Artificial Intelligence in Urooncology: What We Have and What We Expect
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Definition and Types of AI
4. Application of AI in Urological Oncology
4.1. Prostate Cancer
4.1.1. Imaging and Diagnosis
4.1.2. Gleason Grading
4.1.3. Nodal Staging
4.1.4. Biomarkers
4.1.5. Treatment
4.2. Kidney Cancer
4.2.1. Prediction and Detection of Kidney Cancer
4.2.2. Differentiation of Benign and Malignant Renal Tumors
4.2.3. Differentiation of RCC Types
4.2.4. Differentiation Grade of Clear Renal Cell Carcinoma (Fuhrman Grade)
4.2.5. Genetic Mutation
4.2.6. Treatment of Kidney Cancer
4.3. Bladder Cancer
4.3.1. Diagnosis
4.3.2. Metastasis Detection
4.3.3. Prediction and Prognosis
4.3.4. Disease Progression and Chemotherapy Efficacy
4.4. Upper Tract Urothelial Carcinoma (UTUC)
4.5. Testicular Tumors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- van der Laak, J.; Litjens, G.; Ciompi, F. Deep learning in histopathology: The path to the clinic. Nat. Med. 2021, 27, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Pantanowitz, L.; Quiroga-Garza, G.M.; Bien, L.; Heled, R.; Laifenfeld, D.; Linhart, C.; Sandbank, J.; Shach, A.A.; Shalev, V.; Vecsler, M.; et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: A blinded clinical validation and deployment study. Lancet Digit. Health 2020, 2, e407–e416. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Naik, N.; Somani, B.K.; Hameed, B.Z. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study. Turk. J. Urol. 2020, 46, S27–S39. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.; Krois, J.; Schwendicke, F. Demystifying artificial intelligence and deep learning in dentistry. Braz. Oral Res. 2021, 35, e094. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, L.; Wu, C.; Li, C.; Xu, R.; Sun, Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun. 2021, 41, 1100–1115. [Google Scholar] [CrossRef]
- Gruson, D.; Helleputte, T.; Rousseau, P.; Gruson, D. Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation. Clin. Biochem. 2019, 69, 1–7. [Google Scholar] [CrossRef]
- Shimizu, H.; Nakayama, K.I. Artificial intelligence in oncology. Cancer Sci. 2020, 111, 1452–1460. [Google Scholar] [CrossRef]
- Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021, 13, 1–17. [Google Scholar] [CrossRef]
- Ramesh, A.; Kambhampati, C.; Monson, J.; Drew, P. Artificial intelligence in medicine. Ann. R Coll. Surg. Engl. 2004, 86, 334. [Google Scholar] [CrossRef]
- Eraslan, G.; Avsec, Ž.; Gagneur, J.; Theis, F.J. Deep learning: New computational modelling techniques for genomics. Nat. Rev. Genet. 2019, 20, 389–403. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Massion, P.P.; Antic, S.; Ather, S.; Arteta, C.; Brabec, J.; Chen, H.; Declerck, J.; Dufek, D.; Hickes, W.; Kadir, T.; et al. Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules. Am. J. Respir. Crit. Care Med. 2020, 202, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Kanan, C.; Sue, J.; Grady, L.; Fuchs, T.J.; Chandarlapaty, S.; Reis-Filho, J.S.O.; Salles, P.G.; da Silva, L.M.; Gil Ferreira, C.; Pereira, E.M. Independent validation of paige prostate: Assessing clinical benefit of an artificial intelligence tool within a digital diagnostic pathology laboratory workflow. J. Clin. Oncol. 2020, 38, e14076. [Google Scholar] [CrossRef]
- Bitterman, D.S.; Miller, T.A.; Mak, R.H.; Savova, G.K. Clinical Natural Language Processing for Radiation Oncology: A Review and Practical Primer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 641–655. [Google Scholar] [CrossRef]
- Wasim, S.; Lee, S.-Y.; Kim, J. Complexities of Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 14257. [Google Scholar] [CrossRef]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef]
- Eggener, S. Prostate Cancer. Sci. World J. 2011, 11, 749–750. [Google Scholar] [CrossRef]
