Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Claudin Expression in Esophageal Preneoplastic Conditions
Site | Preneoplastic Lesions | Claudins Expression | Methodology | Notes | References |
---|---|---|---|---|---|
Esophagus | Barrett’s esophagus | Claudins -1, -3, and -4 ↑ | IHC |
| [22,24] |
Claudin-2 ↑ | IHC | - | [23] | ||
Claudin-18 ↑↑ | PCR and Western blot | - | [28] | ||
Low-grade dysplasia | Claudin-7 ↑↑ | IHC | - | [24] | |
High-grade dysplasia, adenocarcinoma, and metastatic tumors | Claudin-7 ↔ | IHC | - | ||
Stomach | Intestinal metaplasia | Claudins -1, -3, -4, -5, and -7 ↑ Claudin-18 ↓ | IHC | - | [29,30,31,32] |
Early dysplasia | Claudins -1, -3, and -5 ↑ Claudins -4 and -7 ↑↑ Claudin-18 ↑↑ | IHC, IFC, and PCR | Especially claudin-18.2 splice variant, in diffuse gastric carcinoma | [29,30,31,32,33,34] | |
Colon | SSA/P MVHP APC/Claudin-1 Mice | Claudin-1 ↑ | IHC and PCR | - | [35,36,37] |
Adenomatous Polyps | Claudin-1 ↑ | IHC and IFC | - | [38,39] | |
Claudin-7 ↓ | Western blot, PCR, IHC, and IFC |
| [40,41,42] | ||
Inflammatory bowel disease | Claudins -1, -2, -3, and -4 ↑ | IHC, IFC, Western blot, and PCR |
| [7,43,44,45,46] | |
Liver | Cirrhosis | Claudins -1 and -7 ↑ | IHC and Western blot |
| [47] |
Claudins -4 and -7 ↑ | IHC, Western blot, and IFC |
| [48] | ||
Pancreas | Hyperplastic lesions→Hyperplastic foci→Adenomas→Borderline tumors→non-invasive carcinomas→invasive carcinomas | Claudin-1 ↓ | IHC and PCR | - | [49,50] |
Hyperplastic lesions→Hyperplastic foci→Adenomas→Borderline tumors→non-invasive carcinomas→invasive carcinomas | Claudin-4 ↑ | IHC and PCR | - | ||
IPMN | Claudins -2, -4 and -18 ↑ | IHC |
| [51] | |
MCN | Claudins -2, -4, and -18 ↑ | IHC |
3. Claudin Expression in Gastric Preneoplastic Conditions
4. Claudin Expression in Colonic Preneoplastic Conditions
5. Claudins Expression in Hepatic Preneoplastic Condition
6. Claudins Expression in Pancreatic Preneoplastic Conditions
7. Mechanisms of Aberrant Claudin Expression in Gastrointestinal Preneoplastic Conditions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marchiando, A.M.; Graham, W.V.; Turner, J.R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 2010, 5, 119–144. [Google Scholar] [CrossRef]
- Shin, K.; Fogg, V.C.; Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol. 2006, 22, 207–235. [Google Scholar] [CrossRef] [Green Version]
- Diamond, J.M. Tight and leaky junctions of epithelia: A perspective on kisses in the dark. Fed. Proc. 1974, 33, 2220–2224. [Google Scholar]
- Dhawan, P.; Singh, A.B.; Deane, N.G.; No, Y.; Shiou, S.R.; Schmidt, C.; Neff, J.; Washington, M.K.; Beauchamp, R.D. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J. Clin. Investig. 2005, 115, 1765–1776. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, P.; Ahmad, R.; Chaturvedi, R.; Smith, J.J.; Midha, R.; Mittal, M.K.; Krishnan, M.; Chen, X.; Eschrich, S.; Yeatman, T.J.; et al. Claudin-2 expression increases tumorigenicity of colon cancer cells: Role of epidermal growth factor receptor activation. Oncogene 2011, 30, 3234–3247. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.B.; Sharma, A.; Smith, J.J.; Krishnan, M.; Chen, X.; Eschrich, S.; Washington, M.K.; Yeatman, T.J.; Beauchamp, R.D.; Dhawan, P. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology 2011, 141, 2140–2153. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.B.; Sharma, A.; Dhawan, P. Claudin-1 expression confers resistance to anoikis in colon cancer cells in a Src-dependent manner. Carcinogenesis 2012, 33, 2538–2547. [Google Scholar] [CrossRef] [Green Version]
