Sinonasal Side Effects of Chemotherapy and/or Radiation Therapy for Head and Neck Cancer: A Literature Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Literature Review
3.2. Sinonasal Mucosa Disorders
3.3. Olfactory Dysfunction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Fedewa, S.; Chen, A.Y. Epidemiology and Demographics of the Head and Neck Cancer Population. Oral Maxillofac. Surg. Clin. N. Am. 2018, 30, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Albano, C.; Gugliesi, F.; Pasquero, S.; Pacheco, S.F.C.; Pecorari, G.; Landolfo, S.; Biolatti, M.; Dell’Oste, V. HPV Meets APOBEC: New Players in Head and Neck Cancer. Int. J. Mol. Sci. 2021, 22, 1402. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Anzai, Y.; Brizel, D.M.; Bruce, J.Y.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 873–898. [Google Scholar] [CrossRef] [PubMed]
- Strojan, P.; Grošelj, A.; Serša, G.; Plaschke, C.C.; Vermorken, J.B.; Nuyts, S.; de Bree, R.; Eisbruch, A.; Mendenhall, W.M.; Smee, R.; et al. Electrochemotherapy in Mucosal Cancer of the Head and Neck: A Systematic Review. Cancers 2021, 13, 1254. [Google Scholar] [CrossRef]
- Riva, G.; Salonia, L.; Fassone, E.; Sapino, S.; Piano, F.; Pecorari, G. Quality of Life in Electrochemotherapy for Cutaneous and Mucosal Head and Neck Tumors. J. Clin. Med. 2021, 10, 4366. [Google Scholar] [CrossRef]
- Alterio, D.; Marvaso, G.; Ferrari, A.; Volpe, S.; Orecchia, R.; Jereczek-Fossa, B.A. Modern radiotherapy for head and neck cancer. Semin. Oncol. 2019, 46, 233–245. [Google Scholar] [CrossRef]
- Wang, X.; Eisbruch, A. IMRT for head and neck cancer: Reducing xerostomia and dysphagia. J. Radiat. Res. 2016, 57, i69–i75. [Google Scholar] [CrossRef] [Green Version]
- Franco, P.; Potenza, I.; Schena, M.; Riva, G.; Pecorari, G.; Demo, P.G.; Fasolis, M.; Moretto, F.; Garzaro, M.; Di Muzio, J.; et al. Induction chemotherapy and sequential concomitant chemo-radiation in locally advanced head and neck cancers: How induction-phase intensity and treatment breaks may impact on clinical outcomes. Anticancer Res. 2015, 35, 6247–6254. [Google Scholar]
- Álvarez-Camacho, M.; Gonella, S.; Campbell, S.; Scrimger, R.A.; Wismer, W.V. A systematic review of smell alterations after radiotherapy for head and neck cancer. Cancer Treat. Rev. 2017, 54, 110–121. [Google Scholar] [CrossRef]
- Deshpande, T.S.; Blanchard, P.; Wang, L.; Foote, R.L.; Zhang, X.; Frank, S.J. Radiation-Related Alterations of Taste Function in Patients With Head and Neck Cancer: A Systematic Review. Curr. Treat. Options Oncol. 2018, 19, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drareni, K.; Dougkas, A.; Giboreau, A.; Laville, M.; Souquet, P.J.; Bensafi, M. Relationship between food behavior and taste and smell alterations in cancer patients undergoing chemotherapy: A structured review. Semin. Oncol. 2019, 46, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. Early side effects of radiation treatment for head and neck cancer. Cancer Radiother. 2021, 25, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Cho, J.G.; Woo, J.S. Chronic sinusitis in head and neck cancer patients who received radiotherapy or chemoradiotherapy. Eur. Arch. Otorhinolaryngol. 2018, 275, 2805–2811. [Google Scholar] [CrossRef]
- Riva, G.; Franco, P.; Provenzano, E.; Arcadipane, F.; Bartoli, C.; Lava, P.; Ricardi, U.; Pecorari, G. Radiation-Induced Rhinitis: Cytological and Olfactory Changes. Am. J. Rhinol. Allergy 2019, 33, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Liang, K.L.; Twu, C.W.; Lin, J.C.; Jiang, R.S. Olfactory change after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int. Forum Allergy Rhinol. 2015, 5, 1059–1062. [Google Scholar] [CrossRef]
- Stringer, S.P.; Stiles, W.; Slattery, W.H.; Krumerman, J.; Parsons, J.T.; Mendenhall, W.M.; Cassisi, N.J. Nasal mucociliary clearance after radiation therapy. Laryngoscope 1995, 105, 380–382. [Google Scholar] [CrossRef]
- Chen, W.P.; Lou, P.J.; Tai, C.C. Delayed irradiation effects on nasal epithelium in patients with nasopharyngeal carcinoma. An ultrastructural study. Ann. Otol. Rhinol. Laryngol. 1999, 108, 474–480. [Google Scholar] [CrossRef]
- Kamel, R.; Al-Badawy, S.; Khairy, A.; Kandil, T.; Sabry, A. Nasal and paranasal sinus changes after radiotherapy for nasopharyngeal carcinoma. Acta Otolaryngol. 2004, 124, 532–535. [Google Scholar] [CrossRef]
- Gupta, S.; Chandra, S.; Singh, M. Effects of irradiation on nasal mucociliary clearance in head and neck cancer patients. Indian J. Otolaryngol. Head Neck Surg. 2006, 58, 46–50. [Google Scholar] [CrossRef]