- Schatten, H. Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies. Adv. Exp. Med. Biol. 2018, 1095, 1–14. [Google Scholar] [CrossRef]
- Cao, R.; Zhong, X.; Afshari, S.; Felker, E.; Suvannarerg, V.; Tubtawee, T.; Vangala, S.; Scalzo, F.; Raman, S.; Sung, K. Performance of Deep Learning and Genitourinary Radiologists in Detection of Prostate Cancer Using 3-T Multiparametric Magnetic Resonance Imaging. J. Magn. Reson. Imaging 2021, 54, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Giannini, V.; Mazzetti, S.; Vignati, A.; Russo, F.; Bollito, E.; Porpiglia, F.; Stasi, M.; Regge, D. A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic resonance imaging. Comput. Med. Imaging Graph. 2015, 46, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Gaur, S.; Lay, N.; Harmon, S.A.; Doddakashi, S.; Mehralivand, S.; Argun, B.; Barrett, T.; Bednarova, S.; Girometti, R.; Karaarslan, E.; et al. Can computer-aided diagnosis assist in the identification of prostate cancer on prostate MRI? a multi-center, multi-reader investigation. Oncotarget 2018, 9, 33804–33817. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Zheng, X.; Liu, B.; Chen, H.; Li, J.; Ma, X.; Xiang, J.; Weng, G.; Zhu, W.; et al. A prospective multi-center randomized comparative trial evaluating outcomes of transrectal ultrasound (TRUS)-guided 12-core systematic biopsy, mpMRI-targeted 12-core biopsy, and artificial intelligence ultrasound of prostate (AIUSP) 6-core targeted biopsy for prostate cancer diagnosis. World J. Urol. 2022, 41, 653–662. [Google Scholar] [CrossRef]
- Stojadinović, M.M.; Stojadinović, M.M.; Pantić, D.N. Decision tree analysis for prostate cancer prediction. Srp. Arh. Celok. Lek. 2019, 147, 52–58. [Google Scholar] [CrossRef]
- Wildeboer, R.R.; van Sloun, R.J.; Wijkstra, H.; Mischi, M. Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods. Comput. Methods Programs Biomed. 2020, 189, 105316. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, S.E.; Chirra, P.V.; Yim, M.C.; Rofsky, N.M.; Purysko, A.S.; Rosen, M.A.; Bloch, B.N.; Madabhushi, A. Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: A multi-site study. BMC Med. Imaging 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Marginean, F.; Arvidsson, I.; Simoulis, A.; Overgaard, N.C.; Åström, K.; Heyden, A.; Bjartell, A.; Krzyzanowska, A. An Artificial Intelligence–based Support Tool for Automation and Standardisation of Gleason Grading in Prostate Biopsies. Eur. Urol. Focus 2021, 7, 995–1001. [Google Scholar] [CrossRef]
- Ström, P.; Kartasalo, K.; Olsson, H.; Solorzano, L.; Delahunt, B.; Berney, D.M.; Bostwick, D.G.; Evans, A.J.; Grignon, D.J.; Humphrey, P.A.; et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: A population-based, diagnostic study. Lancet Oncol. 2020, 21, 222–232. [Google Scholar] [CrossRef]
- Bulten, W.; Kartasalo, K.; Chen, P.-H.C.; Ström, P.; Pinckaers, H.; Nagpal, K.; Cai, Y.; Steiner, D.F.; van Boven, H.; Vink, R.; et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: The PANDA challenge. Nat. Med. 2022, 28, 154–163. [Google Scholar] [CrossRef]
- Hartenstein, A.; Lübbe, F.; Baur, A.D.J.; Rudolph, M.M.; Furth, C.; Brenner, W.; Amthauer, H.; Hamm, B.; Makowski, M.; Penzkofer, T. Prostate Cancer Nodal Staging: Using Deep Learning to Predict 68Ga-PSMA-Positivity from CT Imaging Alone. Sci. Rep. 2020, 10, 3398. [Google Scholar] [CrossRef] [PubMed]
- Green, W.J.; Ball, G.; Hulman, G.; Johnson, C.; Van Schalwyk, G.; Ratan, H.L.; Soria, D.; Garibaldi, J.M.; Parkinson, R.; Hulman, J.; et al. KI67 and DLX2 predict increased risk of metastasis formation in prostate cancer–a targeted molecular approach. Br. J. Cancer 2016, 115, 236–242. [Google Scholar] [CrossRef]