- Farkas, A.E.; Capaldo, C.T.; Nusrat, A. Regulation of epithelial proliferation by tight junction proteins. Ann. N. Y. Acad. Sci. 2012, 1258, 115–124. [Google Scholar] [CrossRef]
- Balda, M.S.; Matter, K. Tight junctions in health and disease. Semin. Cell Dev. Biol. 2014, 36, 147–148. [Google Scholar] [CrossRef]
- Zihni, C.; Balda, M.S.; Matter, K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J. Cell Sci. 2014, 127, 3401–3413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severson, E.A.; Parkos, C.A. Mechanisms of outside-in signaling at the tight junction by junctional adhesion molecule A. Ann. N. Y. Acad. Sci. 2009, 1165, 10–18. [Google Scholar] [CrossRef]
- Singh, A.B.; Uppada, S.B.; Dhawan, P. Claudin proteins, outside-in signaling, and carcinogenesis. Pflug. Arch. 2017, 469, 69–75. [Google Scholar] [CrossRef]
- Oku, N.; Sasabe, E.; Ueta, E.; Yamamoto, T.; Osaki, T. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 gamma2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res. 2006, 66, 5251–5257. [Google Scholar] [CrossRef] [Green Version]
- Dos Reis, P.P.; Bharadwaj, R.R.; Machado, J.; Macmillan, C.; Pintilie, M.; Sukhai, M.A.; Perez-Ordonez, B.; Gullane, P.; Irish, J.; Kamel-Reid, S. Claudin 1 overexpression increases invasion and is associated with aggressive histological features in oral squamous cell carcinoma. Cancer 2008, 113, 3169–3180. [Google Scholar] [CrossRef]
- Ouban, A.; Ahmed, A.A. Claudins in human cancer: A review. Histol. Histopathol. 2010, 25, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ouban, A.; Hamdan, H.; Hakam, A.; Ahmed, A.A. Claudin-1 expression in squamous cell carcinomas of different organs: Comparative study of cancerous tissues and normal controls. Int. J. Surg. Pathol. 2012, 20, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Salimian, K.J.; Birkness-Gartman, J.; Waters, K.M. The path(ology) from reflux oesophagitis to Barrett oesophagus to oesophageal adenocarcinoma. Pathology 2022, 54, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, A.S.; Stabenau, K.A.; Altman, K.W.; Johnston, N. Cancer Risk in Barrett’s Esophagus: A Clinical Review. Int. J. Mol. Sci. 2023, 24, 6018. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenburg, S.A.V.; Waddingham, W.W.; Graham, D.; Rodriguez-Justo, M.; Biermann, K.; Kuipers, E.J.; Banks, M.; Jansen, M.; Spaander, M.C.W. Accuracy of endoscopic staging and targeted biopsies for routine gastric intestinal metaplasia and gastric atrophy evaluation study protocol of a prospective, cohort study: The estimate study. BMJ Open 2019, 9, e032013. [Google Scholar] [CrossRef] [Green Version]
- Bronner, M.P.; O’Sullivan, J.N.; Rabinovitch, P.S.; Crispin, D.A.; Chen, L.; Emond, M.J.; Rubin, C.E.; Brentnall, T.A. Genomic biomarkers to improve ulcerative colitis neoplasia surveillance. Am. J. Pathol. 2008, 173, 1853–1860. [Google Scholar] [CrossRef] [Green Version]
