The Role of Hypofractionation in Proton Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Radiobiology
3. Clinical Results of Hypofractionation with Protons
3.1. Prostate
Reference | D | D/# | Stage | n | Age | F | Local Control | Late Toxicity ≥ Grade 2 |
---|---|---|---|---|---|---|---|---|
Johansson 2012 [8], Johansson 2019 [9] | 22 * | 5.5 | Low, intermediate, high and very high risk | 504 | 66 | 9.4 | low-risk 100% at five years Intermediate-risk 94% at five years High-risk 82% at five years Very high-risk 72% at five years | G3 GI 0% G3 GU 2% |
Kim 2013 [10], Ha 2019 [11] | 60 | 3 | Low, intermediate and high risk | 82 | 66 | 7.5 | 76% at seven years | G2 GI 15% G3 GI 4% G2 GU 12% |
54 | 3.6 | 69 | ||||||
47 | 4.7 | 71 | ||||||
35 | 7 | 67 | 46% at seven years | G2 GI 13% G2 GU 7% | ||||
35 | 7 | 70 | ||||||
Habl 2014 [13], Habl 2016 [12] | 66 | 3.3 | Low, intermediate and high risk | 46 | 69 | 1.9 | 100% at 22.3 months | -- |
Vargas 2016 [14], Vargas 2018 [15,16] | 38 | 7.6 | Low-risk | 49 | 65 | 3 | -- | G2 GI 19.6% G2 GU 30.4% |
Henderson 2017 [17] | 70 | 2.5 | Low risk | 215 | 65 | 5.3 | 98.3% at five years | G3 GU 1.7% |
72.5 | 2.5 | Intermediate risk | 92.7% at five years | G3 GI 0.5% | ||||
Khmelevsky 2018 [18] | 24 * | 3 | High and intermediate risk | 114 | 66.9 | 5.7 | 60.0% at five years | G2 GI 10.2% G2 GI 0.9% G2 GU 8.3% G3 GU 2.8% |
20 * | 4 | |||||||
16.5 * | 5.5 | |||||||
Nakajima 2018 [19] | 60–63 | 3 | Low, intermediate and high risk | 272 | 69 | 0.5 | - | - |
Grewal 2019 [20] | 70 | 2.5 | Low-to intermediate-risk | 184 | - | 4.1 | 93.5% at four years | G2 GI 13.6% G2 GU 7.6% |
Kubes 2019 [21] | 36.25 | 7.25 | Low-to intermediate-risk | 200 | 64.3 | 3 | 99% at three years for low risk 93.5% at three years for intermediate risk | G2 GI 5.5% G2 GU 4% |
Slater 2019 [22] | 60 | 3 | Low-risk | 146 | 65 | 3.5 | 99.3% at three years 97.9% at five years | G2 GI 5.1% G2 GU 9.5% G3 GU 0.7% |
Vapiwala 2021 [23] | 60–72.5 | 2.5–3 | Low-or intermediate-risk | 568 | 67 | 3.7 | - | G2 GI 11.1% G3 GI 0.4% G2 GU 15% G3 GU 1.6% |
3.2. Liver
Reference | D | D/# | Diagnosis | n | Age | F | Local Control | Late Toxicity ≥ Grade 2 |
---|---|---|---|---|---|---|---|---|
Fukumitsu 2008 [24] | 66 | 6.6 | HCC | 51 | - | 2.8 | 94.5% at three years 87.8% at five years | Rib fracture 5.8% G3 lung 2% |
Bush 2011 [25] | 63 | 4.2 | HCC | 76 | 63 (mean) | - | Median PFS three years | - |
Mizumoto 2011 [26] | 66 72.6 77 | 6.6 3.3 3.5 | HCC | 266 | 70 | - | 87% at three years 81% at five years | Rib fracture 1.1% G2 GI 1.1% G3 GI 1.1% |
Kanemoto 2013 [34] | 66 | 6.6 | HCC | 67 | 69 | 2.3 | - | Rib fracture 16.4% |
Hong 2016 [28] | 67.5 58.05 | 4.5 * 3.87 ** | HCC, ICC | 92 | 68 | 1.6 | 94.8% at two years (HCC), 94.1% at two years (ICC) | G3 blood 1% G3 GI 1% |
Kim 2017 [29] | 66 | 6.6 | HCC | 71 | 63 | 2.6 | 89.9% LPFS at three years | - |
Yeung 2018 [30] | 60 | 4 | HCC, ICC | 37 | 66 | 0.9 | - | G2 chest wall 19% G3 chest wall 11% |
Parzen 2020 [31] | 58.05 | 3.87 | HCC, ICC | 63 | 69 | 0.4 | 81.1% at two years | G3 cardiac 2% G3 GI 2% G3 investigations 2% G3 MS 2% |
Kim 2020 [32] | 70 | 7 | HCC | 45 | 63 | 2.9 | 95.2% LPFS at three years | - |
Smart 2020 [33] | 58.05 | 3.87 | ICC | 66 | 76 | 1.75 | 84% at two years | - |
3.3. Lung
Reference | D | D/# | Stage | n | F | Age | Local Control | Late Toxicity ≥ Grade 2 |
---|---|---|---|---|---|---|---|---|
