Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Treatment of Peritoneal Carcinomatosis in Gastric Cancer
3. Peritoneal Carcinomatosis as a Distinct Subtype of Gastric Cancer
4. Peritoneal Cavity as a Distinct Immune Environment with Treatment Implications
5. Clinical Trials Reporting Immunotherapy Approaches for Gastric Cancer Peritoneal Carcinomatosis
5.1. Systemic Checkpoint Inhibition
5.2. Intraperitoneal Immunotherapy
5.3. Intraperitoneal Vaccination
5.4. Oncolytic Viral Therapy
5.5. Adoptive Cell Therapy
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Qi, C.; Gong, J.; Li, J.; Liu, D.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; Zhou, J.; Cao, Y.; et al. Claudin18.2-Specific CAR T Cells in Gastrointestinal Cancers: Phase 1 Trial Interim Results. Nat. Med. 2022, 28, 1189–1198. [Google Scholar] [CrossRef]
- Abdel-Rahman, O.; ElHalawani, H. Critical Evaluation of Ramucirumab in the Treatment of Advanced Gastric and Gastroesophageal Cancers. Ther. Clin. Risk Manag. 2015, 11, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Chicago Consensus Working Group. The Chicago Consensus on Peritoneal Surface Malignancies: Management of Gastric Metastases. Cancer 2020, 126, 2541–2546. [Google Scholar] [CrossRef]
- Johnston, F.M.; Beckman, M. Updates on Management of Gastric Cancer. Curr. Oncol. Rep. 2019, 21, 67. [Google Scholar] [CrossRef]
- Manzanedo, I.; Pereira, F.; Pérez-Viejo, E.; Serrano, Á. Gastric Cancer with Peritoneal Metastases: Current Status and Prospects for Treatment. Cancers 2023, 15, 1777. [Google Scholar] [CrossRef] [PubMed]
- Beeharry, M.K.; Ni, Z.-T.; Yang, Z.Y.; Zheng, Y.N.; Feng, R.H.; Liu, W.-T.; Yan, C.; Yao, X.X.; Li, C.; Yan, M.; et al. Study Protocol of a Multicenter Phase III Randomized Controlled Trial Investigating the Efficiency of the Combination of Neoadjuvant Chemotherapy (NAC) and Neoadjuvant Laparoscopic Intraperitoneal Hyperthermic Chemotherapy (NLHIPEC) Followed by R0 Gastrectomy with Intraoperative HIPEC for Advanced Gastric Cancer (AGC): Dragon II Trial. BMC Cancer 2020, 20, 224. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Ajani, J.A.; Moehler, M.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Bragagnoli, A.C.; et al. Nivolumab plus Chemotherapy or Ipilimumab in Gastro-Oesophageal Cancer. Nature 2022, 603, 942–948. [Google Scholar] [CrossRef]
- Kang, D.; Kim, I.-H. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines 2022, 10, 1376. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in Patients with Advanced Gastric or Gastro-Oesophageal Junction Cancer Refractory to, or Intolerant of, at Least Two Previous Chemotherapy Regimens (ONO-4538-12, ATTRACTION-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Chen, L.-T.; Kang, Y.-K.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; Yoshikawa, T.; et al. A Phase III Study of Nivolumab (Nivo) in Previously Treated Advanced Gastric or Gastric Esophageal Junction (G/GEJ) Cancer (ATTRACTION-2): Two-Years Update Data. Ann. Oncol. 2018, 29, viii206. [Google Scholar] [CrossRef]
- Chen, L.-T.; Kang, Y.-K.; Satoh, T.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.; Yoshikawa, T.; et al. A Phase III Study of Nivolumab (Nivo) in Previously Treated Advanced Gastric or Gastric Esophageal Junction (G/GEJ) Cancer (ATTRACTION-2): Three-Year Update Data. J. Clin. Oncol. 2020, 38 (Suppl. S4), 383. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Chen, L.-T.; Ryu, M.-H.; Oh, D.-Y.; Oh, S.C.; Chung, H.C.; Lee, K.-W.; Omori, T.; Shitara, K.; Sakuramoto, S.; et al. Nivolumab plus Chemotherapy versus Placebo plus Chemotherapy in Patients with HER2-Negative, Untreated, Unresectable Advanced or Recurrent Gastric or Gastro-Oesophageal Junction Cancer (ATTRACTION-4): A Randomised, Multicentre, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2022, 23, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Yusef, Z.; Sarboini; Ardiana, R. Pengaruh Pengembangan Sumber Daya Manusia Terhadap Kinerja Dosen Dalam Meningkatkan Visi Dan Misi Fakultas Ekonomi Universitas Serambi Mekkah. JEMSI (J. Ekon. Manaj. Dan Akunt.) 2021, 7, 60–73. [Google Scholar] [CrossRef]