- Basu, N.; Skinner, H.G.; Litzelman, K.; Vanderboom, R.; Baichoo, E.; Boardman, L.A. Telomeres and telomere dynamics: Relevance to cancers of the GI tract. Expert Rev. Gastroenterol. Hepatol. 2013, 7, 733–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyõrffy, H.; Holczbauer, A.; Nagy, P.; Szabó, Z.; Kupcsulik, P.; Páska, C.; Papp, J.; Schaff, Z.; Kiss, A. Claudin expression in Barrett’s esophagus and adenocarcinoma. Virchows Arch. 2005, 447, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Abu-Farsakh, S.; Wu, T.; Lalonde, A.; Sun, J.; Zhou, Z. High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5. BMC Gastroenterol. 2017, 17, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, E.; Mamelak, A.J.; Gibson, M.; Maitra, A.; Sheikh, S.; Amr, S.S.; Yang, S.; Brock, M.; Forastiere, A.; Zhang, S.; et al. Overexpression of claudin proteins in esophageal adenocarcinoma and its precursor lesions. Appl. Immunohistochem. Mol. Morphol. 2006, 14, 24–30. [Google Scholar] [CrossRef]
- Gyorffy, H. Study of claudins and prognostic factors in some gastrointestinal diseases. Magy. Onkol. 2009, 53, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Torres, D.; Nancarrow, D.J.; Kuick, R.; Thomas, D.G.; Nadal, E.; Lin, J.; Chang, A.C.; Reddy, R.M.; Orringer, M.B.; Taylor, J.M.; et al. Genomic similarity between gastroesophageal junction and esophageal Barrett’s adenocarcinomas. Oncotarget 2016, 7, 54867–54882. [Google Scholar] [CrossRef]
- Demura, T.A.; Kogan, E.A.; Sklianskaia, O.A.; Mol, R. Role of tight junction claudins in the morphogenesis of adenocarcinoma in the presence of Barrett’s esophagus. Arkh. Patol. 2008, 70, 20–24. [Google Scholar]
- Jovov, B.; Van Itallie, C.M.; Shaheen, N.J.; Carson, J.L.; Gambling, T.M.; Anderson, J.M.; Orlando, R.C. Claudin-18: A dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1106–G1113. [Google Scholar] [CrossRef]
- Soini, Y.; Tommola, S.; Helin, H.; Martikainen, P. Claudins 1, 3, 4 and 5 in gastric carcinoma, loss of claudin expression associates with the diffuse subtype. Virchows Arch. 2006, 448, 52–58. [Google Scholar] [CrossRef]
- Matsuda, Y.; Semba, S.; Ueda, J.; Fuku, T.; Hasuo, T.; Chiba, H.; Sawada, N.; Kuroda, Y.; Yokozaki, H. Gastric and intestinal claudin expression at the invasive front of gastric carcinoma. Cancer Sci. 2007, 98, 1014–1019. [Google Scholar] [CrossRef]
- Semba, S.; Hasuo, T.; Satake, S.; Nakayama, F.; Yokozaki, H. Prognostic significance of intestinal claudins in high-risk synchronous and metachronous multiple gastric epithelial neoplasias after initial endoscopic submucosal dissection. Pathol. Int. 2008, 58, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Sentani, K.; Tanaka, H.; Yano, T.; Suzuki, K.; Oshima, M.; Yasui, W.; Tamura, A.; Tsukita, S. Deficiency of Stomach-Type Claudin-18 in Mice Induces Gastric Tumor Formation Independent of H pylori Infection. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 119–142. [Google Scholar] [CrossRef] [PubMed]
- Hagen, S.J.; Ang, L.H.; Zheng, Y.; Karahan, S.N.; Wu, J.; Wang, Y.E.; Caron, T.J.; Gad, A.P.; Muthupalani, S.; Fox, J.G. Loss of Tight Junction Protein Claudin 18 Promotes Progressive Neoplasia Development in Mouse Stomach. Gastroenterology 2018, 155, 1852–1867. [Google Scholar] [CrossRef] [PubMed]