- de la Calle, C.M.; Nguyen, H.G.; Hosseini-Asl, E.; So, C.; Socher, R.; Xiong, C.; Xue, L.; Carroll, P.; Cooperberg, M.R. Artificial intelligence for streamlined immunofluorescence-based biomarker discovery in prostate cancer. J. Clin. Oncol. 2020, 38, 279. [Google Scholar] [CrossRef]
- Hou, Q.; Bing, Z.-T.; Hu, C.; Li, M.-Y.; Yang, K.-H.; Mo, Z.; Xie, X.-W.; Liao, J.-L.; Lu, Y.; Horie, S.; et al. RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer. EBioMedicine 2018, 32, 234–244. [Google Scholar] [CrossRef]
- Kim, Y.; Jeon, J.; Mejia, S.; Yao, C.Q.; Ignatchenko, V.; Nyalwidhe, J.O.; Gramolini, A.O.; Lance, R.S.; Troyer, D.A.; Drake, R.R.; et al. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer. Nat. Commun. 2016, 7, 11906. [Google Scholar] [CrossRef]
- Bibault, J.; Xing, L. Predicting Survival in Prostate Cancer Patients with Interpretable Artificial Intelligence. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Auffenberg, G.B.; Ghani, K.R.; Ramani, S.; Usoro, E.; Denton, B.; Rogers, C.; Stockton, B.; Miller, D.C.; Singh, K. askMUSIC: Leveraging a Clinical Registry to Develop a New Machine Learning Model to Inform Patients of Prostate Cancer Treatments Chosen by Similar Men. Eur. Urol. 2018, 75, 901–907. [Google Scholar] [CrossRef]
- Lee, S.; Kerns, S.; Ostrer, H.; Rosenstein, B.; Deasy, J.O.; Oh, J.H. Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Chrystall, D.M.; Mylonas, A.; Hewson, E.; Martin, J.; Keall, P.J.; Booth, J.T.; Nguyen, D.T. Deep learning enables MV-based real-time image guided radiation therapy for prostate cancer patients. Phys. Med. Biol. 2023, 68, 095016. [Google Scholar] [CrossRef]
- Nicolae, A.; Semple, M.; Lu, L.; Smith, M.; Chung, H.; Loblaw, A.; Morton, G.; Mendez, L.C.; Tseng, C.-L.; Davidson, M.; et al. Conventional vs machine learning–based treatment planning in prostate brachytherapy: Results of a Phase I randomized controlled trial. Brachytherapy 2020, 19, 470–476. [Google Scholar] [CrossRef]
- Deng, K.; Li, H.; Guan, Y. Treatment Stratification of Patients with Metastatic Castration-Resistant Prostate Cancer by Machine Learning. iScience 2020, 23, 100804. [Google Scholar] [CrossRef]
- Wildeboer, R.R.; Mannaerts, C.K.; van Sloun, R.J.; Budaus, L.; Tilki, D.; Wijkstra, H.; Salomon, G.; Mischi, M. Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur. Radiol. 2020, 30, 806–815. [Google Scholar] [CrossRef]
- Corgna, E.; Betti, M.; Gatta, G.; Roila, F.; De Mulder, P.H. Renal cancer. Crit. Rev. Oncol. Hematol. 2007, 64, 247–262. [Google Scholar] [CrossRef]
- Capitanio, U.; Montorsi, F. Renal cancer. Lancet 2016, 387, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Santoni, M.; Piva, F.; Porta, C.; Bracarda, S.; Heng, D.Y.; Matrana, M.R.; Grande, E.; Mollica, V.; Aurilio, G.; Rizzo, M.; et al. Artificial Neural Networks as a Way to Predict Future Kidney Cancer Incidence in the United States. Clin. Genitourin. Cancer 2020, 19, e84–e91. [Google Scholar] [CrossRef]
- Houshyar, R.; Glavis-Bloom, J.; Bui, T.-L.; Chahine, C.; Bardis, M.D.; Ushinsky, A.; Liu, H.; Bhatter, P.; Lebby, E.; Fujimoto, D.; et al. Outcomes of Artificial Intelligence Volumetric Assessment of Kidneys and Renal Tumors for Preoperative Assessment of Nephron-Sparing Interventions. J. Endourol. 2021, 35, 1411–1418. [Google Scholar] [CrossRef]
- Erdim, C.; Yardimci, A.H.; Bektas, C.T.; Kocak, B.; Koca, S.B.; Demir, H.; Kilickesmez, O. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis. Acad. Radiol. 2020, 27, 1422–1429. [Google Scholar] [CrossRef]
- Uhlig, J.; Biggemann, L.; Nietert, M.M.; Beißbarth, T.; Lotz, J.; Kim, H.S.; Trojan, L.; Uhlig, A. Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach. Medicine 2020, 99, e19725. [Google Scholar] [CrossRef] [PubMed]