- Hsin, C.H.; Tsao, C.H.; Su, M.C.; Chou, M.C.; Liu, C.M. Bacteriology of acute rhinosinusitis in nasopharyngeal carcinoma survivors: A result of maxillary sinus punctures. Eur. Arch. Otorhinolaryngol. 2007, 264, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Huang, S.F.; Lee, T.J.; Ng, S.H.; Chang, J.T.C. Postirradiation sinus mucosa disease in nasopharyngeal carcinoma patients. Laryngoscope 2007, 117, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.H.; Tan, C.T.; Lin, K.N.; Cheng, Y.J.; Huang, H.M. Effect of endoscopic sinus surgery on irradiation-induced rhinosinusitis in patients with nasopharyngeal carcinoma. Otolaryngol. Head Neck Surg. 2008, 139, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.L.; Kao, T.C.; Lin, J.C.; Tseng, H.C.; Su, M.C.; Hsin, C.H.; Shiao, J.Y.; Jiang, R.S. Nasal irrigation reduces postirradiation rhinosinusitis in patients with nasopharyngeal carcinoma. Am. J. Rhinol. 2008, 22, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.Y.; Tang, A.Z. Bacteriology of postradiotherapy chronic rhinosinusitis in nasopharyngeal carcinoma patients and chronic rhinosinusitis. Eur. Arch. Otorhinolaryngol. 2009, 266, 1403–1407. [Google Scholar] [CrossRef]
- Lee, C.C.; Ho, C.Y. Post-treatment late complications of nasopharyngeal carcinoma. Eur. Arch. Otorhinolaryngol. 2012, 269, 2401–2409. [Google Scholar] [CrossRef]
- Liu, X.; Liang, F.Y.; Han, P.; Zou, H.; Chen, Q.J.; Jiang, X.Y.; Li, R.C.; Huang, X.M. Management of radiation-induced early nasal adhesion after radiotherapy for nasopharyngeal carcinoma. Am. J. Rhinol. Allergy 2013, 27, 3915. [Google Scholar] [CrossRef]
- Su, Y.; Liu, L.P.; Li, L.; Li, X.; Cao, X.J.; Dong, W.; Yang, X.H.; Xu, J.; Yu, S.; Hao, J.F. Factors influencing the incidence of sinusitis in nasopharyngeal carcinoma patients after intensity-modulated radiation therapy. Eur. Arch. Otorhinolaryngol. 2014, 271, 3195–3201. [Google Scholar] [CrossRef]
- Kılıç, C.; Tunçel, Ü.; Cömert, E.; Kaya, B.V. The effect of radiotherapy on mucociliary clearance in patients with laryngeal and nasopharyngeal cancer. Eur. Arch. Otorhinolaryngol. 2015, 272, 1517–1520. [Google Scholar] [CrossRef]
- Luo, H.H.; Fu, Z.C.; Cheng, H.H.; Liao, S.G.; Li, D.S.; Cheng, L.P. Clinical observation and quality of life in terms of nasal sinusitis after radiotherapy for nasopharyngeal carcinoma: Long-term results from different nasal irrigation techniques. Br. J. Radiol. 2014, 87, 20140043. [Google Scholar] [CrossRef] [Green Version]
- Alon, E.E.; Lipschitz, N.; Bedrin, L.; Gluck, I.; Talmi, Y.; Wolf, M.; Yakirevitch, A. Delayed Sino-nasal Complications of Radiotherapy for Nasopharyngeal Carcinoma. Otolaryngol. Head. Neck Surg. 2014, 151, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Hsin, C.H.; Tseng, H.C.; Lin, H.P.; Chen, T.H. Post-irradiation otitis media, rhinosinusitis, and their interrelationship in nasopharyngeal carcinoma patients treated by IMRT. Eur. Arch. Otorhinolaryngol. 2016, 273, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Boita, M.; Ravera, M.; Moretto, F.; Badellino, S.; Rampino, M.; Ricardi, U.; Pecorari, G.; Garzaro, M. Nasal cytological changes as late effects of radiotherapy for nasopharyngeal cancer. Am. J. Rhinol. Allergy 2015, 29, e41–e45. [Google Scholar] [CrossRef]
- Hsin, C.H.; Tseng, H.C.; Lin, H.P.; Chen, T.H. Sinus mucosa status in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy: A 5-year follow-up. Head Neck 2016, 38, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Fan, Y.; Liang, Z.; Yang, G.; Liao, Z.; Guo, L. Effect of intranasal steroids on rhinosinusitis after radiotherapy for nasopharyngeal carcinoma: Clinical study. J. Laryngol. Otol. 2016, 130, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Boita, M.; Corvino, A.; Sensini, M.; Peruzzetto, D.; Chiusa, L.; Pecorari, G.; Garzaro, M. Nasal and Tracheal Cytological Changes After Total Laryngectomy in Long-Term Survivors. Ann. Otol. Rhinol. Laryngol. 2017, 126, 124–131. [Google Scholar] [CrossRef]
- Kuhar, H.N.; Tajudeen, B.A.; Heilingoetter, A.; Mahdavinia, M.; Gattuso, P.; Ghai, R.; Gunawan, F.; Diaz, A.Z.; Tolekidis, G.; Batra, P.S. Distinct histopathologic features of radiation-induced chronic sinusitis. Int. Forum Allergy Rhinol. 2017, 7, 990–998. [Google Scholar] [CrossRef]
- Shemesh, R.; Alon, E.E.; Gluck, I.; Yakirevitch, A. Endoscopic Surgery for Delayed Sinonasal Complications of Radiation Therapy for Nasopharyngeal Carcinoma: A Subjective Outcome. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 1222–1227. [Google Scholar] [CrossRef]
- Hamilton, S.N.; Arshad, O.; Kwok, J.; Tran, E.; Fuchsia Howard, A.; Serrano, I.; Goddard, K. Documentation and incidence of late effects and screening recommendations for adolescent and young adult head and neck cancer survivors treated with radiotherapy. Support. Care Cancer 2019, 27, 2609–2616. [Google Scholar] [CrossRef]
- Stoddard, T.J.; Varadarajan, V.V.; Dziegielewski, P.T.; Boyce, B.J.; Justice, J.M. Detection of Microbiota in Post Radiation Sinusitis. Ann. Otol. Rhinol. Laryngol. 2019, 128, 1116–1121. [Google Scholar] [CrossRef]