Nihei 2006 [35] | 70–94 | 3.5–4.9 | 46% T1 54% T2 | 37 | 2 | 75 | 80% at two years | G3 lung 8% G2 lung 8% |
Hata 2007 [36] | 60 | 6 | T1N0M0, Stage IA, 11. T2N0M0, Stage IB, 10. | 21 | 2.1 | 74 | 2 yr T1 100% 2 yr T2 90% 95% overall | G3 0% G2-2 patients (subcutaneous induration, myositis) |
Nakayama 2010 [37] | 66 * or 72.6 ** | 3.3–6.6 | T1/T2 52%/48% | 55 | 1.5 | 77 | 97% at two years | G3 lung 3.6% G2 lung 3.6% |
Iwata 2010 [38] | 80/20 or 60/10 | 4 or 6 | 42 T1 38 T2 | 80 | 3 | 76 | three yr T1 87, T2 77 | G3 lung 1 patient (in PBT arm to 80 Gy (RBE)) G2 lung 13% G2 skin 16% G2 rib fracture 23% G2 soft tissue 6% |
Chang 2011 [39] | 87.5 | 2.5 | T1 4 T2 13 T3 1 | 18 | 1.4 | 74 | 88.9% | G3 skin 17% G2 skin 67% G2 fatigue 44% G2 lung 11% G2 esophagitis 6% G2 chest wall pain 6% |
Westover 2012 [40] | 42–50 | 10–16 | T1a 16 (80%) T1b 2 (10%) T2a 2 (10%) | 15 | 2 | 78 | 100% at two years | G2 skin 5% G2 chest wall pain 5% G2 fatigue 5% G3 lung 5% |
Bush 2013 [41] | 51–70 | 5.1–7 | T1 47 T2 64 | 111 | 4 | 73 | At four years, T1 86–91% T2 45–74% | G3 rib fracture (4 patients) No reported pneumonitis no other treatment-related adverse events of grade 2 or higher reported |
Kanemoto 2014 [27] | 66 * or 72.6 ** | 3.3 to 6.6 | Stage IA 59 (74%) Stage IB 21 (26%) | 74 | 2.6 | 75 | The three-year local control rate was 86.2% for stage IA tumors and 67.0% for stage IB tumors | G4 bone 13.8% G3 lung 1.3% G3 skin 1.3% G2 skin 2.5% G2 esophagus 1.3% |
Lee 2016 [42] | 50.0–72.0 | 6–12 | T1a/T1b/T2 19/20/16 (35%/36%/29%) | 55 | 2.4 | 75 | three-year T1 94%, T2 65% | G2 rib fracture 5.4% G2 pneumonitis 12.7% |
Ono 2017 [43] | 80 | 3.2 | Stage 1 (75%), Stage 2 (20%), Stage 3 (5%) Central lung tumours | 20 | 2.3 | 75 | 78.5% at 2 years | G2 lung 10% G2 bone 10% |
Badiyan 2019 [45] | 40–63 | 2.1–7 | Recurrent lung cancer post prior radiation therapy | 31 | 0.9 | 69 | Median local relapse-free survival was 12.9 months (95% CI, 10.4–15.4); 6-, 12-, and 18-month rates were 77.4%, 56.3%, and 30.9%, respectively for all patients | G3 fatigue (n = 1) G2 dyspnea 5% G2 pneumonitis (n = 1) |
Nakamura 2019 [44] | 66–80 | 4–6.6 | T1 21 (54%) T2 18 (46%) | 39 | 4 | 75 | 73% | G3 lung 3% G2 lung 10% G2 skin 3% |
Kharod 2020 [46] | 60 | 6 | T1-T2N0M0 NSCLC (T1, 46%; T2, 54%) | 23 | 3.2 | 74 | 90% at three years | G3 9% (including 1 patient who developed bronchial stricture) G2 34% non-hematologic |
Hoppe 2020 [47] | 60 | 2.5–4.0 | Stage II or III NSCLC; concurrent chemotherapy | 18 | - | 71 | - | G4 pneumonitis 5.6% (3.53 Gy per fraction arm) G2 pneumonitis 11.1% |
3.4. Other Sites
3.4.1. Intracranial
Reference | Cancer Type | D | D/# | Stage | n | F | Age | Local Control | Late Toxicity |
---|---|---|---|---|---|---|---|---|---|
Vernimmen 2001 [48] | Skull base meningioma | 20.3 | 6.77 | - | 18 | 40 months (clinical) 31 months (radiological) | 55 | 88% at five years | 11% (n = 2) transient cranial nerve neuropathy |
Vernimmen 2009 [49] | Acoustic Neuroma | 26 | 8.67 | - | 51 | 10 years | 50 | 96% at five years | 8.3% (n = 4) VIIth nerve neuropathy 8.3% (n = 4) Vth nerve neuropathy low grade |
Kim 2014 [52] | Chordoma | 64.8–79.2 | 2.4 | - | 20 | 43 months | 53 | - | n = 1 grade 3 rectal bleeding for sacral chordoma patient |
Ryttlefors 2016 [50] | Skull base meningioma | 24 | 6 | WHO grade I | 19 | 11.6 years (MR) | 52 | 89% at median 11.6 years | 5.3% (n = 1) brainstem oedema |