- Boerner, T.; Piso, P. A Narrative Review of Intraperitoneal Chemotherapy and Cytoreductive Surgery (CRS) for Peritoneal Metastases in Gastric Cancer. J. Gastrointest. Oncol. 2021, 12, S59–S67. [Google Scholar] [CrossRef]
- Yang, X.J.; Huang, C.Q.; Suo, T.; Mei, L.J.; Yang, G.L.; Cheng, F.L.; Zhou, Y.F.; Xiong, B.; Yonemura, Y.; Li, Y. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Improves Survival of Patients with Peritoneal Carcinomatosis from Gastric Cancer: Final Results of a Phase III Randomized Clinical Trial. Ann. Surg. Oncol. 2011, 18, 1575–1581. [Google Scholar] [CrossRef]
- Riihimäki, M.; Hemminki, A.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic Spread in Patients with Gastric Cancer. Oncotarget 2016, 7, 52307–52316. [Google Scholar] [CrossRef]
- Green, B.L.; Davis, J.L. Gastric Adenocarcinoma Peritoneal Carcinomatosis: A Narrative Review. Dig. Med. Res. 2022, 5, 37. [Google Scholar] [CrossRef]
- D’Angelica, M.; Gonen, M.; Brennan, M.F.; Turnbull, A.D.; Bains, M.; Karpeh, M.S. Patterns of Initial Recurrence in Completely Resected Gastric Adenocarcinoma. Ann. Surg. 2004, 240, 808–816. [Google Scholar] [CrossRef]
- Ji, L.; Selleck, M.J.; Morgan, J.W.; Xu, J.; Babcock, B.D.; Shavlik, D.; Wall, N.R.; Langridge, W.H.; Lum, S.S.; Garberoglio, C.A.; et al. Gastric Cancer Peritoneal Carcinomatosis Risk Score. Ann. Surg. Oncol. 2020, 27, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Son, S.-Y.; Lee, C.M.; Ahn, S.H.; Park, D.J.; Kim, H.-H. Factors Predicting Peritoneal Recurrence in Advanced Gastric Cancer: Implication for Adjuvant Intraperitoneal Chemotherapy. Gastric Cancer 2014, 17, 529–536. [Google Scholar] [CrossRef]
- Thomassen, I.; van Gestel, Y.R.; van Ramshorst, B.; Luyer, M.D.; Bosscha, K.; Nienhuijs, S.W.; Lemmens, V.E.; de Hingh, I.H. Peritoneal Carcinomatosis of Gastric Origin: A Population-Based Study on Incidence, Survival and Risk Factors. Int. J. Cancer 2014, 134, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Koemans, W.J.; Lurvink, R.J.; Grootscholten, C.; Verhoeven, R.H.A.; de Hingh, I.H.; van Sandick, J.W. Synchronous Peritoneal Metastases of Gastric Cancer Origin: Incidence, Treatment and Survival of a Nationwide Dutch Cohort. Gastric Cancer 2021, 24, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Koemans, W.J.; Luijten, J.C.H.B.M.; van der Kaaij, R.T.; Grootscholten, C.; Snaebjornsson, P.; Verhoeven, R.H.A.; van Sandick, J.W. The Metastatic Pattern of Intestinal and Diffuse Type Gastric Carcinoma—A Dutch National Cohort Study. Cancer Epidemiol. 2020, 69, 101846. [Google Scholar] [CrossRef]
- Nie, R.; Yuan, S.; Chen, S.; Chen, X.; Chen, Y.; Zhu, B.; Qiu, H.; Zhou, Z.; Peng, J.; Chen, Y. Prognostic Nutritional Index Is an Independent Prognostic Factor for Gastric Cancer Patients with Peritoneal Dissemination. Chin. J. Cancer Res. 2016, 28, 570–578. [Google Scholar] [CrossRef]
- Glehen, O.; Gilly, F.N.; Arvieux, C.; Cotte, E.; Boutitie, F.; Mansvelt, B.; Bereder, J.M.; Lorimier, G.; Quenet, F.; Elias, D. Peritoneal Carcinomatosis from Gastric Cancer: A Multi-Institutional Study of 159 Patients Treated by Cytoreductive Surgery Combined with Perioperative Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2010, 17, 2370–2377. [Google Scholar] [CrossRef]