- Uhm, K.-H.; Jung, S.-W.; Choi, M.H.; Shin, H.-K.; Yoo, J.-I.; Oh, S.W.; Kim, J.Y.; Kim, H.G.; Lee, Y.J.; Youn, S.Y.; et al. Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography. npj Precis. Oncol. 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Nikpanah, M.; Xu, Z.; Jin, D.; Farhadi, F.; Saboury, B.; Ball, M.W.; Gautam, R.; Merino, M.J.; Wood, B.J.; Turkbey, B.; et al. A deep-learning based artificial intelligence (AI) approach for differentiation of clear cell renal cell carcinoma from oncocytoma on multi-phasic MRI. Clin Imaging. 2021, 77, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Tabibu, S.; Vinod, P.K.; Jawahar, C.V. Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Xing, Z.; Jiang, Z.; Chen, J.; Pan, L.; Qiu, J.; Xing, W. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur. J. Radiol. 2018, 103, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Durmaz, E.S.; Ates, E.; Ulusan, M.B. Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning–Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status. Am. J. Roentgenol. 2019, 212, W55–W63. [Google Scholar] [CrossRef]
- Tian, M.; Wang, T.; Wang, P. Development and Clinical Validation of a Seven-Gene Prognostic Signature Based on Multiple Machine Learning Algorithms in Kidney Cancer. Cell Transplant. 2021, 30. [Google Scholar] [CrossRef]
- Buchner, A.; Kendlbacher, M.; Nuhn, P.; Tüllmann, C.; Haseke, N.; Stief, C.G.; Staehler, M. Outcome Assessment of Patients with Metastatic Renal Cell Carcinoma Under Systemic Therapy Using Artificial Neural Networks. Clin. Genitourin. Cancer 2012, 10, 37–42. [Google Scholar] [CrossRef]
- Barkan, E.; Porta, C.; Rabinovici-Cohen, S.; Tibollo, V.; Quaglini, S.; Rizzo, M. Artificial intelligence-based prediction of overall survival in metastatic renal cell carcinoma. Front. Oncol. 2023, 13, 1021684. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hong, S.-H. Use of artificial intelligence to characterize renal tumors. Investig. Clin. Urol. 2022, 63, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Yardimci, A.H.; Bektas, C.T.; Turkcanoglu, M.H.; Erdim, C.; Yucetas, U.; Koca, S.B.; Kilickesmez, O. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur. J. Radiol. 2018, 107, 149–157. [Google Scholar] [CrossRef]
- Pedersen, M.; Andersen, M.B.; Christiansen, H.; Azawi, N.H. Classification of renal tumour using convolutional neural networks to detect oncocytoma. Eur. J. Radiol. 2020, 133, 109343. [Google Scholar] [CrossRef]
- Fuhrman, S.A.; Lasky, L.C.; Limas, C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am. J. Surg. Pathol. 1982, 6, 655–664. [Google Scholar] [CrossRef]
- Tian, K.; Rubadue, C.A.; Lin, D.I.; Veta, M.; Pyle, M.E.; Irshad, H.; Heng, Y.J. Automated clear cell renal carcinoma grade classification with prognostic significance. PLoS ONE 2019, 14, e0222641. [Google Scholar] [CrossRef] [PubMed]
- Holdbrook, D.A.; Singh, M.; Choudhury, Y.; Kalaw, E.M.; Koh, V.; Tan, H.S.; Kanesvaran, R.; Tan, P.H.; Peng, J.Y.S.; Tan, M.-H.; et al. Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns. JCO Clin. Cancer Inform. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Wen-Zhi, G.; Tai, T.; Zhixin, F.; Huanyu, L.; Yanqing, G.; Yuexian, G.; Xuesong, L. Prediction of pathological staging and grading of renal clear cell carcinoma based on deep learning algorithms. J. Int. Med Res. 2022, 50. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ren, H.; Zhang, Y.; Zhou, Z. Fifteen-gene expression based model predicts the survival of clear cell renal cell carcinoma. Medicine 2018, 97, e11839. [Google Scholar] [CrossRef]
- Baghdadi, A.; Aldhaam, N.A.; Elsayed, A.S.; Hussein, A.A.; Cavuoto, L.A.; Kauffman, E.; Guru, K.A. Automated differentiation of benign renal oncocytoma and chromophobe renal cell carcinoma on computed tomography using deep learning. BJU Int. 2020, 125, 553–560. [Google Scholar] [CrossRef]