Vlachogiannis 2017 [53] | Meningioma | 14–46 | 5,6 | WHO grade I | 170 | 84 months | 54 | 93% at five years and 85% at 10 years progression free survival | 7.4% (n = 6) pituitary insufficiency in patients with significant dose to pituitary 2.9% (n = 5) signs of radiation necrosis 4.4% (n = 5) visual impairment in patients with significant dose to optical structures |
3.4.2. Breast
Reference | Cancer Type | D | D/# | Stage | n | F | Age | Local Control | Late Toxicity |
---|---|---|---|---|---|---|---|---|---|
Kim 2013 [55] | Breast | Whole breast = 39 Tumor bed boost = 9 | 3 | Early stage | 276 | 57 months | 53 | 97.4% disease free survival | No patient with Grade II or greater toxicity at 2 years or after |
Smith 2019 [56] | Breast | 40.5 | 15 | Stage I–Stage III. Post mastectomy | 51 (conventional and hypofractionation) | 16 months | - | - | Hypofractionation significantly associated with reconstruction failure |
Mutter 2020 [57] | Breast | 40 | 2.67 | Stage II–III | 51 (conventional and hypofractionation) | 24 months | 38–65 (range) | - | - |
3.4.3. Miscellaneous
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schippers, J.M.; Lomax, A.; Garonna, A.; Parodi, K. Can Technological Improvements Reduce the Cost of Proton Radiation Therapy? Semin. Radiat. Oncol. 2018, 28, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, L.M.; White, K.; Mohan, S.; Beale, B. Accessing Metropolitan Cancer Care Services: Practical Needs of Rural Families. J. Psychosoc. Oncol. 2006, 24, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Laine, A.M.; Pompos, A.; Timmerman, R.; Jiang, S.; Story, M.D.; Pistenmaa, D.; Choy, H. The Role of Hypofractionated Radiation Therapy with Photons, Protons, and Heavy Ions for Treating Extracranial Lesions. Front. Oncol. 2016, 5, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahum, A.E. The Radiobiology of Hypofractionation. Clin. Oncol. 2015, 27, 260–269. [Google Scholar] [CrossRef]
- Paganetti, H.; Blakely, E.; Carabe-Fernandez, A.; Carlson, D.J.; Das, I.J.; Dong, L.; Grosshans, D.; Held, K.D.; Mohan, R.; Moiseenko, V.; et al. Report of the AAPM TG-256 on the Relative Biological Effectiveness of Proton Beams in Radiation Therapy. Med. Phys. 2019, 46, e53–e78. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, T. Proton RBE Dependence on Dose in the Setting of Hypofractionation. Br. J. Radiol. 2020, 93, 20190291. [Google Scholar] [CrossRef]
- Paganetti, H. Relative Biological Effectiveness (RBE) Values for Proton Beam Therapy. Variations as a Function of Biological Endpoint, Dose, and Linear Energy Transfer. Phys. Med. Biol. 2014, 59, R419–R472. [Google Scholar] [CrossRef]
- Johansson, S.; Åström, L.; Sandin, F.; Isacsson, U.; Montelius, A.; Turesson, I. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer. Prostate Cancer 2012, 2012, 654861. [Google Scholar] [CrossRef] [Green Version]
- Johansson, S.; Isacsson, U.; Sandin, F.; Turesson, I. High Efficacy of Hypofractionated Proton Therapy with 4 Fractions of 5 Gy as a Boost to 50 Gy Photon Therapy for Localized Prostate Cancer. Radiother. Oncol. 2019, 141, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Cho, K.H.; Pyo, H.R.; Lee, K.H.; Moon, S.H.; Kim, T.H.; Shin, K.H.; Kim, J.-Y.; Lee, S.B.; Nam, B.H. A Phase II Study of Hypofractionated Proton Therapy for Prostate Cancer. Acta Oncol. 2013, 52, 477–485. [Google Scholar] [CrossRef]
