Assessment of Radiologic Extranodal Extension Using Combinatorial Analysis of Nodal Margin Breakdown and Metastatic Burden in Oropharyngeal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. Radiologic Image Acquisition and Analyses
2.3. Surgical Specimens and Evaluation of ENE
2.4. Statistical Analysis
3. Results
3.1. Clinicopathologic Characteristics of Patients with OPSCC with Respect to pENE
3.2. Radiologic Characteristics of LNM with Respect to pENE
3.3. Association of pENE Status with Radiological Features from Patients with OPSCC
3.4. Diagnostic Performance of Radiological Features for Predicting pENE of Cervical LNMs from Patients with OPSCC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Nogues, J.C.; Fassas, S.; Mulcahy, C.; Zapanta, P.E. Human Papillomavirus-Associated Head and Neck Cancer. J. Am. Board Fam. Med. 2021, 34, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, E.O.; Seiwert, T.Y.; Fakhry, C. Deintensification of treatment for human papillomavirus-related oropharyngeal cancer: Current state and future directions. Oral. Oncol. 2020, 105, 104652. [Google Scholar] [CrossRef]
- Shaw, R.J.; Lowe, D.; Woolgar, J.A.; Brown, J.S.; Vaughan, E.D.; Evans, C.; Lewis-Jones, H.; Hanlon, R.; Hall, G.L.; Rogers, S.N. Extracapsular spread in oral squamous cell carcinoma. Head Neck 2010, 32, 714–722. [Google Scholar] [CrossRef]
- Pilar, A.; Yu, E.; Su, J.; O’Sullivan, B.; Bartlett, E.; Waldron, J.N.; Ringash, J.; Spreafico, A.; Hansen, A.R.; de Almeida, J.; et al. Prognostic value of clinical and radiologic extranodal extension and their role in the 8th edition TNM cN classification for HPV-negative oropharyngeal carcinoma. Oral Oncol. 2021, 114, 105167. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. XVII, 1032. [Google Scholar]
- Bauer, E.; Mazul, A.; Chernock, R.; Rich, J.; Jackson, R.S.; Paniello, R.; Pipkorn, P.; Oppelt, P.; Gay, H.; Daly, M.; et al. Extranodal extension is a strong prognosticator in HPV-positive oropharyngeal squamous cell carcinoma. Laryngoscope 2020, 130, 939–945. [Google Scholar] [CrossRef]
- Ho, A.S.; Luu, M.; Kim, S.; Tighiouart, M.; Mita, A.C.; Scher, K.S.; Mallen-St Clair, J.; Walgama, E.S.; Lin, D.C.; Nguyen, A.T.; et al. Nodal staging convergence for HPV- and HPV+ oropharyngeal carcinoma. Cancer 2021, 127, 1590–1597. [Google Scholar] [CrossRef]
- Benchetrit, L.; Torabi, S.J.; Givi, B.; Haughey, B.; Judson, B.L. Prognostic Significance of Extranodal Extension in HPV-Mediated Oropharyngeal Carcinoma: A Systematic Review and Meta-analysis. Otolaryngol. Head Neck Surg. 2021, 164, 720–732. [Google Scholar] [CrossRef]
- Katayama, I.; Sasaki, M.; Kimura, Y.; Hotokezaka, Y.; Eida, S.; Tashiro, S.; Sumi, M.; Nakamura, T. Comparison between ultrasonography and MR imaging for discriminating squamous cell carcinoma nodes with extranodal spread in the neck. Eur. J. Radiol. 2012, 81, 3326–3331. [Google Scholar] [CrossRef]