- Kattan, M.W.; Kantoff, P.W.; Nelson, J.B.; Carroll, P.R.; Roach, M.; Higano, C.S. Comparison of Cox Regression with Other Methods for Determining Prediction Models and Nomograms. J. Urol. 2003, 170, S6–S10. [Google Scholar] [CrossRef]
- Zarrabi, K.; Wu, S. An evaluation of nivolumab for the treatment of metastatic renal cell carcinoma. Expert Opin. Biol. Ther. 2018, 18, 695–705. [Google Scholar] [CrossRef]
- Khene, Z.; Mathieu, R.; Peyronnet, B.; Kokorian, R.; Gasmi, A.; Khene, F.; Rioux-Leclercq, N.; Kammerer-Jacquet, S.-F.; Shariat, S.; Laguerre, B.; et al. Radiomics can predict tumour response in patients treated with Nivolumab for a metastatic renal cell carcinoma: An artificial intelligence concept. World J. Urol. 2021, 39, 3707–3709. [Google Scholar] [CrossRef] [PubMed]
- Le, Y.; Xu, W.; Guo, W. The Construction and Validation of a new Predictive Model for Overall Survival of Clear Cell Renal Cell Carcinoma Patients with Bone Metastasis Based on Machine Learning Algorithm. Technol. Cancer Res. Treat. 2023, 22. [Google Scholar] [CrossRef]
- Khene, Z.-E.; Bigot, P.; Doumerc, N.; Ouzaid, I.; Boissier, R.; Nouhaud, F.-X.; Albiges, L.; Bernhard, J.-C.; Ingels, A.; Borchiellini, D.; et al. Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma. Eur. Urol. Oncol. 2023, 6, 323–330. [Google Scholar] [CrossRef]
- Lenis, A.T.; Lec, P.M.; Chamie, K. Bladder cancer: A review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.L.; Mbbs, D.P. Frcs The Etiology of Bladder Cancer. Urol. Cancers 2022, 23–28. [Google Scholar] [CrossRef]
- Dobruch, J.; Oszczudłowski, M. Bladder Cancer: Current Challenges and Future Directions. Medicina 2021, 57, 749. [Google Scholar] [CrossRef] [PubMed]
- Shkolyar, E.; Jia, X.; Xing, L.; Liao, J. LBA-20 automated cystoscopic detection of bladder cancer using deep-learning. J. Urol. 2019, 201, e1000–e1001. [Google Scholar] [CrossRef]
- Ikeda, A.; Nosato, H.; Kochi, Y.; Kojima, T.; Kawai, K.; Sakanashi, H.; Murakawa, M.; Nishiyama, H. Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence. J. Endourol. 2020, 34, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Eminaga, O.; Semjonow, A.; Breil, B. Diagnostic classification of cystoscopic images using deep convolutional neural networks. Eur. Urol. Suppl. 2018, 17, e1232. [Google Scholar] [CrossRef]
- Lorencin, I.; Anđelić, N.; Španjol, J.; Car, Z. Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis. Artif. Intell. Med. 2020, 102, 101746. [Google Scholar] [CrossRef]
- Hashemi, S.M.R.; Hassanpour, H.; Kozegar, E.; Tan, T. Cystoscopic Image Classification Based on Combining MLP and GA. Int. J. Nonlinear Anal. Appl. 2020, 11, 93–105. [Google Scholar] [CrossRef]
- Gresser, E.; Woźnicki, P.; Messmer, K.; Schreier, A.; Kunz, W.G.; Ingrisch, M.; Stief, C.; Ricke, J.; Nörenberg, D.; Buchner, A.; et al. Radiomics Signature Using Manual Versus Automated Segmentation for Lymph Node Staging of Bladder Cancer. Eur. Urol. Focus 2023, 9, 145–153. [Google Scholar] [CrossRef]
- Wu, S.; Hong, G.; Xu, A.; Zeng, H.; Chen, X.; Wang, Y.; Luo, Y.; Wu, P.; Liu, C.; Jiang, N.; et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: A retrospective, multicentre, diagnostic study. Lancet Oncol. 2023, 24, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Girard, A.; Dercle, L.; Vila-Reyes, H.; Schwartz, L.H.; Girma, A.; Bertaux, M.; Radulescu, C.; Lebret, T.; Delcroix, O.; Rouanne, M. A machine-learning-based combination of criteria to detect bladder cancer lymph node metastasis on [18F]FDG PET/CT: A pathology-controlled study. Eur. Radiol. 2023, 33, 2821–2829. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, G.; Choi, K.-S.; Lam, K.-M.; Lu, J. Output based transfer learning with least squares support vector machine and its application in bladder cancer prognosis. Neurocomputing 2020, 387, 279–292. [Google Scholar] [CrossRef]