- Bootsma, S.; Bijlsma, M.F.; Vermeulen, L. The Molecular Biology of Peritoneal Metastatic Disease. EMBO Mol. Med. 2023, 15, e15914. [Google Scholar] [CrossRef]
- Li, T.; Huang, H.; Shi, G.; Zhao, L.; Li, T.; Zhang, Z.; Liu, R.; Hu, Y.; Liu, H.; Yu, J.; et al. TGF-Β1-SOX9 Axis-Inducible COL10A1 Promotes Invasion and Metastasis in Gastric Cancer via Epithelial-to-Mesenchymal Transition. Cell Death Dis. 2018, 9, 849. [Google Scholar] [CrossRef]
- Miao, Z.-F.; Wu, J.-H.; Wang, Z.-N.; Zhao, T.-T.; Xu, H.-M.; Song, Y.-X.; Xing, Y.-N.; Huang, J.-Y.; Zhang, J.-Y.; Liu, X.-Y.; et al. Endoglin Overexpression Mediates Gastric Cancer Peritoneal Dissemination by Inducing Mesothelial Cell Senescence. Hum. Pathol. 2016, 51, 114–123. [Google Scholar] [CrossRef]
- Kanda, M.; Kodera, Y. Molecular Mechanisms of Peritoneal Dissemination in Gastric Cancer. World J. Gastroenterol. 2016, 22, 6829. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Miao, Z.-F.; Zhao, T.-T.; Wang, Z.-N.; Xu, Y.-Y.; Gao, J.; Wu, J.-H.; You, Y.; Xu, H.; Xu, H.-M. Milky Spot Macrophages Remodeled by Gastric Cancer Cells Promote Peritoneal Mesothelial Cell Injury. Biochem. Biophys. Res. Commun. 2013, 439, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Kurashina, K.; Yamaguchi, H.; Kanamaru, R.; Ohzawa, H.; Miyato, H.; Saito, S.; Hosoya, Y.; Lefor, A.K.; Sata, N.; et al. Altered Intraperitoneal Immune Microenvironment in Patients with Peritoneal Metastases from Gastric Cancer. Front. Immunol. 2022, 13, 969468. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, Y.; Yao, X.; Jin, J.; Scott, A.; Liu, B.; Wang, S.; Huo, L.; Wang, Y.; Wang, R.; et al. Epithelial SOX9 Drives Progression and Metastases of Gastric Adenocarcinoma by Promoting Immunosuppressive Tumour Microenvironment. Gut 2023, 72, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Takeno, A.; Takemasa, I.; Seno, S.; Yamasaki, M.; Motoori, M.; Miyata, H.; Nakajima, K.; Takiguchi, S.; Fujiwara, Y.; Nishida, T.; et al. Gene Expression Profile Prospectively Predicts Peritoneal Relapse after Curative Surgery of Gastric Cancer. Ann. Surg. Oncol. 2010, 17, 1033–1042. [Google Scholar] [CrossRef]
- Lee, I.-S.; Lee, H.; Hur, H.; Kanda, M.; Yook, J.-H.; Kim, B.-S.; Woo, Y.; Kodera, Y.; Kim, K.; Goel, A. Transcriptomic Profiling Identifies a Risk Stratification Signature for Predicting Peritoneal Recurrence and Micrometastasis in Gastric Cancer. Clin. Cancer Res. 2021, 27, 2292–2300. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D.; Yu, R.; Li, C.; Song, Y.; Chen, X.; Fan, Y.; Liu, Y.; Qu, X. Immune Landscape of Gastric Carcinoma Tumor Microenvironment Identifies a Peritoneal Relapse Relevant Immune Signature. Front. Immunol. 2021, 12, 651033. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, R.; Song, S.; Hao, D.; Han, G.; Song, X.; Zhang, J.; Pizzi, M.P.; Shanbhag, N.; Futreal, A.; et al. Proteogenomic Landscape of Gastric Adenocarcinoma Peritoneal Metastases. iScience 2023, 26, 106913. [Google Scholar] [CrossRef]
- Wang, R.; Song, S.; Harada, K.; Ghazanfari Amlashi, F.; Badgwell, B.; Pizzi, M.P.; Xu, Y.; Zhao, W.; Dong, X.; Jin, J.; et al. Multiplex Profiling of Peritoneal Metastases from Gastric Adenocarcinoma Identified Novel Targets and Molecular Subtypes That Predict Treatment Response. Gut 2020, 69, 18–31. [Google Scholar] [CrossRef]
- Tanaka, Y.; Chiwaki, F.; Kojima, S.; Kawazu, M.; Komatsu, M.; Ueno, T.; Inoue, S.; Sekine, S.; Matsusaki, K.; Matsushita, H.; et al. Multi-Omic Profiling of Peritoneal Metastases in Gastric Cancer Identifies Molecular Subtypes and Therapeutic Vulnerabilities. Nat. Cancer 2021, 2, 962–977. [Google Scholar] [CrossRef]