- Su, Z.; Duan, Z.; Pan, W.; Wu, C.; Jia, Y.; Han, B.; Li, C. Predicting extracapsular spread of head and neck cancers using different imaging techniques: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2016, 45, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Park, S.I.; Guenette, J.P.; Suh, C.H.; Hanna, G.J.; Chung, S.R.; Baek, J.H.; Lee, J.H.; Choi, Y.J. The diagnostic performance of CT and MRI for detecting extranodal extension in patients with head and neck squamous cell carcinoma: A systematic review and diagnostic meta-analysis. Eur. Radiol. 2021, 31, 2048–2061. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, S.C.; Giger, R.; Bojaxhiu, B.; Sachpekidis, C.; Dammann, F.; Dettmer, M.S.; Arnold, A.; Wartenberg, J.; Nisa, L. Multimodal Imaging with Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging to Detect Extracapsular Extension in Head and Neck Cancer. Laryngoscope 2021, 131, E163–E169. [Google Scholar] [CrossRef] [PubMed]
- Hatten, K.M.; Amin, J.; Isaiah, A. Machine Learning Prediction of Extracapsular Extension in Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma. Otolaryngol. Head Neck Surg. 2020, 163, 992–999. [Google Scholar] [CrossRef]
- Huang, S.H.; Chernock, R.; O’Sullivan, B.; Fakhry, C. Assessment Criteria and Clinical Implications of Extranodal Extension in Head and Neck Cancer. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Halim, C.N.; Rosenberg, T.; Dyrvig, A.K.; Hoilund-Carlsen, P.F.; Sorensen, J.A.; Rohde, M.; Godballe, C. Diagnostic accuracy of imaging modalities in detection of histopathological extranodal extension: A systematic review and meta-analysis. Oral. Oncol. 2021, 114, 105169. [Google Scholar] [CrossRef]
- Faraji, F.; Aygun, N.; Coquia, S.F.; Gourin, C.G.; Tan, M.; Rooper, L.M.; Eisele, D.W.; Fakhry, C. Computed tomography performance in predicting extranodal extension in HPV-positive oropharynx cancer. Laryngoscope 2020, 130, 1479–1486. [Google Scholar] [CrossRef]
- Joo, L.; Bae, Y.J.; Choi, Y.J.; Lee, Y.S.; Chung, S.R.; Suh, C.H.; Kim, S.O.; Baek, J.H.; Lee, J.H. Prediction model for cervical lymph node metastasis in human papillomavirus-related oropharyngeal squamous cell carcinomas. Eur. Radiol. 2021, 31, 7429–7439. [Google Scholar] [CrossRef]
- Rosen, B.S.; Wilkie, J.R.; Sun, Y.; Ibrahim, M.; Casper, K.A.; Miller, J.E.; Chotchutipan, T.; Stucken, C.L.; Bradford, C.; Prince, M.E.P.; et al. CT and FDG-PET radiologic biomarkers in p16+ oropharyngeal squamous cell carcinoma patients treated with definitive chemoradiotherapy. Radiother. Oncol. 2021, 155, 174–181. [Google Scholar] [CrossRef]
- Noor, A.; Mintz, J.; Patel, S.; Bajic, N.; Boase, S.; Sethi, N.; Foreman, A.; Krishnan, S.; Hodge, J.C. Predictive value of computed tomography in identifying extracapsular spread of cervical lymph node metastases in p16 positive oropharyngeal squamous cell carcinoma. J. Med. Imaging Radiat. Oncol. 2019, 63, 500–509. [Google Scholar] [CrossRef]