- Ha, B.; Cho, K.H.; Lee, K.H.; Joung, J.Y.; Kim, Y.-J.; Lee, S.U.; Kim, H.; Suh, Y.-G.; Moon, S.H.; Lim, Y.K.; et al. Long-Term Results of a Phase II Study of Hypofractionated Proton Therapy for Prostate Cancer: Moderate versus Extreme Hypofractionation. Radiat. Oncol. 2019, 14, 4. [Google Scholar] [CrossRef]
- Habl, G.; Uhl, M.; Katayama, S.; Kessel, K.A.; Hatiboglu, G.; Hadaschik, B.; Edler, L.; Tichy, D.; Ellerbrock, M.; Haberer, T.; et al. Acute Toxicity and Quality of Life in Patients with Prostate Cancer Treated with Protons or Carbon Ions in a Prospective Randomized Phase II Study—The IPI Trial. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Habl, G.; Hatiboglu, G.; Edler, L.; Uhl, M.; Krause, S.; Roethke, M.; Schlemmer, H.P.; Hadaschik, B.; Debus, J.; Herfarth, K. Ion Prostate Irradiation (IPI)—A Pilot Study to Establish the Safety and Feasibility of Primary Hypofractionated Irradiation of the Prostate with Protons and Carbon Ions in a Raster Scan Technique. BMC Cancer 2014, 14, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, C.E.; Hartsell, W.F.; Dunn, M.; Keole, S.R.; Doh, L.; Chang, J.; Larson, G.L. Image-Guided Hypofractionated Proton Beam Therapy for Low-Risk Prostate Cancer: Analysis of Quality of Life and Toxicity, PCG GU 002. Rep. Pract. Oncol. Radiother. 2016, 21, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, C.E.; Hartsell, W.F.; Dunn, M.; Keole, S.R.; Doh, L.; Eisenbeisz, E.; Larson, G.L. Hypofractionated versus Standard Fractionated Proton-Beam Therapy for Low-Risk Prostate Cancer: Interim Results of a Randomized Trial PCG GU 002. Am. J. Clin. Oncol. 2018, 41, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.E.; Schmidt, M.Q.; Niska, J.R.; Hartsell, W.F.; Keole, S.R.; Doh, L.; Chang, J.H.-C.; Sinesi, C.; Rodriquez, R.; Pankuch, M.; et al. Initial Toxicity, Quality-of-Life Outcomes, and Dosimetric Impact in a Randomized Phase 3 Trial of Hypofractionated versus Standard Fractionated Proton Therapy for Low-Risk Prostate Cancer. Adv. Radiat. Oncol. 2018, 3, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, R.H.; Bryant, C.; Hoppe, B.S.; Nichols, R.C.; Mendenhall, W.M.; Flampouri, S.; Su, Z.; Li, Z.; Morris, C.G.; Mendenhall, N.P. Five-Year Outcomes from a Prospective Trial of Image-Guided Accelerated Hypofractionated Proton Therapy for Prostate Cancer. Acta Oncol. 2017, 56, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Khmelevsky, E.v.; Kancheli, I.N.; Khoroshkov, V.S.; Kaprin, A.D. Morbidity Dynamics in Proton–Photon or Photon Radiation Therapy for Locally Advanced Prostate Cancer. Rep. Pract. Oncol. Radiother. 2018, 23, 21–27. [Google Scholar] [CrossRef]
- Nakajima, K.; Iwata, H.; Ogino, H.; Hattori, Y.; Hashimoto, S.; Nakanishi, M.; Toshito, T.; Umemoto, Y.; Iwatsuki, S.; Shibamoto, Y.; et al. Acute Toxicity of Image-Guided Hypofractionated Proton Therapy for Localized Prostate Cancer. Int. J. Clin. Oncol. 2018, 23, 353–360. [Google Scholar] [CrossRef]
- Grewal, A.S.; Schonewolf, C.; Min, E.J.; Chao, H.-H.; Both, S.; Lam, S.; Mazzoni, S.; Bekelman, J.; Christodouleas, J.; Vapiwala, N. Four-Year Outcomes from a Prospective Phase II Clinical Trial of Moderately Hypofractionated Proton Therapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 713–722. [Google Scholar] [CrossRef]