- Lim, B.; Kim, C.; Kim, J.-H.; Kwon, W.S.; Lee, W.S.; Kim, J.M.; Park, J.Y.; Kim, H.S.; Park, K.H.; Kim, T.S.; et al. Genetic Alterations and Their Clinical Implications in Gastric Cancer Peritoneal Carcinomatosis Revealed by Whole-Exome Sequencing of Malignant Ascites. Oncotarget 2016, 7, 8055–8066. [Google Scholar] [CrossRef]
- Chennamadhavuni, A.; Abushahin, L.; Jin, N.; Presley, C.J.; Manne, A. Risk Factors and Biomarkers for Immune-Related Adverse Events: A Practical Guide to Identifying High-Risk Patients and Rechallenging Immune Checkpoint Inhibitors. Front. Immunol. 2022, 13, 779691. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer Immunotherapy Efficacy and Patients’ Sex: A Systematic Review and Meta-Analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, K. Diverse Properties of the Mesothelial Cells in Health and Disease. Pleura Peritoneum 2016, 1, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.-D.; Yang, Z.-C.; Wang, H.-B.; Li, J.-G.; Kong, B.; Wang, X.-G.; Liu, X.-Y.; Niu, Z.-H.; Wang, Y.; Nie, G. The Cytotoxic Effect of TGF-Β1 on Mesothelial Cells via Apoptosis in Early Peritoneal Carcinomatosis. Oncol. Rep. 2012, 27, 1753–1758. [Google Scholar] [CrossRef]
- Lv, Z.-D.; Na, D.; Ma, X.-Y.; Zhao, C.; Zhao, W.-J.; Xu, H.-M. Human Peritoneal Mesothelial Cell Transformation into Myofibroblasts in Response to TGF-SS1 in Vitro. Int. J. Mol. Med. 2011, 27, 187–193. [Google Scholar] [CrossRef]
- Kenny, H.A.; Chiang, C.-Y.; White, E.A.; Schryver, E.M.; Habis, M.; Romero, I.L.; Ladanyi, A.; Penicka, C.V.; George, J.; Matlin, K.; et al. Mesothelial Cells Promote Early Ovarian Cancer Metastasis through Fibronectin Secretion. J. Clin. Investig. 2014, 124, 4614–4628. [Google Scholar] [CrossRef]
- Mikuła-Pietrasik, J.; Stryczyński, Ł.; Uruski, P.; Tykarski, A.; Książek, K. Procancerogenic Activity of Senescent Cells: A Case of the Peritoneal Mesothelium. Ageing Res. Rev. 2018, 43, 1–9. [Google Scholar] [CrossRef]
- Hamabe-Horiike, T.; Harada, S.-I.; Yoshida, K.; Kinoshita, J.; Yamaguchi, T.; Fushida, S. Adipocytes Contribute to Tumor Progression and Invasion of Peritoneal Metastasis by Interacting with Gastric Cancer Cells as Cancer Associated Fibroblasts. Cancer Rep. 2023, 6, e1647. [Google Scholar] [CrossRef]
- Gunjigake, K.; Kinoshita, J.; Yamaguchi, T.; Saito, H.; Fujimori, D.; Horiike, T.; Harada, S.; Tajima, H.; Ninomiya, I.; Ohta, T.; et al. Interleukin-17A Derived from Mast Cells Contributes to Fibrosis in Gastric Cancer with Peritoneal Dissemination. Gastric Cancer 2021, 24, 31–44. [Google Scholar] [CrossRef]
- Miao, Z.-F.; Zhao, T.-T.; Wang, Z.-N.; Miao, F.; Xu, Y.-Y.; Mao, X.-Y.; Gao, J.; Wu, J.-H.; Liu, X.-Y.; You, Y.; et al. Transforming Growth Factor-Beta1 Signaling Blockade Attenuates Gastric Cancer Cell-Induced Peritoneal Mesothelial Cell Fibrosis and Alleviates Peritoneal Dissemination Both in Vitro and in Vivo. Tumour Biol. 2014, 35, 3575–3583. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-G.; Malek, E.; Choi, S.H.; Ignatz-Hoover, J.J.; Driscoll, J.J. Novel Therapies Emerging in Oncology to Target the TGF-β Pathway. J. Hematol. Oncol. 2021, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Knotts, C.; Donnenberg, V.; Pico, C.C.; Schiffman, S.; Newhams, K.; Allen, C.; Donnenberg, A.; Bartlett, D.; Wagner, P. Peritoneal Fluid Cytokine Analysis Reveals Targets for Regional Immunotherapy in Carcinomatosis. Ann. Surg. Oncol. 2023, 30, S1–S257. [Google Scholar] [CrossRef]