- Huang, C.J.; Huang, M.Y.; Shih, M.C.P.; Cheng, K.Y.; Lee, K.W.; Lu, T.Y.; Yuan, S.S.; Fang, P.T. Post-radiation sinusitis is associated with recurrence in nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy. Radiat. Oncol. 2019, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.T.; Lu, Y.C.; Cheng, H.C.; Hsin, C.H.; Yang, S.F.; Wang, P.H.; Yeh, H.J. Chronic rhinosinusitis after radiotherapy in patients with head and neck cancer: A population-based cohort study in Taiwan. Int. Forum Allergy Rhinol. 2020, 10, 692–697. [Google Scholar] [CrossRef]
- Yin, G.; Tu, B.; Ye, L. Correlation of intensity-modulated radiation therapy at a specific radiation dose with the prognosis of nasal mucous damage after radiotherapy. Radiat. Environ. Biophys. 2020, 59, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Ophir, D.; Guterman, A.; Gross-Isseroff, R. Changes in smell acuity induced by radiation exposure of the olfactory mucosa. Arch. Otolaryngol. Head. Neck Surg. 1988, 114, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 771–776. [Google Scholar] [CrossRef]
- Hua, M.S.; Chen, S.T.; Tang, L.M.; Leung, W.M. Olfactory function in patients with nasopharyngeal carcinoma following radiotherapy. Brain Inj. 1999, 13, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.; Kwong, D.L.W.; Wei, W.I.; Sham, J.S.T. Change in olfaction after radiotherapy for nasopharyngeal cancer—A prospective study. Am. J. Otolaryngol. 2002, 23, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, T.; Seibt, A.; Appold, S.; Dörr, W.; Herrmann, T.; Hüttenbrink, K.B.; Hummel, T. Effects of radiotherapy on olfactory function. Radiother. Oncol. 2005, 77, 157–163. [Google Scholar] [CrossRef]
- Sandow, P.L.; Hejrat-Yazdi, M.; Heft, M.W. Taste loss and recovery following radiation therapy. J. Dent. Res. 2006, 85, 608–611. [Google Scholar] [CrossRef]
- Bindewald, J.; Oeken, J.; Wollbrueck, D.; Wulke, C.; Dietz, A.; Herrmann, E.; Schwarz, R.; Singer, S. Quality of life correlates after surgery for laryngeal carcinoma. Laryngoscope 2007, 117, 1770–1776. [Google Scholar] [CrossRef]
- Rhemrev, R.; Rakhorst, H.A.; Zuidam, J.M.; Mureau, M.A.M.; Hovius, S.E.R.; Hofer, S.O.P. Long-term functional outcome and satisfaction after radial forearm free flap reconstructions of intraoral malignancy resections. J. Plast. Reconstr. Aesthetic Surg. 2007, 60, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Brämerson, A.; Nyman, J.; Nordin, S.; Bende, M. Olfactory loss after head and neck cancer radiation therapy. Rhinol. J. 2013, 51, 206–209. [Google Scholar] [CrossRef]
- Momeni, A.; Kim, R.Y.; Kattan, A.; Lee, G.K. Microsurgical head and neck reconstruction after oncologic ablation: A study analyzing health-related quality of life. Ann. Plast. Surg. 2013, 70, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Oskam, I.M.; Verdonck-De Leeuw, I.M.; Aaronson, N.K.; Witte, B.I.; De Bree, R.; Doornaert, P.; Langendijk, J.A.; René Leemans, C. Prospective evaluation of health-related quality of life in long-term oral and oropharyngeal cancer survivors and the perceived need for supportive care. Oral Oncol. 2013, 49, 443–448. [Google Scholar] [CrossRef]
- Jalali, M.M.; Gerami, H.; Rahimi, A.; Jafari, M. Assessment of olfactory threshold in patients undergoing radiotherapy for head and neck malignancies. Iran. J. Otorhinolaryngol. 2014, 26, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Veyseller, B.; Ozucer, B.; Degirmenci, N.; Gurbuz, D.; Tambas, M.; Altun, M.; Aksoy, F.; Ozturan, O. Olfactory bulb volume and olfactory function after radiotherapy in patients with nasopharyngeal cancer. Auris. Nasus. Larynx 2014, 41, 436–440. [Google Scholar] [CrossRef]
- Riva, G.; Raimondo, L.; Ravera, M.; Moretto, F.; Boita, M.; Potenza, I.; Rampino, M.; Ricardi, U.; Garzaro, M. Late sensorial alterations in different radiotherapy techniques for nasopharyngeal cancer. Chem. Senses 2015, 40, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landström, F.J.; Reizenstein, J.; Adamsson, G.B.; Von Beckerath, M.; Möller, C. Long-term follow-up in patients treated with curative electrochemotherapy for cancer in the oral cavity and oropharynx. Acta Oto-Laryngol. 2015, 135, 1070–1078. [Google Scholar] [CrossRef]
- Haxel, B.R.; Berg, S.; Boessert, P.; Mann, W.J.; Fruth, K. Olfaction in chemotherapy for head and neck malignancies. Auris. Nasus. Larynx 2016, 43, 74–78. [Google Scholar] [CrossRef]
- Alvarez-Camacho, M.; Gonella, S.; Ghosh, S.; Kubrak, C.; Scrimger, R.A.; Chu, K.P.; Wismer, W.V. The impact of taste and smell alterations on quality of life in head and neck cancer patients. Qual. Life Res. 2016, 25, 1495–1504. [Google Scholar] [CrossRef]
- Galletti, B.; Santoro, R.R.; Mannella, V.K.; Caminiti, F.; Bonanno, L.; De Salvo, S.; Cammaroto, G.; Galletti, F. Olfactory event-related potentials: A new approach for the evaluation of olfaction in nasopharyngeal carcinoma patients treated with chemo-radiotherapy. J. Laryngol. Otol. 2016, 130, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Badr, H.; Lipnick, D.; Gupta, V.; Miles, B. Survivorship Challenges and Information Needs after Radiotherapy for Oral Cancer. J. Cancer Educ. 2017, 32, 799–807. [Google Scholar] [CrossRef]