- Sanada, Y.; Oue, N.; Mitani, Y.; Yoshida, K.; Nakayama, H.; Yasui, W. Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J. Pathol. 2006, 208, 633–642. [Google Scholar] [CrossRef]
- Bezdekova, M.; Brychtova, S.; Sedlakova, E.; Langova, K.; Brychta, T.; Belej, K. Analysis of Snail-1, E-cadherin and claudin-1 expression in colorectal adenomas and carcinomas. Int. J. Mol. Sci. 2012, 13, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
- Caruso, M.; Fung, K.Y.; Moore, J.; Brierley, G.V.; Cosgrove, L.J.; Thomas, M.; Cheetham, G.; Brook, E.; Fraser, L.M.; Tin, T.; et al. Claudin-1 Expression Is Elevated in Colorectal Cancer Precursor Lesions Harboring the BRAF V600E Mutation. Transl. Oncol. 2014, 7, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Pope, J.L.; Ahmad, R.; Bhat, A.A.; Washington, M.K.; Singh, A.B.; Dhawan, P. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol. Cancer 2014, 13, 167. [Google Scholar] [CrossRef] [Green Version]
- Ersoz, S.; Mungan, S.; Cobanoglu, U.; Turgutalp, H.; Ozoran, Y. Prognostic importance of Claudin-1 and Claudin-4 expression in colon carcinomas. Pathol. Res. Pr. 2011, 207, 285–289. [Google Scholar] [CrossRef]
- Rabinsky, E.F.; Joshi, B.P.; Pant, A.; Zhou, J.; Duan, X.; Smith, A.; Kuick, R.; Fan, S.; Nusrat, A.; Owens, S.R.; et al. Overexpressed Claudin-1 Can Be Visualized Endoscopically in Colonic Adenomas In Vivo. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 222–237. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.A.; Pope, J.L.; Smith, J.J.; Ahmad, R.; Chen, X.; Washington, M.K.; Beauchamp, R.D.; Singh, A.B.; Dhawan, P. Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis. Oncogene 2015, 34, 4570–4580. [Google Scholar] [CrossRef] [Green Version]
- Li, W.J.; Xu, C.; Wang, K.; Li, T.Y.; Wang, X.N.; Yang, H.; Xing, T.; Li, W.X.; Chen, Y.H.; Gao, H.; et al. Severe Intestinal Inflammation in the Small Intestine of Mice Induced by Controllable Deletion of Claudin-7. Dig. Dis. Sci. 2018, 63, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, F.; Semba, S.; Usami, Y.; Chiba, H.; Sawada, N.; Yokozaki, H. Hypermethylation-modulated downregulation of claudin-7 expression promotes the progression of colorectal carcinoma. Pathobiology 2008, 75, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.R.; Nalle, S.C.; Tretiakova, M.; Rubin, D.T.; Turner, J.R. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Investig. 2008, 88, 1110–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mees, S.T.; Mennigen, R.; Spieker, T.; Rijcken, E.; Senninger, N.; Haier, J.; Bruewer, M. Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: Upregulation of claudin-1, claudin-3, claudin-4, and beta-catenin. Int. J. Color. Dis. 2009, 24, 361–368. [Google Scholar] [CrossRef]
- Kinugasa, T.; Akagi, Y.; Yoshida, T.; Ryu, Y.; Shiratuchi, I.; Ishibashi, N.; Shirouzu, K. Increased claudin-1 protein expression contributes to tumorigenesis in ulcerative colitis-associated colorectal cancer. Anticancer Res. 2010, 30, 3181–3186. [Google Scholar]