- Kubicka, U.; Olszewski, W.L.; Tarnowski, W.; Bielecki, K.; ZIÓŁKOWSKA, A.; Wierzbicki, Z. Normal Human Immune Peritoneal Cells: Subpopulations and Functional Characteristics. Scand. J. Immunol. 1996, 44, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kwon, W.S.; Park, S.; Jo, E.; Lim, S.J.; Lee, C.-K.; Lee, J.B.; Jung, M.; Kim, H.S.; Beom, S.-H.; et al. Comprehensive Immune Profiling and Immune-Monitoring Using Body Fluid of Patients with Metastatic Gastric Cancer. J. Immunother. Cancer 2019, 7, 268. [Google Scholar] [CrossRef]
- Yoneda, A.; Ito, S.; Susumu, S.; Matsuo, M.; Taniguchi, K.; Tajima, Y.; Eguchi, S.; Kanematsu, T.; Nagata, Y. Immunological Milieu in the Peritoneal Cavity at Laparotomy for Gastric Cancer. World J. Gastroenterol. 2012, 18, 1470–1478. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, S.; Wu, Y.; Li, S.; He, C.; Xing, X.; Wang, Y.; Du, X. Accumulation and Suppressive Function of Regulatory T Cells in Malignant Ascites: Reducing Their Suppressive Function Using Arsenic Trioxide in Vitro. Oncol. Lett. 2018, 15, 5384–5390. [Google Scholar] [CrossRef]
- Eum, H.H.; Kwon, M.; Ryu, D.; Jo, A.; Chung, W.; Kim, N.; Hong, Y.; Son, D.-S.; Kim, S.T.; Lee, J.; et al. Tumor-Promoting Macrophages Prevail in Malignant Ascites of Advanced Gastric Cancer. Exp. Mol. Med. 2020, 52, 1976–1988. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kagawa, S.; Kuwada, K.; Ito, A.; Kajioka, H.; Kakiuchi, Y.; Watanabe, M.; Kagawa, T.; Yoshida, R.; Kikuchi, S.; et al. Intraperitoneal Cancer-Immune Microenvironment Promotes Peritoneal Dissemination of Gastric Cancer. Oncoimmunology 2019, 8, e1671760. [Google Scholar] [CrossRef]
- Song, H.; Wang, T.; Tian, L.; Bai, S.; Chen, L.; Zuo, Y.; Xue, Y. Macrophages on the Peritoneum Are Involved in Gastric Cancer Peritoneal Metastasis. J. Cancer 2019, 10, 5377–5387. [Google Scholar] [CrossRef]
- Vlaeminck-Guillem, V.; Bienvenu, J.; Isaac, S.; Grangier, B.; Golfier, F.; Passot, G.; Bakrin, N.; Rodriguez-Lafrasse, C.; Gilly, F.-N.; Glehen, O. Intraperitoneal Cytokine Level in Patients with Peritoneal Surface Malignancies. A Study of the RENAPE (French Network for Rare Peritoneal Malignancies). Ann. Surg. Oncol. 2013, 20, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.; Donnenberg, V.; Pico, C.C.; Donnenberg, A.; Bartlett, D. 1435 Comparison of the cytokine and chemokine secretome of benign and malignant peritoneal fluid identifies FGF and IL 1R alpha as potential drivers of tumor growth. J. Immuno Ther. Cancer 2022, 10. [Google Scholar] [CrossRef]
- Wagner, P.L. Characterizing the Immune Environment in Peritoneal Carcinomatosis: Insights for Novel Immunotherapy Strategies. Ann. Surg. Oncol. 2023, in press. [Google Scholar]
- Donnenberg, V.S.; Wagner, P.L.; Luketich, J.D.; Bartlett, D.L.; Donnenberg, A.D. Localized Intra-Cavitary Therapy to Drive Systemic Anti-Tumor Immunity. Front. Immunol. 2022, 13, 846235. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, V.S.; Luketich, J.D.; Sultan, I.; Lister, J.; Bartlett, D.L.; Ghosh, S.; Donnenberg, A.D. A Maladaptive Pleural Environment Suppresses Preexisting Anti-Tumor Activity of Pleural Infiltrating T Cells. Front. Immunol. 2023, 14, 1157697. [Google Scholar] [CrossRef]
- Yang, J.; Cao, W.; Xing, E. Levels and Significance of Tumor Markers and Cytokines in Serum and Peritoneal Lavage Fluid of Patients with Peritoneal Metastasis of Gastric Cancer. BioMed Res. Int. 2022, 2022, 9528444. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Fushida, S.; Yamamoto, Y.; Tsukada, T.; Kinoshita, J.; Oyama, K.; Miyashita, T.; Tajima, H.; Ninomiya, I.; Munesue, S.; et al. Tumor-Associated Macrophages of the M2 Phenotype Contribute to Progression in Gastric Cancer with Peritoneal Dissemination. Gastric Cancer 2016, 19, 1052–1065. [Google Scholar] [CrossRef]
- Chang, W.-J. Inflammation-Related Factors Predicting Prognosis of Gastric Cancer. World J. Gastroenterol. 2014, 20, 4586–4596. [Google Scholar] [CrossRef]