- Riva, G.; Sensini, M.; Corvino, A.; Pecorari, G.; Garzaro, M. Smell and Taste Impairment After Total Laryngectomy. Ann. Otol. Rhinol. Laryngol. 2017, 126, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Lilja, M.; Markkanen-Leppänen, M.; Viitasalo, S.; Saarilahti, K.; Lindford, A.; Lassus, P.; Mäkitie, A. Olfactory and gustatory functions after free flap reconstruction and radiotherapy for oral and pharyngeal cancer: A prospective follow-up study. Eur. Arch. Otorhinolaryngol. 2018, 275, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.B.; Villines, D.; Epstein, G.L.; Smutzer, G. Oral examination findings, taste and smell testing during and following head and neck cancer therapy. Support. Care Cancer 2020, 28, 4305–4311. [Google Scholar] [CrossRef] [PubMed]
- Tyler, M.A.; Mohamed, A.S.R.; Smith, J.B.; Aymard, J.M.; Fuller, C.D.; Phan, J.; Frank, S.J.; Ferrarotto, R.; Kupferman, M.E.; Hanna, E.Y.; et al. Long-term quality of life after definitive treatment of sinonasal and nasopharyngeal malignancies. Laryngoscope 2020, 130, 86–93. [Google Scholar] [CrossRef]
- Gurushekar, P.R.; Isiah, R.; John, S.; Sebastian, T.; Varghese, L. Effects of radiotherapy on olfaction and nasal function in head and neck cancer patients. Am. J. Otolaryngol. 2020, 41, 102537. [Google Scholar] [CrossRef]
- Sharma, M.B.; Jensen, K.; Urbak, S.F.; Funding, M.; Johansen, J.; Bechtold, D.; Amidi, A.; Eskildsen, S.F.; Jørgensen, J.O.L.; Grau, C. A multidimensional cohort study of late toxicity after intensity modulated radiotherapy for sinonasal cancer. Radiother. Oncol. 2020, 151, 58–65. [Google Scholar] [CrossRef]
- Alfaro, R.; Crowder, S.; Sarma, K.P.; Arthur, A.E.; Pepino, M.Y. Taste and Smell Function in Head and Neck Cancer Survivors. Chem. Sens. 2021, 46, bjab026. [Google Scholar] [CrossRef]
Author, Year, Country | Study Design | Number of Patients | Sex | Age, Mean and Range/ Standard Deviation (Years) | Tumor (Site and Stage) | Treatments | Measurements | Time of Assessment | Results |
---|---|---|---|---|---|---|---|---|---|
Stringer et al., 1995, USA [17] | Cross-sectional | Study group: n = 9 Control group: n = 9 | Study group M: 6 (77%) F: 3 (33%) Control group: NR | Study group 80 (36–81) Control group: NR | Nasal vestibule or ala (n = 7), nasal cavity (n = 2), nasopharynx (n = 1) (stage NR) | RT (63.8–74.8 Gy) Dose to nasal cavities: NR |
| Before RT (subjective symptoms) and 20–117 months after RT (saccharine test and subjective symptoms) |
|
Lou et al., 1999, Taiwan [18] | Cross-sectional | Study group: n = 10 (all with sinusitis) Control group: n = 6 (3 patients with sinusitis and 3 without) | Study group M: 7 (70%) F: 3 (30%) Control group: NR | Study group 45 (28–70) Control group: NR | Nasopharynx (stage NR) | RT (70–80 Gy) Dose to nasal cavities: Mean dose to infundibulum 21 Gy (17.5–25 Gy) | Biopsy of infundibulum mucosa (light and electron microscope views) | 5.9 (0.8–23) years after RT |
|
Kamel et al., 2004, Egypt [19] | Retrospective | n = 32 | M: 19 (59%) F: 13 (39%) | 36 (7–65) | Nasopharynx (stage NR) | RT (doses NR) Dose to nasal cavities: NR |
| Group I (n = 23): Saccharine test and nasal endoscopy before RT and at 2–6 weeks, 3 and 6 months, 1 and 2 years after RT; Computed Tomography scan 6–12 months after RT Group II (n = 9): 4–12 years after RT |
|
Gupta et al., 2006, India [20] | Prospective | Study group: n = 50 Control group: n = 20 | Study group M: 35 (70%) F: 15 (30%) Control group: NR | Study group 54.7 (35–78) Control group: NR | Larynx (n = 19), oropharynx (n = 15), oral cavity (n = 10), hypopharynx (n = 6) (stage I–IV) | RT (n = 14) (14–70 Gy) CT-RT (cisplatin, 5-fluorouracil, methotrexate) (n = 33) Surgery + RT (n = 3) Dose to nasal cavities: NR | MCC (saccharine test) | Before RT and 6 months after RT |
|
Hsin et al., 2007, Taiwan [21] | Cross-sectional | n = 20 | M: 12 (60%) F: 8 (40%) | 47.5 (22–69) | Nasopharynx (stage NR) | RT (70–76 Gy):
NR |
| 4.9 (0.5–21) years after RT |
|
Huang et al., 2007, Taiwan [22] | Retrospective | n = 112 | M: 77 (69%) F: 35 (31%) | 47.9 (18.9–76.2) | Nasopharynx (stage I–IV) | RT (64–76 Gy):
Dose to nasal cavities: NR | MRI scan (Lund-Mackay score) | Before RT, and at 3 months, 9 months, 2 years, 3 years, 4 years, and 5 years after RT |
|
Hu et al., 2008, Taiwan [23] | Prospective | Study group: n = 21 Control group: n = 10 | Study group M: 13 (62%) F: 8 (28%) Control group: NR | Study group 49.5 (43–58) Control group: NR | Nasopharynx (stage NR) | RT (70–80 Gy) Dose to nasal cavities: NR |
| Before and 1 year after FESS 2.1 (1.2–4.0) years between RT and FESS |
|
Liang et al., 2008, Taiwan [24] | Cross-sectional | Non irrigation group: n = 63 Irrigation group: n = 44 | Non irrigation group M: 49 (78%) F: 14 (12%) Irrigation group M: 35 (79%) F: 9 (21%) | 47.7 (17–81) Non irrigation group: 49.13 ± 1.81 Irrigation group: 45.61 ± 1.68 | Nasopharynx (stage I–IV) | IMRT (56–76.8 Gy):
NR |