- Carlton, J.A.; Maxwell, A.W.; Bauer, L.B.; McElroy, S.M.; Layfield, L.J.; Ahsan, H.; Agarwal, A. Computed tomography detection of extracapsular spread of squamous cell carcinoma of the head and neck in metastatic cervical lymph nodes. Neuroradiol. J. 2017, 30, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Spector, M.E.; Gallagher, K.K.; Light, E.; Ibrahim, M.; Chanowski, E.J.; Moyer, J.S.; Prince, M.E.; Wolf, G.T.; Bradford, C.R.; Cordell, K.; et al. Matted nodes: Poor prognostic marker in oropharyngeal squamous cell carcinoma independent of HPV and EGFR status. Head Neck 2012, 34, 1727–1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almulla, A.; Noel, C.W.; Lu, L.; Xu, W.; O’Sullivan, B.; Goldstein, D.P.; Hope, A.; Perez-Ordonez, B.; Weinreb, I.; Irish, J.; et al. Radiologic-Pathologic Correlation of Extranodal Extension in Patients with Squamous Cell Carcinoma of the Oral Cavity: Implications for Future Editions of the TNM Classification. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; O’Sullivan, B.; Su, J.; Bartlett, E.; Kim, J.; Waldron, J.N.; Ringash, J.; de Almeida, J.R.; Bratman, S.; Hansen, A.; et al. Prognostic importance of radiologic extranodal extension in HPV-positive oropharyngeal carcinoma and its potential role in refining TNM-8 cN-classification. Radiother. Oncol. 2020, 144, 13–22. [Google Scholar] [CrossRef]
- Billfalk-Kelly, A.; Yu, E.; Su, J.; O’Sullivan, B.; Waldron, J.; Ringash, J.; Bartlett, E.; Perez-Ordonez, B.; Weinreb, I.; Bayley, A.; et al. Radiologic Extranodal Extension Portends Worse Outcome in cN+ TNM-8 Stage I Human Papillomavirus-Mediated Oropharyngeal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Wu, H.G.; Kim, J.H.; Lee, J.H.; Ahn, S.H.; Chung, E.J.; Eom, K.Y.; Jung, Y.H.; Jeong, W.J.; Kwon, T.K.; et al. Radiotherapy Versus Surgery in Early-Stage HPV-positive Oropharyngeal Cancer. Cancer Res. Treat. 2021, 54, 406–416. [Google Scholar] [CrossRef]
- Network, N.C.C. Head and Neck Cancer (Version 1.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 20 December 2021).
- Patel, M.R.; Hudgins, P.A.; Beitler, J.J.; Magliocca, K.R.; Griffith, C.C.; Liu, Y.; Bougnon, K.; El-Deiry, M.; Saba, N.F.; Aiken, A.H. Radiographic Imaging Does Not Reliably Predict Macroscopic Extranodal Extension in Human Papilloma Virus-Associated Oropharyngeal Cancer. ORL J. Otorhinolaryngol. Relat. Spec. 2018, 80, 85–95. [Google Scholar] [CrossRef]