- Xie, J.; Fu, L.; Jin, L. Immunotherapy of Gastric Cancer: Past, Future Perspective and Challenges. Pathol. Res. Pract. 2021, 218, 153322. [Google Scholar] [CrossRef]
- Katz, S.C.; Point, G.R.; Cunetta, M.; Thorn, M.; Guha, P.; Espat, N.J.; Boutros, C.; Hanna, N.; Junghans, R.P. Regional CAR-T Cell Infusions for Peritoneal Carcinomatosis Are Superior to Systemic Delivery. Cancer Gene Ther. 2016, 23, 142–148. [Google Scholar] [CrossRef]
- Zeltsman, M.; Mayor, M.; Jones, D.R.; Adusumilli, P.S. Surgical Immune Interventions for Solid Malignancies. Am. J. Surg. 2016, 212, 682–690.e5. [Google Scholar] [CrossRef] [PubMed]
- Thadi, A.; Khalili, M.; Morano, W.F.; Richard, S.D.; Katz, S.C.; Bowne, W.B. Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis. Vaccines 2018, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Morano, W.F.; Aggarwal, A.; Love, P.; Richard, S.D.; Esquivel, J.; Bowne, W.B. Intraperitoneal Immunotherapy: Historical Perspectives and Modern Therapy. Cancer Gene Ther. 2016, 23, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, S.E. Mesothelial Cells: Their Structure, Function and Role in Serosal Repair. Respirology 2002, 7, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, A.D.; Luketich, J.D.; Dhupar, R.; Donnenberg, V.S. Treatment of Malignant Pleural Effusions: The Case for Localized Immunotherapy. J. Immunother. Cancer 2019, 7, 110. [Google Scholar] [CrossRef]
- Knödler, M.; Körfer, J.; Kunzmann, V.; Trojan, J.; Daum, S.; Schenk, M.; Kullmann, F.; Schroll, S.; Behringer, D.; Stahl, M.; et al. Randomised Phase II Trial to Investigate Catumaxomab (Anti-EpCAM × Anti-CD3) for Treatment of Peritoneal Carcinomatosis in Patients with Gastric Cancer. Br. J. Cancer 2018, 119, 296–302. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, S.; Shi, M.; Yang, Z.; Liu, W.; Ni, Z.; Yao, X.; Hua, Z.; Feng, R.; Zheng, Y.; et al. Sintilimab Combined Neoadjuvant Intraperitoneal and Systemic Chemotherapy in Gastric Cancer with Peritoneal Metastasis. Future Oncol. 2023; ahead of print. [Google Scholar] [CrossRef]
- QI, C.; Wu, S.; Kim, I.-H.; Cai, S.; Wang, J.; Kim, S.T.; Wang, J.-Y.; Bai, L.-Y.; Lin, C.-Y.; Liang, Z.; et al. Global Multi-Center Phase I Trial of the Intraperitoneal Infusion of Anti-EpCAM x Anti-CD3 Bispecific Antibody Catumaxomab for Advanced Gastric Carcinoma with Peritoneal Metastasis. J. Clin. Oncol. 2022, 40 (Suppl. S16), e16102. [Google Scholar] [CrossRef]
- Ramanathan, R.; Choudry, H.; Jones, H.; Girgis, M.; Gooding, W.; Kalinski, P.; Bartlett, D.L. Phase II Trial of Adjuvant Dendritic Cell Vaccine in Combination with Celecoxib, Interferon-α, and Rintatolimod in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Metastases. Ann. Surg. Oncol. 2021, 28, 4637–4646. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, J.; Tang, J.; Hu, S.; Luo, S.; Luo, Z.; Zhou, F.; Tan, S.; Ying, J.; Chang, Q.; et al. Intratumoral OH2, an Oncolytic Herpes Simplex Virus 2, in Patients with Advanced Solid Tumors: A Multicenter, Phase I/II Clinical Trial. J. Immunother. Cancer 2021, 9, e002224. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, B.; Tang, J.; Chang, Q.; Zhang, R.; Geng, C.; Wu, D.; Qi, L.; Gu, X.; Liu, B. Safety and Tolerability of Intratumorally Administered OH2, an Oncolytic Herpes Simplex Virus 2, in Patients with Advanced Solid Tumors: A Phase I Dose Escalation Clinical Study. J. Clin. Oncol. 2020, 38 (Suppl. S15), 3139. [Google Scholar] [CrossRef]
- Cao, B.; Liu, M.; Huang, J.; Zhou, J.; Li, J.; Lian, H.; Huang, W.; Guo, Y.; Yang, S.; Lin, L.; et al. Development of Mesothelin-Specific CAR NK-92 Cells for the Treatment of Gastric Cancer. Int. J. Biol. Sci. 2021, 17, 3850–3861. [Google Scholar] [CrossRef] [PubMed]