| Before, at mid-course, and at the end of RT, 1, 2, 3, 6, and 12 months after RT (Computed tomography before RT and 3, 6 and 12 months after RT) |
|
Deng et al., 2009, China [25] | Cross-sectional | n = 60 Post-RT CRS group: n = 30 CRS group: n = 30 | Post-RT CRS group: M: 24 (80%) F: 6 (20%) CRS group: M: 23 (77%) F: 7 (23%) | Post-RT CRS group: 42.7 (23–70) CRS group: 33.8 (21–59) | Nasopharynx (stage NR) | RT (66–74 Gy) Adjuvant CT in 11 patients (5-fluorouracil and cisplatin) Dose to nasal cavities: NR | Cultures (maxillary sinus specimens) | 2.92 (0.5–8.5) years after RT |
|
Lee et al., 2012, Taiwan [26] | Retrospective | n = 188 | M: 132 (70%) F: 56 (30%) | 49.49 (17–78) | Nasopharynx (stage I–IV) | 2D-RT, 3D-CRT or IMRT (69.91±3.87 Gy):
NR |
| 7.34 (3.30–26.54) years after RT |
|
Xiang et al., 2013, China [27] | Retrospective | n = 40 | M: 22 (55%) F: 18 (45%) | 46 (23–65) | Nasopharynx (stage NR) | RT (68–72 Gy) Dose to nasal cavities: NR |
| 3.4 (0–9) months after RT |
|
Su et al., 2014, China [28] | Retrospective | n = 283 | M: 215 (76%) F: 68 (24%) | 48 (11–77) | Nasopharynx (stage II–IV) | IMRT (70.4–74.8 Gy):
NR |
| Before and 1, 3, 6, 9, 12, and 18 months after RT |
|
Kılıç et al., 2014, Turkey [29] | Cross-sectional | n = 44 | NPC group: M: 32 (45%) F: 12 (55%) Laryngeal cancer group: M: 22 (100%) | NPC group: 36 (18–63) Laryngeal cancer group: 56 (44–72) | Nasopharynx (n = 22), larynx (n = 22) (stage II–IV) | RT (70 Gy) Total laryncetomy and adjuvant RT in laryngeal cancer group Dose to nasal cavities: NR | MCC (saccharine test) | Before and 3 and 6 months after RT |
|
Lou et al., 2014, China [30] | Cross-sectional | n = 1134 Group A (nasal irrigator): n = 378 Group B (homemade nasal irrigation connector combined with enemator): n = 378 Group C (nasal sprayer): n = 378 | M: 826 (73%) F: 308 (27%) Group A: M: 268 (71%) F: 110 (29%) Group B: M: 273 (72%) F: 105 (28%) Group C: M: 285 (75%) F: 93 (25%) | 48 (12–84) Group A: 43 (13–82) Group B: 51 (12–81) Group C: 49 (13–84) | Nasopharynx (stage I–IV) | RT (66–70 Gy):
Dose to nasal cavities: NR |
| Before, and 6 months, 1, 2 and 3 years after RT |
|
Alon et al., 2014, Israel [31] | Retrospective | n = 62 | M: 42 (68%) F: 20 (32%) | 42 (11–74) | Nasopharynx (stage I–IV) | 2D-RT/3D-CRT (n = 40 or) IMRT (n = 22) (66–72.4 Gy):
NR |
| 7 (3–16) years after RT |
|
Hsin et al., 2015, Taiwan [32] | Retrospective | n = 102 | M: 74 (73%) F: 28 (27%) | 43.5 (19–74) | Nasopharynx (stage I–IV) | IMRT (68–81 Gy):
NR | MRI scan (Lund-Mackay score) | Before and 5 years after RT |
|
Riva et al., 2015, Italy [33] | Cross-sectional | Study group: n = 30 Control group: n = 30 | Study group M: 24 (80%) F: 6 (20%) Control group M: 20 (67%) F: 10 (33%) | Study group 53.53 (37–75) Control group 52.35 (42–76) | Nasopharynx (stage I–IV) | 2D-RT (n = 5), 3D-CRT (n = 5), IMRT (n = 20) RT dose: 69.34 ± 1.17 Gy
NR |
| 59 (21–124) months after RT |
|
Wang et al., 2015, Taiwan [16] | Prospective | n = 41 | M: 31 (76%) F: 10 (24%) | 45 (29–77) | Nasopharynx (stage I–IV) | IMRT (70–76.8 Gy):
NR |
| Before and 12 months after RT |
|
Hsin et al., 2016, Taiwan [34] | Retrospective | n = 94 | M: 67 (71%) F: 27 (29%) | 42.7 (20–74) | Nasopharynx (stage I–IV) | IMRT (68–81 Gy):
NR | MRI scan (Lund-Mackay score) | Before and 3 months, 1, 3, and 5 years after RT |
|
Feng et al., 2016, China [35] | Prospective | Intranasal steroid group (fluticasone propionate): n = 32 Nasal irrigation group: n = 31 | Intranasal steroid group M: 13 (41%) F: 19 (59%) Nasal irrigation group M: 14 (45%) F: 17 (55%) | Intranasal steroid group: 38.86 ± 9.26 Nasal irrigation group: 39.36 ± 7.28 | Nasopharynx (stage I–IV) | RT:
NR |
| Before, and 3 and 6 months after RT |
|
Riva et al., 2017, Italy [36] | Cross-sectional | Study group: n = 25 Control group: n = 25 | Study group M: 22 (88%) F: 3 (12%) Control group M: 19 (76%) F: 6 (24%) | Study group: 68.76 (50–83) Control group: 62.64 (48–76) | Larynx (stage II–IV) | Total laryngectomy:
Dose to nasal cavities: NR |
| 52 (26–97) months after treatment |
|
Kuhar et al., 2017, USA [37] | Retrospective | n = 114 CRSr: n = 15 CRSsNP: n = 43 CRSwNP: n = 56 | CRSr: M: 6 (41%) F: 9 (59%) CRSsNP: M: 21 (49%) F: 22 (51%) CRSwNP: M: 25 (45%) F: 31 (55%) | CRSr: 58.1 (range NR) CRSsNP: 50.3 (range NR) CRSwNP: 50.9 (range NR) | Nasal cavity and paranasal sinuses (n = 12), nasopharynx (n = 1), skull base (n = 1), oral cavity (n = 1) (stage I–IV) | RT (30.75–129 Gy) Dose to nasal cavities: NR |
| 5.73 ± 7.2 years after RT |
|
Park et al., 2018, South Korea [14] | Retrospective | n = 186 RT group: n = 143 Non-RT group: n = 43 | M: 162 (87%) F: 24 (13%) RT group: M: 124 (87%) F: 19 (13%) Non-RT group: M: 38 (88%) F: 5 (12%) | 60.4 (47–83) RT group: 59.09 ± 11.64 Non-RT group: 64.70 ± 8.28 | Nasopharynx (n = 24), oral cavity (n = 31), oropharynx (n = 46), hypopharynx (n = 23), larynx (n = 62) (stage I–IV) | RT group (60–70.4 Gy):
Dose to nasal cavities: NR |