- Ho, A.S.; Kim, S.; Tighiouart, M.; Gudino, C.; Mita, A.; Scher, K.S.; Laury, A.; Prasad, R.; Shiao, S.L.; Van Eyk, J.E.; et al. Metastatic Lymph Node Burden and Survival in Oral Cavity Cancer. J. Clin. Oncol. 2017, 35, 3601–3609. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Park, H.S.; Kelly, J.R.; Stahl, J.M.; Yarbrough, W.G.; Burtness, B.A.; Contessa, J.N.; Decker, R.H.; Koshy, M.; Husain, Z.A. The prognostic value of extranodal extension in human papillomavirus-associated oropharyngeal squamous cell carcinoma. Cancer 2017, 123, 2762–2772. [Google Scholar] [CrossRef] [Green Version]
- Geltzeiler, M.; Clayburgh, D.; Gleysteen, J.; Gross, N.D.; Hamilton, B.; Andersen, P.; Brickman, D. Predictors of extracapsular extension in HPV-associated oropharyngeal cancer treated surgically. Oral. Oncol. 2017, 65, 89–93. [Google Scholar] [CrossRef]
- Miccio, J.A.; Verma, V.; Kelly, J.; Kann, B.H.; An, Y.; Park, H.S.; Eskander, A.; Burtness, B.; Husain, Z. Impact of contralateral lymph nodal involvement and extranodal extension on survival of surgically managed HPV-positive oropharyngeal cancer staged with the AJCC eighth edition. Oral. Oncol. 2019, 99, 104447. [Google Scholar] [CrossRef] [PubMed]
- Kohler, H.F.; Kowalski, L.P. Prognostic impact of the level of neck metastasis in oral cancer patients. Braz. J. Otorhinolaryngol. 2012, 78, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, A.; McGoldrick, D.; Aggarwal, A.; Idle, M.R.; Praveen, P.; Martin, T.; Parmar, S. Retropharyngeal lymph node metastasis in oral cancer. Systematic review and survival analysis. Br. J. Oral Maxillofac. Surg. 2021, 60, 563–569. [Google Scholar] [CrossRef]
- Choi, K.H.; Song, J.H.; Park, E.Y.; Hong, J.H.; Yoo, I.R.; Lee, Y.S.; Sun, D.I.; Kim, M.S.; Kim, Y.S. Analysis of PET parameters as prognosticators of survival and tumor extent in Oropharyngeal Cancer treated with surgery and postoperative radiotherapy. BMC Cancer 2021, 21, 317. [Google Scholar] [CrossRef] [PubMed]
- Toya, R.; Saito, T.; Matsuyama, T.; Kai, Y.; Shiraishi, S.; Murakami, D.; Yoshida, R.; Watakabe, T.; Sakamoto, F.; Tsuda, N.; et al. Diagnostic Value of FDG-PET/CT for the Identification of Extranodal Extension in Patients with Head and Neck Squamous Cell Carcinoma. Anticancer Res. 2020, 40, 2073–2077. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.J.; Yoo Ie, R.; Joo, Y.H.; Nam, I.C.; Cho, J.H.; Kim, C.S.; Cho, K.J.; Kim, M.S. Efficacy of 18F-fluorodeoxyglucose positron emission tomography/CT imaging for extracapsular spread of laryngeal squamous cell carcinoma. Head Neck 2016, 38, 290–293. [Google Scholar] [CrossRef]
Total N = 108 No. of Patients (%) | pENE (−), N = 41 No. of Patients (%) | pENE (+), N = 67 No. of Patients (%) | p-Value a | |
---|---|---|---|---|
Clinical characteristics | ||||
Age (years) | 0.591 | |||
Mean, [25–75th percentile] | 59 (52–67) | 59 (49–67) | 60 (53–67) | |
Sex | 0.454 | |||
Men | 93 (86) | 34 (83) | 59 (88) | |
Women | 15 (14) | 7 (17) | 8 (12) | |
HPV status | 0.894 | |||
Negative | 24 (22) | 8 (20) | 16 (24) | |
Positive | 76 (70) | 30 (73) | 46 (69) | |