- Takami, T.; Yasuda, K.; Uozumi, N.; Musiake, Y.; Shintani, H.; Kataoka, N.; Yamaguchi, T.; Makimoto, S. Confirmed Complete Response to Nivolumab for Advanced Gastric Cancer with Peritoneal Dissemination: A Case Report. J. Med. Case Rep. 2021, 15, 604. [Google Scholar] [CrossRef] [PubMed]
- Kuhara, Y.; Ninomiya, M.; Hirahara, S.; Doi, H.; Kenji, S.; Toyota, K.; Yano, R.; Kobayashi, H.; Hashimoto, Y.; Yokoyama, Y.; et al. A Long-Term Survival Case of Unresectable Gastric Cancer with Multidisciplinary Therapy Including Immunotherapy and Abscopal Effect. Int. Cancer Conf. J. 2020, 9, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Toyota, Y.; Okamoto, K.; Tanaka, N.; Colvin, H.S.; Takahashi, Y.; Inaba, T. Conversion Surgery of Stage IV Gastric Cancer with Peritoneal Dissemination after Nivolumab. Int. Cancer Conf. J. 2021, 10, 280–284. [Google Scholar] [CrossRef]
- Doi, H.; Ninomiya, M.; Toyota, K.; Hirahara, S.; Kuhara, Y.; Shirakawa, K.; Yano, R.; Kobayashi, H.; Hashimoto, Y.; Yokoyama, Y.; et al. A Case of Multiple Metastatic Gastric Cancer with Primary Lesion Vanished after Administrating Nivolumab, and the Effect Remains Even after Discontinuance of Therapy. Int. Cancer Conf. J. 2020, 9, 187–192. [Google Scholar] [CrossRef]
- Komo, T.; Suzuki, T.; Tazawa, H.; Sada, H.; Morimoto, H.; Shimada, N.; Hadano, N.; Onoe, T.; Sudo, T.; Shimizu, Y.; et al. Clinical Complete Response after Nivolumab Administered as a Third-Line Treatment for Unresectable Advanced Gastric Cancer with Peritoneal Dissemination: A Case Report. Int. J. Surg. Case Rep. 2021, 84, 106161. [Google Scholar] [CrossRef]
- Ruf, P.; Kluge, M.; Jäger, M.; Burges, A.; Volovat, C.; Heiss, M.M.; Hess, J.; Wimberger, P.; Brandt, B.; Lindhofer, H. Pharmacokinetics, Immunogenicity and Bioactivity of the Therapeutic Antibody Catumaxomab Intraperitoneally Administered to Cancer Patients. Br. J. Clin. Pharmacol. 2010, 69, 617–625. [Google Scholar] [CrossRef]
- Sebastian, M. Review of Catumaxomab in the Treatment of Malignant Ascites. Cancer Manag. Res. 2010, 2, 283–286. [Google Scholar] [CrossRef]
- Burges, A.; Wimberger, P.; Kümper, C.; Gorbounova, V.; Sommer, H.; Schmalfeldt, B.; Pfisterer, J.; Lichinitser, M.; Makhson, A.; Moiseyenko, V.; et al. Effective Relief of Malignant Ascites in Patients with Advanced Ovarian Cancer by a Trifunctional Anti-EpCAM x Anti-CD3 Antibody: A Phase I/II Study. Clin. Cancer Res. 2007, 13, 3899–3905. [Google Scholar] [CrossRef]
- Heiss, M.M.; Murawa, P.; Koralewski, P.; Kutarska, E.; Kolesnik, O.O.; Ivanchenko, V.V.; Dudnichenko, A.S.; Aleknaviciene, B.; Razbadauskas, A.; Gore, M.; et al. The Trifunctional Antibody Catumaxomab for the Treatment of Malignant Ascites Due to Epithelial Cancer: Results of a Prospective Randomized Phase II/III Trial. Int. J. Cancer 2010, 127, 2209–2221. [Google Scholar] [CrossRef]
- Bokemeyer, C.; Stein, A.; Ridwelski, K.; Atanackovic, D.; Arnold, D.; Wöll, E.; Ulrich, A.; Fischer, R.; Krüger, C.; Schuhmacher, C. A Phase II Study of Catumaxomab Administered Intra- and Postoperatively as Part of a Multimodal Approach in Primarily Resectable Gastric Cancer. Gastric Cancer 2015, 18, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Park, Y.S.; Ahn, J.B.; Rha, S.Y.; Kim, H.K.; Lee, P.Y.; Ryu, M.H.; Lee, J.; Lee, J.K.; Hwang, S.; et al. Safety and anti-tumor activity of the transforming growth factor beta receptor I kinase inhibitor, vactosertib, in combination with pembrolizumab in patients with metastatic colorectal or gastric cancer. J. Immunother. Cancer 2019, 7. Available online: https://scholarworks.bwise.kr/skku/handle/2021.sw.skku/8147 (accessed on 3 October 2023).