- Gavriel, C.G.; Dimitriou, N.; Brieu, N.; Nearchou, I.P.; Arandjelovic, O.; Schmidt, G.; Harrison, D.J.; Caie, P.D. Identification of immunological features enables survival prediction of muscle-invasive bladder cancer patients using machine learning. bioRxiv 2020. [Google Scholar] [CrossRef]
- Bartsch, G.; Mitra, A.P.; Mitra, S.A.; Almal, A.A.; Steven, K.E.; Skinner, D.G.; Fry, D.W.; Lenehan, P.F.; Worzel, W.P.; Cote, R.J. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder. J. Urol. 2016, 195, 493–498. [Google Scholar] [CrossRef]
- Wu, E.; Hadjiiski, L.M.; Samala, R.K.; Chan, H.-P.; Cha, K.H.; Richter, C.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Alva, A.; et al. Deep Learning Approach for Assessment of Bladder Cancer Treatment Response. Tomography 2019, 5, 201–208. [Google Scholar] [CrossRef]
- Hasnain, Z.; Mason, J.; Gill, K.; Miranda, G.; Gill, I.S.; Kuhn, P.; Newton, P.K. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS ONE 2019, 14, e0210976. [Google Scholar] [CrossRef]
- Nojima, S.; Terayama, K.; Shimoura, S.; Hijiki, S.; Nonomura, N.; Morii, E.; Okuno, Y.; Fujita, K. A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens. Cancer Cytopathol. 2021, 129, 984–995. [Google Scholar] [CrossRef]
- Freifeld, Y.; Krabbe, L.-M.; Clinton, T.N.; Woldu, S.L.; Margulis, V. Therapeutic strategies for upper tract urothelial carcinoma. Expert Rev. Anticancer. Ther. 2018, 18, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C.P.; Castle, S.M.; Llanos, C.A.; Cortes, J.A.S.; Bird, V.; Rodriguez, S.; Reis, I.M.; Zhao, W.; Gomez-Fernandez, C.; Leveillee, R.J.; et al. Low biopsy volume in ureteroscopy does not affect tumor biopsy grading in upper tract urothelial carcinoma. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 1696–1700. [Google Scholar] [CrossRef]
- Motiwala, F.; Kucheria, R. Ureteroscopy. Surg. Proced. Core Urol. Trainees 2020, 19–31. [Google Scholar] [CrossRef]
- Lazo, J.F.; Marzullo, A.; Moccia, S.; Catellani, M.; Rosa, B.; de Mathelin, M.; De Momi, E. Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 915–922. [Google Scholar] [CrossRef]
- Cheng, L.; Albers, P.; Berney, D.M.; Feldman, D.R.; Daugaard, G.; Gilligan, T.; Looijenga, L.H.J. Testicular cancer. Nat. Rev. Dis. Prim. 2018, 4, 29. [Google Scholar] [CrossRef]
- King, J.; Adra, N.; Einhorn, L.H. Testicular Cancer: Biology to Bedside. Cancer Res. 2021, 81, 5369–5376. [Google Scholar] [CrossRef]
- Ghosh, A.; Sirinukunwattana, K.; Alham, N.K.; Browning, L.; Colling, R.; Protheroe, A.; Protheroe, E.; Jones, S.; Aberdeen, A.; Rittscher, J.; et al. The Potential of Artificial Intelligence to Detect Lymphovascular Invasion in Testicular Cancer. Cancers 2021, 13, 1325. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, K.; Zhang, C.; Zhang, Y.; Wang, K.; Li, W.; Wang, J. A Machine Learning Algorithm for Predicting the Risk of Developing to M1b Stage of Patients with Germ Cell Testicular Cancer. Front. Public Health 2022, 10, 916513. [Google Scholar] [CrossRef]
- Linder, N.; Taylor, J.C.; Colling, R.; Pell, R.; Alveyn, E.; Joseph, J.; Protheroe, A.; Lundin, M.; Lundin, J.; Verrill, C. Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours. J. Clin. Pathol. 2019, 72, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Baessler, B.; Nestler, T.; dos Santos, D.P.; Paffenholz, P.; Zeuch, V.; Pfister, D.; Maintz, D.; Heidenreich, A. Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection. Eur. Radiol. 2020, 30, 2334–2345. [Google Scholar] [CrossRef] [PubMed]
- Abbod, M.F.; Catto, J.W.; Linkens, D.A.; Hamdy, F.C. Application of Artificial Intelligence to the Management of Urological Cancer. J. Urol. 2007, 178, 1150–1156. [Google Scholar] [CrossRef]
Study | Objective | Algorithm/Method | Study Design | Results |
---|---|---|---|---|