- Bhat, A.A.; Ahmad, R.; Uppada, S.B.; Singh, A.B.; Dhawan, P. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp. Cell Res. 2016, 349, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Holczbauer, Á.; Gyöngyösi, B.; Lotz, G.; Törzsök, P.; Kaposi-Novák, P.; Szijártó, A.; Tátrai, P.; Kupcsulik, P.; Schaff, Z.; Kiss, A. Increased Expression of Claudin-1 and Claudin-7 in Liver Cirrhosis and Hepatocellular Carcinoma. Pathol. Oncol. Res. 2014, 20, 493–502. [Google Scholar] [CrossRef]
- Tsujiwaki, M.; Murata, M.; Takasawa, A.; Hiratsuka, Y.; Fukuda, R.; Sugimoto, K.; Ono, Y.; Nojima, M.; Tanaka, S.; Hirata, K.; et al. Aberrant expression of claudin-4 and -7 in hepatocytes in the cirrhotic human liver. Med. Mol. Morphol. 2015, 48, 33–43. [Google Scholar] [CrossRef]
- Tsukahara, M.; Nagai, H.; Kamiakito, T.; Kawata, H.; Takayashiki, N.; Saito, K.; Tanaka, A. Distinct expression patterns of claudin-1 and claudin-4 in intraductal papillary-mucinous tumors of the pancreas. Pathol. Int. 2005, 55, 63–69. [Google Scholar] [CrossRef]
- Tsutsumi, K.; Sato, N.; Cui, L.; Mizumoto, K.; Sadakari, Y.; Fujita, H.; Ohuchida, K.; Ohtsuka, T.; Takahata, S.; Tanaka, M. Expression of claudin-4 (CLDN4) mRNA in intraductal papillary mucinous neoplasms of the pancreas. Mod. Pathol. 2011, 24, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Kim, K.S.; Kim, T.J.; Hong, S.P.; Song, S.Y.; Chung, J.B.; Park, S.W. Immunohistochemical analysis of claudin expression in pancreatic cystic tumors. Oncol. Rep. 2011, 25, 971–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, L.J.; Soubeyran, I.; Pernot, S. Oesogastric cancer—New therapeutic targets. Bull. Cancer 2023, 110, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, T.; Oshima, T.; Chen, X.; Hori, K.; Tomita, T.; Fukui, H.; Watari, J.; Matsumoto, T.; Miwa, H. Down-regulation of claudin-3 is associated with proliferative potential in early gastric cancers. Dig. Dis. Sci. 2012, 57, 1562–1567. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Hou, L.; Liang, Y.; Zhang, Q.; Hong, X.; Wang, Y.; Huang, X.; Zhong, T.; Pang, W.; Xu, C.; et al. The p53-inducible CLDN7 regulates colorectal tumorigenesis and has prognostic significance. Neoplasia 2020, 22, 590–603. [Google Scholar] [CrossRef]
- Suh, Y.; Yoon, C.H.; Kim, R.K.; Lim, E.J.; Oh, Y.S.; Hwang, S.G.; An, S.; Yoon, G.; Gye, M.C.; Yi, J.M.; et al. Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 2013, 32, 4873–4882. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.N.; Burton, L.J.; Henderson, V.; Randle, D.D.; Morton, D.J.; Smith, B.A.; Taliaferro-Smith, L.; Nagappan, P.; Yates, C.; Zayzafoon, M.; et al. Snail Promotes Epithelial Mesenchymal Transition in Breast Cancer Cells in Part via Activation of Nuclear ERK2. PLoS ONE 2014, 9, e104987. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.H.M.; Fang, C.M.; Chuah, L.H.; Leong, C.O.; Ngai, S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol. 2018, 121, 11–22. [Google Scholar] [CrossRef]
- Kudo-Saito, C.; Shirako, H.; Takeuchi, T.; Kawakami, Y. Cancer Metastasis Is Accelerated through Immunosuppression during Snail-Induced EMT of Cancer Cells. Cancer Cell 2009, 15, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Miwa, N.; Furuse, M.; Tsukita, S.; Niikawa, N.; Nakamura, Y.; Furukawa, Y. Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol. Res. 2001, 12, 469–476. [Google Scholar] [CrossRef]