- Kubeš, J.; Vondráček, V.; Andrlik, M.; Navrátil, M.; Sláviková, S.; Vítek, P.; Rosina, J.; Abrahámová, J.; Prausová, J.; Grebenyuk, A.; et al. Extreme Hypofractionated Proton Radiotherapy for Prostate Cancer Using Pencil Beam Scanning: Dosimetry, Acute Toxicity and Preliminary Results. J. Med. Imaging Radiat. Oncol. 2019, 63, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.M.; Slater, J.D.; Kang, J.I.; Namihas, I.C.; Jabola, B.R.; Brown, K.; Grove, R.; Watt, C.; Bush, D.A. Hypofractionated Proton Therapy in Early Prostate Cancer: Results of a Phase I/II Trial at Loma Linda University. Int. J. Part. Ther. 2019, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vapiwala, N.; Wong, J.K.; Handorf, E.; Paly, J.; Grewal, A.; Tendulkar, R.; Godfrey, D.; Carpenter, D.; Mendenhall, N.P.; Henderson, R.H.; et al. A Pooled Toxicity Analysis of Moderately Hypofractionated Proton Beam Therapy and Intensity Modulated Radiation Therapy in Early-Stage Prostate Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Fukumitsu, N.; Sugahara, S.; Nakayama, H.; Fukuda, K.; Mizumoto, M.; Abei, M.; Shoda, J.; Thono, E.; Tsuboi, K.; Tokuuye, K. A Prospective Study of Hypofractionated Proton Beam Therapy for Patients with Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 831–836. [Google Scholar] [CrossRef]
- Bush, D.A.; Kayali, Z.; Grove, R.; Slater, J.D. The Safety and Efficacy of High-Dose Proton Beam Radiotherapy for Hepatocellular Carcinoma: A Phase 2 Prospective Trial. Cancer 2011, 117, 3053–3059. [Google Scholar] [CrossRef]
- Mizumoto, M.; Okumura, T.; Hashimoto, T.; Fukuda, K.; Oshiro, Y.; Fukumitsu, N.; Abei, M.; Kawaguchi, A.; Hayashi, Y.; Ookawa, A.; et al. Proton Beam Therapy for Hepatocellular Carcinoma: A Comparison of Three Treatment Protocols. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1039–1045. [Google Scholar] [CrossRef]
- Kanemoto, A.; Okumura, T.; Ishikawa, H.; Mizumoto, M.; Oshiro, Y.; Kurishima, K.; Homma, S.; Hashimoto, T.; Ohkawa, A.; Numajiri, H.; et al. Outcomes and Prognostic Factors for Recurrence after High-Dose Proton Beam Therapy for Centrally and Peripherally Located Stage I Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2014, 15, e7–e12. [Google Scholar] [CrossRef]
- Hong, T.S.; Wo, J.Y.; Yeap, B.Y.; Ben-Josef, E.; McDonnell, E.I.; Blaszkowsky, L.S.; Kwak, E.L.; Allen, J.N.; Clark, J.W.; Goyal, L.; et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients with Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J. Clin. Oncol. 2015, 34, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Park, J.-W.; Kim, B.H.; Kim, D.Y.; Moon, S.H.; Kim, S.S.; Lee, J.H.; Woo, S.M.; Koh, Y.-H.; Lee, W.J.; et al. Optimal Time of Tumour Response Evaluation and Effectiveness of Hypofractionated Proton Beam Therapy for Inoperable or Recurrent Hepatocellular Carcinoma. Oncotarget 2018, 9, 4034. [Google Scholar] [CrossRef] [Green Version]
- Yeung, R.; Bowen, S.R.; Chapman, T.R.; MacLennan, G.T.; Apisarnthanarax, S. Chest Wall Toxicity after Hypofractionated Proton Beam Therapy for Liver Malignancies. Pract. Radiat. Oncol. 2018, 8, 287–293. [Google Scholar] [CrossRef]
- Parzen, J.S.; Hartsell, W.; Chang, J.; Apisarnthanarax, S.; Molitoris, J.; Durci, M.; Tsai, H.; Urbanic, J.; Ashman, J.; Vargas, C.; et al. Hypofractionated Proton Beam Radiotherapy in Patients with Unresectable Liver Tumors: Multi-Institutional Prospective Results from the Proton Collaborative Group. Radiat. Oncol. 2020, 15, 255. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Park, J.-W.; Kim, B.H.; Oh, E.S.; Youn, S.H.; Moon, S.H.; Kim, S.S.; Woo, S.M.; Koh, Y.-H.; Lee, W.J.; et al. Phase II Study of Hypofractionated Proton Beam Therapy for Hepatocellular Carcinoma. Front. Oncol. 2020, 10, 542. [Google Scholar] [CrossRef]