Unknown | 8 (8) | 3 (7) | 5 (7) | |
Smoking history | 0.796 | |||
Non-smoker | 46 (43) | 15 (37) | 31 (46) | |
Current Smoker | 32 (30) | 13 (32) | 19 (28) | |
Ex-smoker | 27 (25) | 12 (29) | 15 (23) | |
Unknown | 3 (2) | 1 (2) | 2 (3) | |
N classification | 0.001 | |||
N0 | 6 (6) | 6 (15) | 0 (0) | |
N1 | 70 (64) | 29 (70) | 41 (61) | |
N2–N3 | 32 (30) | 6 (15) | 26 (39) | |
Pathologic characteristics | ||||
Tumor subsite | 0.546 | |||
Palatine tonsil | 91 (85) | 35 (88) | 56 (84) | |
Base of tongue | 12 (11) | 3 (7) | 9 (13) | |
Others | 4 (4) | 2 (5) | 2 (3) | |
T classification | 0.438 | |||
Metastasis of unknown primary | 1 | 1 (3) | 0 | |
T1–T2 | 71 (66) | 27 (68) | 43 (64) | |
T3–T4 | 36 (34) | 12 (29) | 24 (36) | |
Tumor grade | 0.604 | |||
Well differentiated | 5 (5) | 1 (3) | 4 (6) | |
Moderately differentiated | 57 (53) | 19 (47) | 38 (57) | |
Poorly differentiated | 32 (30) | 14 (35) | 19 (27) | |
Unknown | 13 (12) | 6 (15) | 7 (10) | |
Lymphovascular invasion | 0.191 | |||
Absent | 45 (42) | 21 (52) | 24 (36) | |
Present | 43 (40) | 12 (30) | 31 (46) | |
Unknown | 19 (18) | 7 (18) | 12 (18) | |
Perineural invasion | 0.715 | |||
Absent | 76 (71) | 30 (75) | 46 (69) | |
Present | 11 (10) | 3 (8) | 8 (12) | |
Unknown | 20 (19) | 7 (17) | 13 (19) | |
Pathologically identified LNs | <0.001 | |||
0 | 4 (4) | 4 (10) | 0 (0) | |
≤4 | 75 (69) | 34 (83) | 41 (61) | |
>4 | 29 (27) | 3 (7) | 26 (39) |
Total = 108 No. of Patients (%) | pENE (−) No. of Patients (%) | pENE (+) No. of Patients (%) | p-Value a | |
---|---|---|---|---|
Preoperative imaging characteristics of lymph node metastasis (LNM) | ||||
Maximum diameter (cm) | 0.333 | |||
≤3 cm | 73 (68) | 30 (73) | 43 (64) | |
>3 cm | 35 (32) | 11 (27) | 24 (36) | |
Number of LNM | <0.001 | |||
0 | 6 (6) | 6 (15) | 0 (0) | |
≤4 | 76 (70) | 33 (81) | 44 (64) | |
>4 | 26 (24) | 2 (4) | 24 (36) | |
Retropharyngeal LNM | 0.025 | |||
No | 99 (92) | 40 (98) | 59 (88) | |
Yes | 9 (8) | 1 (2) | 8 (12) | |
Lower neck (level IV or V) LNM | 0.004 | |||
No | 88 (81) | 39 (95) | 49 (73) | |
Yes | 20 (19) | 2 (5) | 18 (27) | |
Contralateral LNM | 0.086 | |||
No | 98 (91) | 39 (97) | 59 (87) | |
Yes | 10 (9) | 1 (3) | 9 (13) | |
Indistinct capsular contour | <0.001 | |||
No | 36 (33) | 27 (66) | 9 (13) | |
Yes | 72 (67) | 14 (34) | 58 (87) | |
Irregular margin | <0.001 | |||
No | 62 (57) | 35 (85) | 27 (40) | |
Yes | 46 (43) | 6 (15) | 40 (60) | |
Absence of perinodal fat plane | <0.001 | |||
No | 48 (44) | 33 (81) | 15 (22) | |
Yes | 60 (56) | 8 (19) | 52 (78) | |
Invasion into ST | 0.001 | |||
No | 89 (82) | 40 (98) | 49 (73) | |
Yes | 19 (18) | 1 (2) | 18 (27) | |
Nodal matting | <0.001 | |||
No | 77 (71) | 40 (98) | 37 (55) | |
Yes | 31 (29) | 1 (2) | 30 (45) | |
Nodal necrosis | 0.147 | |||
No | 26 (21) | 13 (32) | 13 (19) | |
Yes | 82 (79) | 28 (68) | 54 (81) |