| Every 3 months for 3 years after RT |
|
Shemesh et al., 2018, Israel [38] | Prospective | n = 9 | M: 5 (55%) F: 4 (45%) | 44.2 (15–74) | Nasopharynx (stage I–IV) | RT (66–70 Gy):
NR |
| Before and 6 months after surgery |
|
Hamilton et al., 2019, Canada [39] | Retrospective | n = 162 | M: 80 (49%) F: 82 (51%) | 31 (15–35) | Nasopharynx (n = 48), nasal cavity and paranasal sinuses (n = 9), oral cavity (n = 21), tonsil (n = 4), larynx (n = 11), salivary glands (n = 36), thyroid (n = 30), other (n = 3) (stage I–IV) | RT (40–70 Gy):
CT (platinum-based) in 17 patients Dose to nasal cavities: NR | Clinical examination | Median follow-up: 6.4 years |
|
Stoddard et al., 2019, USA [40] | Retrospective | n = 22 | M: 14 (67%) F: 8 (43%) | 68.8 (50–88) | Nasal cavity, paranasal sinuses | RT (14.4–184.8 Gy):
NR | Sinonasal swab specimens (routine culture and next-generation molecular gene pyrosequencing) | 81.2 (1–156) weeks after RT |
|
Riva et al., 2019, Italy [15] | Prospective | n = 10 | M: 10 (100%) | 56.90 (39–72) | Nasopharynx (n = 3), oral cavity (n = 3), parotid gland (n = 3), primary unknown (n = 1) (stage I–IV) | Surgery (n = 8) Concurrent CT-RT (54–70 Gy) (n = 5) Induction CT + concurrent CT-RT (n = 1) Dose to o nasal cavities:
|
| Before (T0), at mid-course (T1), and at the end (T2) of RT, 1 and 3 months after RT (T3 and T4) |
|
Huang et al., 2019, Taiwan [41] | Retrospective | n = 230 | M: 177 (77%) F: 53 (23%) | 48.5 (18–80) | Nasopharynx (stage I–IV) | IMRT (54.45–70 Gy):
NR | Computed Tomography/MRI scan | Before and more than 6 months after RT |
|
Lu et al., 2020, Taiwan [42] | Retrospective | n = 701 | M: 625 (89%) F: 76 (11%) RT alone: M: 41 (82%) F: 9 (18%) Any-RT: M: 262 (89%) F: 33 (11%) No RT: M: 322 (90%) F: 37 (10%) | NR (>20) | Oral cavity (n = 479), nasopharynx (n = 97), hypopharynx (n = 59), oropharynx (n = 43), larynx (n = 32) |
(RT doses NR) Dose to nasal cavities: NR | Clinical examination | More than 3 months after treatment |
|
Yin et al., 2020, China [43] | Cross-sectional | n = 66 | M: 46 (70%) F: 20 (30%) | 38.76 (25–45) | Nasopharynx (stage I–IV) | IMRT (RT dose NR) CT (cisplatin and 5-fluorouracil) in 43 patients Dose to nasal cavities: 36.46 (23.14–56.38) Gy |
| Before RT, and at the end of RT, and 3, 6, and 12 months after RT |
|
Author, Year, Country | Study Design | Number of Patients | Sex | Age, Mean and Range/ Standard Deviation (Years) | Tumor (Site and Stage) | Treatments | Measurements | Time of Assessment | Results |
---|---|---|---|---|---|---|---|---|---|
Ophir et al., 1988, Israel [44] | Prospective | n = 12 | M: 9 (75%) F: 3 (25%) | 54.8 (38–76) | Nasopharynx (n = 9), pituitary gland (n = 7) (stage NR) | 2D-RT (66 Gy) No CT Dose to olfactory area: 25–28 Gy (nasopharyngeal carcinoma), 18–22 Gy (pituitary adenoma) | ODT (amyl acetate and eugenol) | Before RT, within a week after RT end, 1, 3 and 6 months later |
|
Sagar et al., 1991, UK [45] | Retrospective | Study group: n = 25 Control group: n = 40 | NR | NR | Nasopharynx, pituitary fossa, maxillary sinus (n = 25) (stage NR) | 2D-RT (doses NR) No CT Dose to olfactory area: 50–75 Gy (study group) | Self-reported smell (ad hoc questionnaire) | During RT |
|
Hua et al., 1999, China [46] | Prospective | Study group (n = 49):
n = 36 | Group 1 M: 16 (67%) F: 8 (33%) Group 2 M: 23 (92%) F: 2 (8%) Control group M: 26 (72%) F: 10 (28%) | Group 1 40.9 (27–59) Group 2 45.2 (28–60) Control group 43.6 (28–67) | Nasopharynx (T1-T3) | 2D-RT (68–72 Gy) CT: NR Dose to olfactory area: NR | ODT (N-butyl alcohol), Odour Quality Discrimination test (5 odorants), Odour Recognition Memory Test, Odour-Visual Matching test, Odour-Tactile Matching test, OI (10 odorants), Odour Function test (edibility, function and identity) | Before RT (n = 24 NPC, group 1), after RT (n = 25 NPC, group 2) | NPC patients with RT had olfactory impairments including ODT, odour-tactile cross-modality matching, verbal identification of odours, recall and recognition of identity of odours |
Ho et al., 2002, China [47] | Prospective | n = 48 | M: 23 (48%) F: 25 (52%) | 46 (22–71) | Nasopharynx (stage I–IV) | RT (n = 43) (doses NR) CT-RT (n = 15 Dose to olfactory area: NR |
| Before RT, end of RT, 3, 6 and 12 months after RT |
|
Hölscher et al., 2005, Germany [48] | Prospective | n = 44 | M: 28 (64%) F: 16 (36%) | 55 (11–81) | Maxillary sinus (n = 10), oropharynx (n = 10), oral cavity (n = 5), paranasal sinus (n = 5), nasopharynx (n = 6), hypopharynx (n = 2), nasal cavity (n = 1), brain (n = 1), skin (n = 1), unknown primary (n = 1), other (n = 2) (stage NR) | 3D-CRT (30–76 Gy) (n = 30) CT-RT (n = 14) Dose to olfactory area:
| ODT, OI, and OD (Sniffin’ Sticks) |
|
|
Sandow et al., 2006, USA [49] | Prospective | Study group: n = 13 Control group: n = 5 | Study group M: 10 (77%) F: 3 (23%) Control group M: 3 (60%) F: 2 (40%) | Study group 51.6 (40–75) Control group 47.9 (27–70) | Oropharynx (stage NR) | 3D-CRT (63–76 Gy) CT-RT (cisplatin, n = 3) Dose to olfactory area: NR | OI (UPSIT) | Before RT, 1, and 12 months after RT | OI was unaffected by RT |