- Smart, A.C.; Goyal, L.; Horick, N.; Petkovska, N.; Zhu, A.X.; Ferrone, C.R.; Tanabe, K.K.; Allen, J.N.; Drapek, L.C.; Qadan, M.; et al. Hypofractionated Radiation Therapy for Unresectable/Locally Recurrent Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2020, 27, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Kanemoto, A.; Mizumoto, M.; Okumura, T.; Takahashi, H.; Hashimoto, T.; Oshiro, Y.; Fukumitsu, N.; Moritake, T.; Tsuboi, K.; Sakae, T.; et al. Dose-Volume Histogram Analysis for Risk Factors of Radiation-Induced Rib Fracture after Hypofractionated Proton Beam Therapy for Hepatocellular Carcinoma. Acta Oncol. 2013, 52, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Nihei, K.; Ogino, T.; Ishikura, S.; Nishimura, H. High-Dose Proton Beam Therapy for Stage I Non-Small-Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Hata, M.; Tokuuye, K.; Kagei, K.; Sugahara, S.; Nakayama, H.; Fukumitsu, N.; Hashimoto, T.; Mizumoto, M.; Ohara, K.; Akine, Y. Hypofractionated High-Dose Proton Beam Therapy for Stage I Non-Small-Cell Lung Cancer: Preliminary Results of a Phase I/II Clinical Study. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Sugahara, S.; Tokita, M.; Satoh, H.; Tsuboi, K.; Ishikawa, S.; Tokuuye, K. Proton Beam Therapy for Patients with Medically Inoperable Stage I Non-Small-Cell Lung Cancer at the University of Tsukuba. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 467–471. [Google Scholar] [CrossRef]
- Iwata, H.; Murakami, M.; Demizu, Y.; Miyawaki, D.; Terashima, K.; Niwa, Y.; Mima, M.; Akagi, T.; Hishikawa, Y.; Shibamoto, Y. High-Dose Proton Therapy and Carbon-Ion Therapy for Stage I Nonsmall Cell Lung Cancer. Cancer 2010, 116, 2476–2485. [Google Scholar] [CrossRef]
- Chang, J.Y.; Komaki, R.; Wen, H.Y.; de Gracia, B.; Bluett, J.B.; McAleer, M.F.; Swisher, S.G.; Gillin, M.; Mohan, R.; Cox, J.D. Toxicity and Patterns of Failure of Adaptive/Ablative Proton Therapy for Early-Stage, Medically Inoperable Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1350–1357. [Google Scholar] [CrossRef] [Green Version]
- Westover, K.D.; Seco, J.; Adams, J.A.; Lanuti, M.; Choi, N.C.; Engelsman, M.; Willers, H. Proton SBRT for Medically Inoperable Stage I NSCLC. J. Thorac. Oncol. 2012, 7, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Bush, D.A.; Cheek, G.; Zaheer, S.; Wallen, J.; Mirshahidi, H.; Katerelos, A.; Grove, R.; Slater, J.D. High-Dose Hypofractionated Proton Beam Radiation Therapy Is Safe and Effective for Central and Peripheral Early-Stage Non-Small Cell Lung Cancer: Results of a 12-Year Experience at Loma Linda University Medical Center. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.U.; Moon, S.H.; Cho, K.H.; Pyo, H.R.; Kim, J.Y.; Kim, D.Y.; Kim, T.H.; Suh, Y.-G.; Kim, Y.-J. Ablative Dose Proton Beam Therapy for Stage I and Recurrent Non-Small Cell Lung Carcinomas. Strahlenther. Onkol. 2016, 192, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Ono, T.; Yabuuchi, T.; Nakamura, T.; Kimura, K.; Azami, Y.; Hirose, K.; Suzuki, M.; Wada, H.; Kikuchi, Y.; Nemoto, K. High Dose Hypofractionated Proton Beam Therapy Is a Safe and Feasible Treatment for Central Lung Cancer. Radiol. Oncol. 2017, 51, 324–330. [Google Scholar] [CrossRef]