Total = 108 No. of Patients (%) | Univariate Analysis OR [95% CI] | p-Value | Multivariate Analysis OR [95% CI] | p-Value | |
---|---|---|---|---|---|
Characteristics of LNM | |||||
No. of LNM > 4 | 26 (24%) | 10.884 [2.413–49.081] | 0.002 | 1.340 [0.185–9.712] | 0.772 |
Retropharyngeal LNM | 9 (8%) | 5.424 [0.653–45.062] | 0.118 | - | - |
Lower neck LNM | 20 (19%) | 7.163 [1.566–32.759] | 0.011 | 3.042 [0.375–24.677] | 0.298 |
CT imaging features | |||||
Indistinct capsular contour | 72 (66%) | 12.429 [4.788–32.259] | <0.001 | 2.493 [0.577–10.770] | 0.221 |
Irregular margin | 46 (43%) | 8.642 [3.198–23.354] | <0.001 | 0.910 [0.200–4.146] | 0.903 |
Absence of perinodal fat plane | 60 (56%) | 14.300 [5.461–37.444] | <0.001 | 3.646 [0.728–18.260] | 0.115 |
Invasion into ST | 19 (18%) | 14.694 [1.879–114.888] | 0.010 | 1.715 [0.151–19.489] | 0.664 |
Nodal matting | 31 (28%) | 32.432 [4.209–249.900] | 0.001 | 8.023 [0.861–74.797] | 0.068 |
HPV + Patients | HPV − Patients | |||||
---|---|---|---|---|---|---|
Total = 76 No. of Patients (%) | pENE (+) = 46 No. of Patients (%) | p-Value | Total = 24 No. of Patients (%) | pENE (+) = 16 No. of Patients (%) | p-Value | |
Margin-related feature (any of the 4) | 52 (68) | 41 (89) | <0.001 | 15 (63) | 12 (75) | 0.099 |
Indistinct capsular contour | 51 (67) | 41 (89) | <0.001 | 15 (63) | 12 (75) | 0.099 |
Irregular margin | 30 (40) | 26 (57) | <0.001 | 11 (46) | 10 (63) | 0.033 |
Absence of perinodal fat plane | 41 (54) | 36 (78) | <0.001 | 13 (54) | 11 (69) | 0.082 |
Invasion into ST | 13 (17) | 12 (26) | 0.010 | 6 (25) | 6 (38) | 0.066 |
Burden-related feature (any of the 3) | 30 (40) | 26 (57) | <0.001 | 9 (38) | 9 (56) | 0.009 |
Lower neck LNM | 14 (18) | 12 (26) | 0.033 | 5 (21) | 5 (31) | 0.130 |
Nodal matting | 24 (32) | 23 (50) | <0.001 | 5 (21) | 5 (31) | 0.130 |
No. of LNM >4 | 17 (22) | 15 (33) | 0.008 | 6 (25) | 6 (38) | 0.066 |
All Patients | Univariate Analysis OR [95% CI] | p-Value | Multivariate Analysis OR [95% CI] | p-Value |
---|---|---|---|---|
Margin-related feature | 11.170 [4.333–28.798] | <0.001 | 6.466 [2.354–17.759] | <0.001 |
Burden-related feature | 12.121 [3.880–37.868] | <0.001 | 6.677 [1.993–22.369] | 0.002 |
Both related features | 14.710 [4.132–52.365] | <0.001 |
Sensitivity No. of Patients (%) | Specificity No. of Patients (%) | PPV No. of Patients (%) | NPV No. of Patients (%) | Accuracy No. of Patients (%) | |
---|---|---|---|---|---|
All | |||||
Margin-related feature (any of under 4) | 58 (86.6) | 26 (63.4) | 58 (79.5) | 26 (74.3) | 84 (77.8) |
Indistinct capsular contour | 58 (86.6) | 27 (65.9) | 58 (80.6) | 27 (75.0) | 85 (78.7) |
Irregular margin | 40 (59.7) | 35 (85.4) | 40 (87.0) | 35 (56.5) | 75 (69.4) |
Absence of perinodal fat plane | 52 (77.6) | 33 (80.5) | 52 (86.7) | 33 (68.8) | 85 (78.7) |