Bindewald et al., 2007, Germany [50] | Cross-sectional | n = 205 | M: 190 (93%) F: 15 (7%) | 64 (32–84) | Larynx (stage I–IV) | Total laryngectomy (n = 20) Total laryngectomy + RT (n = 72) Partial laryngectomy (n = 77) Partial laryngectomy + RT (n = 36) (doses NR) CT: NR Dose to olfactory area: NR | Self-reported smell (EORTC QLQ-H&N35) |
| No differences in olfactory alterations between irradiated and non-irradiated patients |
Rhemrev et al., 2007, The Netherlands [51] | Cross-sectional | n = 72 | M: 44 (61%) F: 28 (39%) | 57 (33–79) | Oral cavity, oropharynx (stage I–IV) | Surgery (n = 15) Surgery + RT (n = 57) (66–70 Gy) CT: NR Dose to olfactory area: NR | Self-reported smell (EORTC QLQ-H&N35) | 43 (2–120) months after treatment | Higher olfactory alterations in irradiated patients |
Brämerson et al., 2013, Sweden [52] | Prospective | n = 71 | M: 51 (72%) F: 20 (28%) | 60.9 (35–86) | Paranasal sinuses (n = 10), parotid gland/ear/facial skin (n = 8), oral cavity (n = 12), nasopharynx/larynx (n = 15), oropharynx (n = 26) (stage NR) | RT (n = 39) (doses NR) CT-RT (platinum compounds, pyrimidine compounds and taxanes, n = 32) Dose to olfactory area:
|
| Before RT and 20 (12–35) months after RT |
|
Momeni et al., 2013, USA [53] | Cross-sectional | n = 21 | M: 15 (71%) F: 6 (29%) | 57.9 (24–87) | Oral cavity (n = 15), esophagus (n = 2), scalp (n = 2), pharynx (n = 1), paranasal sinus (n = 1) (stage NR) | Surgery (n = 8) Surgery + RT (n = 13) (doses NR) CT: NR Dose to olfactory area: NR | Self-reported smell (EORTC QLQ-H&N35) | 24 (18–48) months after treatment | No differences in olfactory alterations between irradiated and non-irradiated patients |
Oskam et al., 2013, The Netherlands [54] | Prospective | n = 80 | M: 47 (59%) F: 33 (41%) | 58 (23–74) | Oropharynx (n = 42), oral cavity (n = 38) (stage II–IV) | Surgery + RT (doses NR) CT: NR Dose to olfactory area: NR | Self-reported smell (EORTC QLQ-H&N35) |
| No statistically significant difference in taste/smell score among evaluations over time, but a deterioration was present after treatment |
Jalali et al., 2014, Iran [55] | Prospective | n = 54 | M: 26 (48%) F: 28 (52%) | 49 (22–86) | Nasopharynx (n = 24), oropharynx (n = 6), paranasal sinus (n = 12), brain (n = 9), skin (n = 3) (stage NR) | RT (n = 30) CT-RT (n = 24) 12 patients with previous surgery Total RT dose: 50.1 Gy (range: 30–66 Gy) Dose to olfactory area: 334 μC (IQR 162–2068 μC) | ODT (N-butanol) | Before RT, during RT (2,4, 6 weeks), and after RT (3 and 6 months) |
|
Veyseller et al., 2014, Turkey [56] | Cross-sectional | Study group: n = 24 Control group: n = 14 | Study group M: 14 (56%) F: 10 (44%) Control group M: 5 (36%) F: 9 (64%) | Study group 48.7 ± 11.4 Control group 48.8 ± 7.0 | Nasopharynx (stage I–IV) | CT-RT (68–72 Gy):
|
| 66 (14–218) months after RT |
|
Riva et al., 2015, Italy [57] | Cross-sectional | Study group: n = 30 Control group: n = 30 | Study group M: 24 (80%) F: 6 (20%) Control group M: 20 (67%) F: 10 (33%) | Study group 53.5 (37–75) Control group 52.3 (42–76) | Nasopharynx (stage I–IV) | CT-RT (cisplatin-based regimens):
|
| 59 (24–124) months after RT |
|
Landström et al., 2015, Sweden [58] | Prospective | n = 19 | M: 12 (63%) F: 7 (37%) | 56.6 (20–78) | Oral cavity (n = 18), oropharynx (n = 1) (stage I–IV) | ECT (bleomycin) (n = 6) ECT (bleomycin) + RT (57.8 Gy) (n = 13) Dose to olfactory area: NR | Self-reported smell (EORTC QLQ-H&N35) | Before treatment, and 12 months after treatment | No differences in problems with senses from baseline to 12 months after treatment |
Haxel et al., 2015, Germany [59] | Prospective | n = 33 | M: 25 (76%) F: 8 (24%) | 61.6 (44–85) | Oropharynx (n = 20), larynx (n = 8), hypopharynx (n = 5) (stage NR) | CT (cisplatin, 5-fluorouracil and docetaxel) No RT Dose to olfactory area: NA | ODT, OI, OD (Sniffin’sticks) | Before and immediately after first, second and third CT cycle |
|
Wang et al., 2015, Taiwan [16] | Prospective | n = 41 | M: 31 (76%) F: 10 (24%) | 45 (29–77) | Nasopharynx (stage I–IV) | IMRT (70–76.8 Gy):
|
| Before and 12 months after RT |
|
Alvarez-Camacho et al., 2016, Canada [60] | Prospective | n = 160 | M: 126 (79%) F: 34 (21%) | 58.9 ± 11.9 | Pharynx (n = 88), larynx (n = 36), oral cavity (n = 18), salivary glands (n = 11), nasal cavity and paranasal sinuses (n = 6), soft tissue (n = 1) (stage I–IV) | Surgery (n = 7) Surgery + RT (60 Gy) (n = 59) Surgery + CT-RT (cisplatin or carboplatin) (n = 86) Surgery + RT + cetuximab (n = 8) Dose to olfactory area: NR | Self-reported smell (CCS) | Before treatment, end of treatment and at 2.5 months follow-up |
|
Galletti et al., 2016, Italy [61] | Cross-sectional | Study group: n = 9 Control group: n = 9 | Study group M: 9 (100%) Control group M: 9 (100%) | Study group 55 ± 9.96 Control group 52.56 ± 8.56 | Nasopharynx (stage III–IV) | Induction CT (cisplatin and fluorouracil) + concurrent CT-RT (cisplatin, 60–69 Gy) Dose to olfactory area: NR |