- Nakamura, N.; Hotta, K.; Zenda, S.; Baba, H.; Kito, S.; Akita, T.; Motegi, A.; Hojo, H.; Nakamura, M.; Parshuram, R.V.; et al. Hypofractionated Proton Beam Therapy for Centrally Located Lung Cancer. J. Med. Imaging Radiat. Oncol. 2019, 63, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Badiyan, S.N.; Rutenberg, M.S.; Hoppe, B.S.; Mohindra, P.; Larson, G.; Hartsell, W.F.; Tsai, H.; Zeng, J.; Rengan, R.; Glass, E.; et al. Clinical Outcomes of Patients with Recurrent Lung Cancer Reirradiated with Proton Therapy on the Proton Collaborative Group and University of Florida Proton Therapy Institute Prospective Registry Studies. Pract. Radiat. Oncol. 2019, 9, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Kharod, S.M.; Nichols, R.C.; Henderson, R.H.; Morris, C.G.; Pham, D.C.; Seeram, V.K.; Jones, L.M.; Antonio-Miranda, M.; Huh, S.; Li, Z.; et al. Image-Guided Hypofractionated Double-Scattering Proton Therapy in the Management of Centrally-Located Early-Stage Non-Small Cell Lung Cancer. Acta Oncol. 2020, 59, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.S.; Nichols, R.C.; Flampouri, S.; Li, Z.; Morris, C.G.; Pham, D.C.; Mohindra, P.; Hartsell, W.; Mohammed, N.; Chon, B.H.; et al. Hypofractionated Proton Therapy with Concurrent Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Phase 1 Trial from the University of Florida and Proton Collaborative Group. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 455–461. [Google Scholar] [CrossRef]
- Vernimmen, F.J.; Harris, J.K.; Wilson, J.A.; Melvill, R.; Smit, B.J.; Slabbert, J.P. Stereotactic Proton Beam Therapy of Skull Base Meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 99–105. [Google Scholar] [CrossRef]
- Vernimmen, F.J.A.I.; Mohamed, Z.; Slabbert, J.P.; Wilson, J. Long-Term Results of Stereotactic Proton Beam Radiotherapy for Acoustic Neuromas. Radiother. Oncol. 2009, 90, 208–212. [Google Scholar] [CrossRef]
- Ryttlefors, M.; Danfors, T.; Latini, F.; Montelius, A.; Blomquist, E.; Gudjonsson, O. Long-Term Evaluation of the Effect of Hypofractionated High-Energy Proton Treatment of Benign Meningiomas by Means of 11C-l-Methionine Positron Emission Tomography. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1432–1443. [Google Scholar] [CrossRef]
- Slater, J.D.; Loredo, L.N.; Chung, A.; Bush, D.A.; Patyal, B.; Johnson, W.D.; Hsu, F.P.K.; Slater, J.M. Fractionated Proton Radiotherapy for Benign Cavernous Sinus Meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e633–e637. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Cho, K.H.; Lim, Y.K.; Park, J.; Kim, J.Y.; Shin, K.H.; Kim, T.H.; Moon, S.H.; Lee, S.H.; Yoo, H. The Volumetric Change and Dose-Response Relationship Following Hypofractionated Proton Therapy for Chordomas. Acta Oncol. 2014, 53, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Vlachogiannis, P.; Gudjonsson, O.; Montelius, A.; Grusell, E.; Isacsson, U.; Nilsson, K.; Blomquist, E. Hypofractionated High-Energy Proton-Beam Irradiation Is an Alternative Treatment for WHO Grade I Meningiomas. Acta Neurochir. 2017, 159, 2391–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Xiao, Z.; Zhang, Y.; Kwong, T.; Danish, S.F.; Weiner, J.; Wang, X.; Yue, N.; Dai, Z.; Kuang, Y.; et al. Dosimetric Comparisons of Different Hypofractionated Stereotactic Radiotherapy Techniques in Treating Intracranial Tumors > 3 cm in Longest Diameter. J. Neurosurg. 2020, 132, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Jung, S.Y.; Lee, S.; Kang, H.S.; Lee, E.S.; Park, I.H.; Lee, K.S.; Ro, J.; Lee, N.K.; Shin, K.H. Phase 2 Trial of Accelerated, Hypofractionated Whole-Breast Irradiation of 39 Gy in 13 Fractions Followed by a Tumor Bed Boost Sequentially Delivering 9 Gy in 3 Fractions in Early-Stage Breast Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 1037–1042. [Google Scholar] [CrossRef]