Cao et al. [21] | Detection of prostate cancer using 3 T multiparametric magnetic resonance imaging | Deep learning algorithm |
| Detection sensitivity: 5.1% and 4.7% below the radiologists for clinically significant and index lesions, respectively |
Giannini et al. [22] | Setting of the MRI-guided biopsy target | Computer-aided diagnosis |
| Accuracy—97% |
Gaur et al. [23] | Detection of prostate cancer using mpMRI | Computer-aided diagnosis |
| Improved patient-level specificity (72%) compared to mpMRI-alone (45%) |
Wildeboer et al. [42] | Detection of prostate cancer using B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics | Machine learning |
| AUC-ROC of 0.75 for detecting PCa and 0.9 for detecting Gleason score greater than 3 + 4 |
Viswanath et al. [27] | Detection of peripheral zone prostate tumors using T2-weighted MRI | Computer-aided diagnosis |
| AUC of 0.744 for detecting PCa |
Marginean et al. [28] | Standardization of Gleason grading in prostate biopsies | Machine learning and convolutional neural networks |
| Sensitivity in detecting cancer (100%) and identifying the correct Gleason pattern (80–91%) depending on the Gleason pattern, and specificity (68–98%) depending on the Gleason pattern. |
Ström et al. [29] | Detection and grading of prostate cancers in prostate biopsies | Deep neural networks |
| AUC-ROC of 0.997 in distinguishing the malignancy, comparable performance to expert pathologists in assigning Gleason grades. |
Bulten et al. [30] | Detection and grading of prostate cancers in prostate biopsies | Multiparametric algorithms |
| Agreements of 0.862 and 0.868 with expert uropathologists |
Hartenstein et al. [31] | Prostate cancer nodal staging using CT imaging | Convolutional neural networks (CNNs) |
| AUC of 0.95 and 0.86 compared to an AUC of 0.81 for experienced radiologists |
Green et al. [32] | Identification and validation new biomarkers | Artificial neural network (ANN) |
| High Ki67 is predictive of reduced survival and increased risk of metastasis, independent of PSA and Gleason score. DLX2 shows increased metastasis risk and co-expression with a high Ki67 score |
Calle et al. [33] | Automation analysis of biomarkers | Deep learning algorithm |
| 5% variance compared to manually generated results; 100% accuracy in identifying positive tumors |
Hou et al. [34] | Identification and validation of new biomarkers | Genetic algorithm-optimized artificial neural network (GA-ANN) |
| AUC of 0.953 for diagnostic accuracy and AUC of 0.808 for prognostic capability |
Auffenberg et al. [37] | Development of a web-based system to provide newly diagnosed men with predicted treatment decisions | Random forest ML model |
| AUC of 0.81 for personalized prediction |
Lee et al. [38] | Prediction of late GU toxicity after prostate radiation therapy | Preconditioned random forest regression method |
| Accuracy—70% |
Study | Objective | Algorithm/Method | Study Design | Results |
---|---|---|---|---|
Santoni et al. [45] | Prediction of new cases of RCC | ANN |
| 24.7% increase in new RCC cases, rising from 44,400 in 2020 to 55,400 in 2050 |
Houshyar et al. [46] | Development of a surgical planning aid | CNN |
| Median Dice coefficients for kidney and tumor segmentation were 0.970 and 0.816, respectively. |
Erdim et al. [47] | Distinguishing between benign and malignant solid renal masses | ML |
| Best predictive performance with an accuracy of 90.5% and an AUC of 0.915 |
Uhlig et al. [48] | Distinguishing between benign and malignant clinical T1 renal masses | Random forest algorithm |
| AUC of 0.83 compared to radiologists’ 0.68, sensitivity 0.88 vs. 0.80, p = 0.045, specificity 0.67 vs. 0.50, p = 0.083 |
Uhm et al. [49] | Differentiation of RCC types | DL |
| AUC of 0.855, comparable diagnostic performance to that of radiologists |