| 44.77 ± 25.93 months after treatment |
|
Badr et al., 2017, USA [62] | Cross-sectional | n = 93 | M: 73 (78%) F: 20 (22%) | 61.5 (39–88) | Oral cavity (n = 26), oropharynx (n = 67) (stage I–IV) | RT (n = 3) (doses NR) CT-RT (n = 22) Surgery + RT (n = 32) Surgery + CT-RT (n = 36) Dose to olfactory area: NR | Self-reported smell (Vanderbilt Head and Neck Symptom Survey version 2.0) | Within 3 months of RT end (7% of participants), within 3–6 months (23%), within 6–9 months (24%) and within 9–12 months (46%) |
|
Riva et al., 2017, Italy [63] | Cross-sectional | Study group: n = 50 Control group: n = 50 | Study group M: 43 (86%) F: 7 (14%) Control group M: 40 (80%) F: 10 (20%) | Study group 68.76 (50–83) Control group 67.54 (53–76) | Larynx (stage II–IV) | Total laryngectomy + RT (n = 16) Total laryngectomy + CT-RT (n = 4) Dose to olfactory area: NR | ODT, OI, OD (Sniffin’sticks) | 61.96 (24–132) Months after treatment |
|
Lilja et al., 2018, Finland [64] | Prospective | n = 44 | M: 29 (66%) F: 15 (34%) | 56.2 (38–80) | Oral cavity (n = 28), oropharynx (n = 13), hypopharynx (n = 3) (stage II–IV) | Surgery (n = 5) Surgery + RT (n = 35) Surgery + CT-RT (n = 4) Dose to olfactory area: NR |
| Before treatment, and 6 weeks, 3, 6 and 12 months after treatment |
|
Riva et al., 2019, Italy [15] | Prospective | n = 10 | M: 10 (100%) | 56.90 (39–72) | Nasopharynx (n = 3), oral cavity (n = 3), parotid gland (n = 3), primary unknown (n = 1) (stage I–IV) | Surgery (n = 8) Concurrent CT-RT (54–70 Gy) (n = 5) Induction CT + concurrent CT-RT (n = 1) Dose to olfactory area:
|
| Before (T0), at mid-course (T1), and at the end (T2) of RT, 1 and 3 months after RT (T3 and T4) |
|
Epstein et al., 2020, USA [65] | Prospective | n = 10 | M: 7 (70%) F: 3 (30%) | 59.9 ± 7.0 | Oropharynx (n = 9), oral cavity (n = 1) (stage I–III) | IMRT:
| OI (UPSIT) | 4–6 weeks after starting of treatment (n = 6) and up to 2 years after treatment (n = 8) | Decreased OI in 3 patients (33%) during treatment with smell recovery after treatment |
Tyler et al., 2020, USA [66] | Cross-sectional | n = 114 | M: 68 (60%) F: 46 (40%) | 55 (18–78) | Nasopharynx (n = 61), paranasal sinuses (n = 29), nasal cavity (n = 24) (stage I–IV) | IMRT (n = 110) (66.6 ± 5.1 Gy) 3D-CRT (n = 4) Surgery (n = 38) CT:
| Self-reported smell (EQ-5D VAS, MDASI-HN, ASBQ) | 65 (12–154) months after treatment |
|
Gurushekar et al., 2020, India [67] | Prospective | n = 21 | M: 16 (76%) F: 5 (24%) | 42.62 (16–75) | Nasopharynx (n = 13) oropharynx (n = 4), oral cavity (n = 2), paranasal sinuses (n = 2) (stage NR) | CT-RT (n = 15) Surgery + RT (n = 4) RT (n = 2) (doses NR) Dose to olfactory area: NR |
| Before RT, at mid-course of RT (n = 21), at the end of RT (n = 18), 3 months after RT (n = 13) |
|
Sharma et al., 2020, Denmark [68] | Cross-sectional | n = 27 | M: 17 (63%) F: 10 (37%) | 67 (47–83) | Nasal cavity (n = 19), paranasal sinuses (n = 8 (stage I–IV) | IMRT (60–68 Gy):
Dose to olfactory area: NR |
| 6.4 (1.6–11.1) years after RT |
|
Alfaro et al., 2021, USA [69] | Cross-sectional | Study group: n = 40 Control group: n = 20 | Study group M: 24 (40%) F: 16 (60%) Control group: M: 11 (55%) F: 9 (45%) | Study group 63 ± 12 Control group 58 ± 14 | Oral cavity (n = 19), pharynx (n = 18), larynx (n = 3) (stage I–IV) | RT (alone or combined with surgery or CT, doses NR) (n = 40) Concurrent CT (n = 24) Dose to olfactory area: NR |
| Between 6 months and 10 years after RT |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riva, G.; Cravero, E.; Pizzo, C.; Briguglio, M.; Iorio, G.C.; Cavallin, C.; Ostellino, O.; Airoldi, M.; Ricardi, U.; Pecorari, G. Sinonasal Side Effects of Chemotherapy and/or Radiation Therapy for Head and Neck Cancer: A Literature Review. Cancers 2022, 14, 2324. https://doi.org/10.3390/cancers14092324
Riva G, Cravero E, Pizzo C, Briguglio M, Iorio GC, Cavallin C, Ostellino O, Airoldi M, Ricardi U, Pecorari G. Sinonasal Side Effects of Chemotherapy and/or Radiation Therapy for Head and Neck Cancer: A Literature Review. Cancers. 2022; 14(9):2324. https://doi.org/10.3390/cancers14092324
Chicago/Turabian StyleRiva, Giuseppe, Ester Cravero, Claudia Pizzo, Marco Briguglio, Giuseppe Carlo Iorio, Chiara Cavallin, Oliviero Ostellino, Mario Airoldi, Umberto Ricardi, and Giancarlo Pecorari. 2022. "Sinonasal Side Effects of Chemotherapy and/or Radiation Therapy for Head and Neck Cancer: A Literature Review" Cancers 14, no. 9: 2324. https://doi.org/10.3390/cancers14092324
APA StyleRiva, G., Cravero, E., Pizzo, C., Briguglio, M., Iorio, G. C., Cavallin, C., Ostellino, O., Airoldi, M., Ricardi, U., & Pecorari, G. (2022). Sinonasal Side Effects of Chemotherapy and/or Radiation Therapy for Head and Neck Cancer: A Literature Review. Cancers, 14(9), 2324. https://doi.org/10.3390/cancers14092324