) | 44 (55) | 0.03 * |
No | 109 (34.8) | 73 (31.3) | 36 (45) | |
Type of Adjuvant Chemotherapy | ||||
Gemcitabine | 101 (49.5) | 90 (56.3) | 11 (25) | <0.001 * |
Gemcitabine/Capecitabine | 39 (19.1) | 32 (20) | 7 (15.9) | |
Gemcitabine/Nab-paclitaxel | 25 (12.3) | 14 (8.8) | 11 (25) | |
mFOLFIRINOX | 17 (8.3) | 13 (8.1) | 4 (9.1) | |
Other | 22 (10.8) | 11 (6.9) | 11 (25) | |
Received any Chemotherapy | ||||
Yes | 216 | 143 (66.2) | 73 (98.6) | <0.001 * |
No | 74 | 73 (33.8) | 1 (1.4) | |
Completed 3+ months of Chemotherapy | ||||
Yes | 185 (63.8) | 123 (56.9) | 62 (83.8) | <0.001 * |
No | 105 (36.2) | 93 (43.1) | 12 (16.2) | |
Completed 6 months of Chemotherapy | ||||
Yes | 109 (37.6) | 75 (34.7) | 34 (45.9) | 0.13 |
No | 181 (62.4) | 141 (65.3) | 40 (54.1) | |
Adjuvant Radiotherapy | ||||
Yes | 31 (9.9) | 22 (9.4) | 9 (11.1) | 0.66 |
No | 283 (90.1) | 211 (90.6) | 72 (88.9) |
Variable | Overall (N = 314) | No NAT (N = 233) | NAT (N = 81) | p |
---|---|---|---|---|
Hospital Length of Stay | ||||
Mean (SD) | 15.1 (17.2) | 14.8 (16.4) | 18 (15.9) | 0.87 |
Range | 2–200 | 3–200 | 2–138 | |
C-D Grade 3+ Complications | ||||
Yes | 66 (21.2) | 46 (19.9) | 20 (25) | 0.34 |
No | 245 (78.8) | 185 (80.1) | 60 (75) | |
30-day Bile Leaks | ||||
Yes | 22 (7.2) | 18 (8) | 4 (5.1) | 0.39 |
No | 283 (92.8) | 208 (92) | 75 (94.9) | |
Non-pancreatic Leak | ||||
Yes | 37 (11.9) | 32 (13.9) | 5 (6.3) | 0.07 |
No | 273 (88.1) | 198 (86.1) | 75 (93.8) | |
Post-operative wound disruption | ||||
Yes | 60 (19.2) | 42 (18.1) | 18 (22.5) | 0.39 |
No | 252 (80.8) | 190 (81.9) | 62 (77.5) | |
Post-operative Sepsis | ||||
Yes | 55 (17.6) | 47 (20.3) | 8 (10) | 0.04 * |
No | 257 (82.4) | 185 (79.7) | 72 (90) | |
Post-operative Pneumonia | ||||
Yes | 18 (5.8) | 12 (5.2) | 6 (7.5) | 0.42 |
No | 294 (94.2) | 220 (94.8) | 74 (92.5) | |
Late (>30 day) leak | ||||
Yes | 15 (5) | 9 (4.1) | 6 (7.7) | 0.23 |
No | 284 (95) | 212 (95.9) | 72 (92.3) | |
30 day mortality | ||||
Yes | 11 (3.5) | 9 (3.9) | 2 (2.5) | 0.74 |
No | 299 (96.5) | 221 (96.1) | 78 (97.5) | |
30 day readmission rate | ||||
Yes | 62 (20.8) | 40 (18.2) | 22 (28.2) | 0.06 |
No | 236 (79.2) | 180 (81.8) | 56 (71.8) | |
30–90 day readmission rate | ||||
Yes | 43 (14.4) | 27 (12.3) | 16 (20.5) | 0.08 |
No | 255 (85.6) | 193 (87.7) | 62 (79.5) | |
Rate of Vascular Reconstruction | ||||
Yes | 95 (30.7) | 58 (25) | 37 (47.4) | <0.001 * |
No | 215 (69.4) | 174 (75) | 41 (52.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deig, C.R.; Sutton, T.L.; Beneville, B.; Trone, K.; Stratton, A.; Gunesch, A.N.; Liu, A.I.; Alrohaibani, A.; Mohebnasab, M.; Bassale, S.; et al. Neoadjuvant Therapy Is Associated with Improved Chemotherapy Delivery and Overall Survival Compared to Upfront Resection in Pancreatic Cancer without Increasing Perioperative Complications. Cancers 2022, 14, 609. https://doi.org/10.3390/cancers14030609
Deig CR, Sutton TL, Beneville B, Trone K, Stratton A, Gunesch AN, Liu AI, Alrohaibani A, Mohebnasab M, Bassale S, et al. Neoadjuvant Therapy Is Associated with Improved Chemotherapy Delivery and Overall Survival Compared to Upfront Resection in Pancreatic Cancer without Increasing Perioperative Complications. Cancers. 2022; 14(3):609. https://doi.org/10.3390/cancers14030609
Chicago/Turabian StyleDeig, Christopher Ryan, Thomas Lee Sutton, Blake Beneville, Kristin Trone, Amanda Stratton, Ali N. Gunesch, Amy Ivy Liu, Alaaeddin Alrohaibani, Maedeh Mohebnasab, Solange Bassale, and et al. 2022. "Neoadjuvant Therapy Is Associated with Improved Chemotherapy Delivery and Overall Survival Compared to Upfront Resection in Pancreatic Cancer without Increasing Perioperative Complications" Cancers 14, no. 3: 609. https://doi.org/10.3390/cancers14030609
APA StyleDeig, C. R., Sutton, T. L., Beneville, B., Trone, K., Stratton, A., Gunesch, A. N., Liu, A. I., Alrohaibani, A., Mohebnasab, M., Bassale, S., Grossblatt-Wait, A., Keith, D., Attia, F., Gilbert, E. W., Lopez, C. D., Kardosh, A., Chen, E. Y., Bensch, K. G., Nabavizadeh, N., ... Grossberg, A. (2022). Neoadjuvant Therapy Is Associated with Improved Chemotherapy Delivery and Overall Survival Compared to Upfront Resection in Pancreatic Cancer without Increasing Perioperative Complications. Cancers, 14(3), 609. https://doi.org/10.3390/cancers14030609