Nikpanah et al. [50] | Distinguishing clear cell renal cell carcinoma from renal oncocytoma | Deep neural network (AlexNet) |
| Overall accuracy of 91% and an AUC of 0.9 |
Tabibu et al. [51] | Differentiation of RCC types | CNN |
| Accuracy of 93.39% for distinguishing clear cell and chromophobe RCC from normal tissue; accuracy of 94.07% for distinguishing clear cell, chromophobe, and papillary RCC subtypes |
Ding et al. [52] | Differentiation grade of ccRCC | CT-based radiomic models |
| AUC of 0.826, 0.878, and 0.843 for models 1, 2, and 3, respectively |
Kocak et al. [53] | Detection PBRM1 mutations through CT texture analysis | ANN and RF |
| ANN algorithm’s AUC of 0.925, RF algorithm’s AUC of 0.987 |
Tian et al. [54] | Screening for kidney cancer prognosis biomarkers | RF |
| In tumor tissue, RNASET2 and FXYD5 were found to be highly expressed, while NAT8 was observed to be lowly expressed at both the protein and transcription levels |
Buchner et al. [55] | Prediction of the metastatic RCC outcome | ANN |
| 95% overall accuracy, outperforming logistic regression models (78% accuracy) |
Barkan et al. [56] | Predicting OS for mRCC patients | ML |
| AUC of 0.786 for three-year OS and 0.771 for five-year OS |
Study | Objective | Algorithm/Method | Study Design | Results |
---|---|---|---|---|
Ikeda et al. [76] | Improvement of the quality of bladder cancer diagnosis by supporting cystoscopic diagnosis using AI | Convolutional neural network (CNN) |
| AUC-ROC of 0.98 in distinguishing normal and tumor tissue |
Eminaga et al. [77] | Exploration of the potential of AI for the diagnostic classification of cystoscopic images | Convolutional neural network (CNN) |
| CNN achieved F1 scores of 99.52%, 99.48%, and 99.45% |
Lorencin et al. [78] | Investigation of the MLP implementation possibility for the detection of urinary bladder cancer | Multi-Layer Perceptron (MLP) |
| AUC of up to 0.99 |
Wu et al. [81] | Development of LNMDM | (AI-assisted workflow |
| AUC from 0.978 to 0.998 |
Girard et al. [82] | Developing criteria to identify pelvic lymph node involvement in MIBC patients | ML-based combination of criteria |
| AUC of 0.59 in diagnostic performance compared to the experts (AUC = 0.64) |
Gavriel et al. [84] | Development of an AI tool for predicting the 5-year prognosis of MIBC patients | ML-based algorithms |
| 71.4% accuracy in classification of patients who succumbed to MIBC |
Nojima et al. [88] | Developing DLS as a diagnosis support tool for clinical cytology in urinary cytology | Deep Learning System (DLS) |
| AUC of 0.9890 and an F1 score of 0.9002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froń, A.; Semianiuk, A.; Lazuk, U.; Ptaszkowski, K.; Siennicka, A.; Lemiński, A.; Krajewski, W.; Szydełko, T.; Małkiewicz, B. Artificial Intelligence in Urooncology: What We Have and What We Expect. Cancers 2023, 15, 4282. https://doi.org/10.3390/cancers15174282
Froń A, Semianiuk A, Lazuk U, Ptaszkowski K, Siennicka A, Lemiński A, Krajewski W, Szydełko T, Małkiewicz B. Artificial Intelligence in Urooncology: What We Have and What We Expect. Cancers. 2023; 15(17):4282. https://doi.org/10.3390/cancers15174282
Chicago/Turabian StyleFroń, Anita, Alina Semianiuk, Uladzimir Lazuk, Kuba Ptaszkowski, Agnieszka Siennicka, Artur Lemiński, Wojciech Krajewski, Tomasz Szydełko, and Bartosz Małkiewicz. 2023. "Artificial Intelligence in Urooncology: What We Have and What We Expect" Cancers 15, no. 17: 4282. https://doi.org/10.3390/cancers15174282
APA StyleFroń, A., Semianiuk, A., Lazuk, U., Ptaszkowski, K., Siennicka, A., Lemiński, A., Krajewski, W., Szydełko, T., & Małkiewicz, B. (2023). Artificial Intelligence in Urooncology: What We Have and What We Expect. Cancers, 15(17), 4282. https://doi.org/10.3390/cancers15174282