- Hseu, Y.C.; Chao, Y.H.; Lin, K.Y.; Way, T.D.; Lin, H.Y.; Thiyagarajan, V.; Yang, H.L. Antrodia camphorata inhibits metastasis and epithelial-to-mesenchymal transition via the modulation of claudin-1 and Wnt/β-catenin signaling pathways in human colon cancer cells. J. Ethnopharmacol. 2017, 208, 72–83. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, M.; Liu, X.; Pu, H. MicroRNA-421 promotes the proliferation and metastasis of gastric cancer cells by targeting claudin-11. Exp. Ther. Med. 2017, 14, 2625–2632. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.H.; Yao, Y.L.; Gu, T.; Wang, Z.Y.; Pu, X.Y.; Sun, W.W.; Zhang, X.; Jiang, Y.B.; Wang, J.J. MiR-421 regulates apoptosis of BGC-823 gastric cancer cells by targeting caspase-3. Asian Pac. J. Cancer Prev. 2014, 15, 5463–5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, N.; Maitra, A.; Fukushima, N.; van Heek, N.T.; Matsubayashi, H.; Iacobuzio-Donahue, C.A.; Rosty, C.; Goggins, M. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003, 63, 4158–4166. [Google Scholar]
- Zhu, J.-L.; Gao, P.; Wang, Z.-N.; Song, Y.-X.; Li, A.-L.; Xu, Y.-Y.; Wang, M.-X.; Xu, H.-M. Clinicopathological significance of claudin-4 in gastric carcinoma. World J. Surg. Oncol. 2013, 11, 150. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Jing, J.; Sun, L.; Gong, Y.; Chen, M.; Wang, Z.; Sun, M.; Yuan, Y. Expression of claudin-11, -23 in different gastric tissues and its relationship with the risk and prognosis of gastric cancer. PLoS ONE 2017, 12, e0174476. [Google Scholar] [CrossRef] [Green Version]
- Hollandsworth, H.M.; Lwin, T.M.; Amirfakhri, S.; Filemoni, F.; Batra, S.K.; Hoffman, R.M.; Dhawan, P.; Bouvet, M. Anti-Claudin-1 Conjugated to a Near-Infrared Fluorophore Targets Colon Cancer in PDOX Mouse Models. J. Surg. Res. 2019, 242, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Valenzano, M.C.; Rybakovsky, E.; Chen, V.; Leroy, K.; Lander, J.; Richardson, E.; Yalamanchili, S.; McShane, S.; Mathew, A.; Mayilvaganan, B.; et al. Zinc Gluconate Induces Potentially Cancer Chemopreventive Activity in Barrett’s Esophagus: A Phase 1 Pilot Study. Dig. Dis. Sci. 2021, 66, 1195–1211. [Google Scholar] [CrossRef] [PubMed]
Preneoplastic Lesions | CLDN1 | CLDN2 | CLDN3 | CLDN4 | CLDN5 | CLDN7 | CLDN18 |
---|---|---|---|---|---|---|---|
Esophageal | ↑ | ↑ | ↑ | ↑/↑↑ | - | ↔/↑↑ | ↑↑ |
Gastric | ↑ | - | ↑ | ↑/↑↑ | ↑ | ↑/↑↑ | ↑↑ |
Colonic | ↑ | ↑ | ↑ | ↑ | - | ↓ | - |
Hepatocellular | ↑ | - | - | ↑ | - | ↑ | - |
Pancreatic | ↓ | ↑ | - | ↑ | - | - | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouban, A.; Arabi, T.Z. Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review. Cancers 2023, 15, 4095. https://doi.org/10.3390/cancers15164095
Ouban A, Arabi TZ. Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review. Cancers. 2023; 15(16):4095. https://doi.org/10.3390/cancers15164095
Chicago/Turabian StyleOuban, Abderrahman, and Tarek Ziad Arabi. 2023. "Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review" Cancers 15, no. 16: 4095. https://doi.org/10.3390/cancers15164095
APA StyleOuban, A., & Arabi, T. Z. (2023). Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review. Cancers, 15(16), 4095. https://doi.org/10.3390/cancers15164095