Invasion into ST | 18 (26.9) | 40 (97.6) | 18 (94.7) | 40 (44.9) | 58 (53.7) |
Burden-related feature (any of under 3) | 38 (56.7) | 37 (90.2) | 38 (90.5) | 37 (56.1) | 75 (69.4) |
Lower neck LNM | 18 (26.9) | 39 (95.1) | 18 (90.0) | 39 (44.3) | 57 (52.8) |
Nodal matting | 30 (44.8) | 40 (97.6) | 30 (96.8) | 40 (51.9) | 70 (64.8) |
No. of LNM > 4 | 24 (35.8) | 39 (95.1) | 24 (92.3) | 39 (47.6) | 63 (58.3) |
Any of margin- or burden-related features | 59 (88.1) | 25 (61.0) | 59 (78.7) | 25 (75.8) | 84 (77.8) |
Both related features | 36 (53.7) | 38 (92.7) | 36 (92.3) | 38 (55.1) | 74 (68.5) |
HPV (+) OPSCC | |||||
Margin-related feature (any of under 4) | 41 (89.1) | 19 (63.3) | 41 (78.8) | 19 (79.2) | 60 (78.9) |
Indistinct capsular contour | 41 (89.1) | 20 (66.7) | 41 (80.4) | 20 (80.0) | 61 (80.3) |
Irregular margin | 26 (56.5) | 26 (86.7) | 26 (86.7) | 26 (56.5) | 52 (68.4) |
Absence of perinodal fat plane | 36 (78.3) | 25 (83.3) | 36 (87.8) | 25 (71.4) | 61 (80.3) |
Invasion into ST | 12 (26.1) | 29 (96.7) | 12 (92.3) | 29 (46.0) | 41 (53.9) |
Burden-related feature (any of under 3) | 26 (56.5) | 26 (86.7) | 26 (86.7) | 26 (56.5) | 52 (68.4) |
LNM at Lv4 | 12 (26.1) | 28 (93.3) | 12 (85.7) | 28 (45.2) | 40 (52.6) |
Nodal matting | 23 (50.0) | 29 (96.7) | 23 (95.8) | 29 (55.8) | 52 (68.4) |
No. of LNM > 4 | 15 (32.6) | 28 (93.3) | 15 (88.2) | 28 (47.5) | 43 (56.6) |
Any of margin- or burden-related features | 41 (89.1) | 18 (60.0) | 41 (77.4) | 18 (78.3) | 59 (77.6) |
Both related features | 25 (54.3) | 27 (90.0) | 25 (89.3) | 27 (56.3) | 52 (68.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, H.; Yeou, S.H.; Roh, J.; Shin, Y.S.; Kim, C.-H.; Ha, E.J.; Jang, J.Y. Assessment of Radiologic Extranodal Extension Using Combinatorial Analysis of Nodal Margin Breakdown and Metastatic Burden in Oropharyngeal Cancer. Cancers 2023, 15, 3276. https://doi.org/10.3390/cancers15133276
Kim S, Park H, Yeou SH, Roh J, Shin YS, Kim C-H, Ha EJ, Jang JY. Assessment of Radiologic Extranodal Extension Using Combinatorial Analysis of Nodal Margin Breakdown and Metastatic Burden in Oropharyngeal Cancer. Cancers. 2023; 15(13):3276. https://doi.org/10.3390/cancers15133276
Chicago/Turabian StyleKim, Sungryeal, Hannah Park, Se Hyun Yeou, Jin Roh, Yoo Seob Shin, Chul-Ho Kim, Eun Ju Ha, and Jeon Yeob Jang. 2023. "Assessment of Radiologic Extranodal Extension Using Combinatorial Analysis of Nodal Margin Breakdown and Metastatic Burden in Oropharyngeal Cancer" Cancers 15, no. 13: 3276. https://doi.org/10.3390/cancers15133276
APA StyleKim, S., Park, H., Yeou, S. H., Roh, J., Shin, Y. S., Kim, C. -H., Ha, E. J., & Jang, J. Y. (2023). Assessment of Radiologic Extranodal Extension Using Combinatorial Analysis of Nodal Margin Breakdown and Metastatic Burden in Oropharyngeal Cancer. Cancers, 15(13), 3276. https://doi.org/10.3390/cancers15133276