- Smith, N.L.; Jethwa, K.R.; Viehman, J.K.; Harmsen, W.S.; Gonuguntla, K.; Elswick, S.M.; Grauberger, J.N.; Amundson, A.C.; Whitaker, T.J.; Remmes, N.B.; et al. Post-Mastectomy Intensity Modulated Proton Therapy after Immediate Breast Reconstruction: Initial Report of Reconstruction Outcomes and Predictors of Complications. Radiother. Oncol. 2019, 140, 76–83. [Google Scholar] [CrossRef]
- Mutter, R.W.; Jethwa, K.R.; Wan Chan Tseung, H.S.; Wick, S.M.; Kahila, M.M.H.; Viehman, J.K.; Shumway, D.A.; Corbin, K.S.; Park, S.S.; Remmes, N.B.; et al. Incorporation of Biologic Response Variance Modeling into the Clinic: Limiting Risk of Brachial Plexopathy and Other Late Effects of Breast Cancer Proton Beam Therapy. Pract. Radiat. Oncol. 2020, 10, e71–e81. [Google Scholar] [CrossRef] [Green Version]
- Gutiontov, S.I.; Zumsteg, Z.S.; Lok, B.H.; Berry, S.; Tsai, C.J.; McBride, S.M.; Riaz, N.; Cahlon, O.; Lee, N.Y. Proton Radiation Therapy for Local Control in a Case of Osteosarcoma of the Neck. Int. J. Part. Ther. 2016, 3, 421–428. [Google Scholar] [CrossRef]
- Iizumi, T.; Shimizu, S.; Numajiri, H.; Takei, H.; Yamada, N.; Mizumoto, M.; Ishikawa, H.; Okumura, T.; Sakurai, H. Large Malignant Fibrous Histiocytoma Treated with Hypofractionated Proton Beam Therapy and Local Hyperthermia. Int. J. Part. Ther. 2019, 6, 35–41. [Google Scholar] [CrossRef]
- Yamagata, K.; Ishikawa, H.; Saito, T.; Bukawa, H. Proton Beam Therapy for Ameloblastic Carcinoma of the Maxilla: Report of a Rare Case. J. Oral Maxillofac. Surg. 2019, 77, 227.e1–227.e5. [Google Scholar] [CrossRef] [Green Version]
- Seidensaal, K.; Kieser, M.; Hommertgen, A.; Jaekel, C.; Harrabi, S.B.; Herfarth, K.; Mechtesheimer, G.; Lehner, B.; Schneider, M.; Nienhueser, H.; et al. Neoadjuvant Irradiation of Retroperitoneal Soft Tissue Sarcoma with Ions (Retro-Ion): Study Protocol for a Randomized Phase II Pilot Trial. Trials 2021, 22, 134. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Ahn, Y.C.; Yang, K.; Oh, D.; Noh, J.M. Re-Irradiation with Moderate Hypo-Fractionation Using Intensity Modulated Photon or Proton Radiation Therapy in Locally Recurrent Squamous Cell Carcinoma of Nasopharynx. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 54, 96. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.J.; Wijetunga, N.A.; Yamada, J.; Wolden, S.; Mehallow, M.; Goldman, D.A.; Zhang, Z.; Young, R.J.; Kris, M.G.; Yu, H.A.; et al. Clinical Trial of Proton Craniospinal Irradiation for Leptomeningeal Metastases. Neuro Oncol. 2021, 23, 134–143. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.; Penfold, S.; Gorayski, P.; Le, H. The Role of Hypofractionation in Proton Therapy. Cancers 2022, 14, 2271. https://doi.org/10.3390/cancers14092271
Santos A, Penfold S, Gorayski P, Le H. The Role of Hypofractionation in Proton Therapy. Cancers. 2022; 14(9):2271. https://doi.org/10.3390/cancers14092271
Chicago/Turabian StyleSantos, Alexandre, Scott Penfold, Peter Gorayski, and Hien Le. 2022. "The Role of Hypofractionation in Proton Therapy" Cancers 14, no. 9: 2271. https://doi.org/10.3390/cancers14092271
APA StyleSantos, A., Penfold, S., Gorayski, P., & Le, H. (2022). The Role of Hypofractionation in Proton Therapy. Cancers, 14(9), 2271. https://doi.org/10.3390/cancers14092271