- Guo, Z.; Yuan, Y.; Chen, C.; Lin, J.; Ma, Q.; Liu, G.; Gao, Y.; Huang, Y.; Chen, L.; Chen, L.Z.; et al. Durable Complete Response to Neoantigen-Loaded Dendritic-Cell Vaccine Following Anti-PD-1 Therapy in Metastatic Gastric Cancer. NPJ Precis. Oncol. 2022, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.V.; Quintelier, K.L.A.; Van Kooten, J.P.; De Boer, N.L.; Vink, M.; Brandt-Kerkhof, A.R.M.; Verhoef, C.; Saeys, Y.; Aerts, J.G.J.V.; Willemsen, M.; et al. Adjuvant Dendritic Cell-Based Immunotherapy after Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy in Patients with Malignant Peritoneal Mesothelioma: A Phase II Clinical Trial. J. Immunother. Cancer 2023, 11, e007070. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, K.; Etoh, T.; Suzuki, K.; Mitui, M.T.; Nishizono, A.; Shiraishi, N.; Kitano, S. Efficacy of Oncolytic Reovirus against Human Gastric Cancer with Peritoneal Metastasis in Experimental Animal Model. Int. J. Oncol. 2010, 37, 1433–1438. [Google Scholar] [CrossRef]
- Shao, S.; Yang, X.; Zhang, Y.N.; Wang, X.J.; Li, K.; Zhao, Y.L.; Mou, X.Z.; Hu, P.Y. Oncolytic Virotherapy in Peritoneal Metastasis Gastric Cancer: The Challenges and Achievements. Front. Mol. Biosci. 2022, 9, 835300. [Google Scholar] [CrossRef]
- Schneider, C.C.; Archid, R.; Fischer, N.; Bühler, S.; Venturelli, S.; Berger, A.; Burkard, M.; Kirschniak, A.; Bachmann, R.; Königsrainer, A.; et al. Metabolic Alteration—Overcoming Therapy Resistance in Gastric Cancer via PGK-1 Inhibition in a Combined Therapy with Standard Chemotherapeutics. Int. J. Surg. 2015, 22, 92–98. [Google Scholar] [CrossRef]
- Gujar, S.A.; Marcato, P.; Pan, D.; Lee, P.W.K. Reovirus Virotherapy Overrides Tumor Antigen Presentation Evasion and Promotes Protective Antitumor Immunity. Mol. Cancer Ther. 2010, 9, 2924–2933. [Google Scholar] [CrossRef]
- Ishikawa, W.; Kikuchi, S.; Ogawa, T.; Tabuchi, M.; Tazawa, H.; Kuroda, S.; Noma, K.; Nishizaki, M.; Kagawa, S.; Urata, Y.; et al. Boosting Replication and Penetration of Oncolytic Adenovirus by Paclitaxel Eradicate Peritoneal Metastasis of Gastric Cancer. Mol. Ther. Oncolytics 2020, 18, 262–271. [Google Scholar] [CrossRef]
- Stanziale, S.F.; Petrowsky, H.; Adusumilli, P.S.; Ben-Porat, L.; Gonen, M.; Fong, Y. Infection with Oncolytic Herpes Simplex Virus-1 Induces Apoptosis in Neighboring Human Cancer Cells. Clin. Cancer Res. 2004, 10, 3225–3232. [Google Scholar] [CrossRef]
- Bennett, J.J.; Delman, K.A.; Burt, B.M.; Mariotti, A.; Malhotra, S.; Zager, J.; Petrowsky, H.; Mastorides, S.; Federoff, H.; Fong, Y. Comparison of Safety, Delivery, and Efficacy of Two Oncolytic Herpes Viruses (G207 and NV1020) for Peritoneal Cancer. Cancer Gene Ther. 2002, 9, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Haley, E.S.; Au, G.G.; Carlton, B.R.; Barry, R.D.; Shafren, D.R. Regional Administration of Oncolytic Echovirus 1 as a Novel Therapy for the Peritoneal Dissemination of Gastric Cancer. J. Mol. Med. 2009, 87, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Bębnowska, D.; Grywalska, E.; Niedźwiedzka-Rystwej, P.; Sosnowska-Pasiarska, B.; Smok-Kalwat, J.; Pasiarski, M.; Góźdź, S.; Roliński, J.; Polkowski, W. CAR-T Cell Therapy—An Overview of Targets in Gastric Cancer. J. Clin. Med. 2020, 9, 1894. [Google Scholar] [CrossRef] [PubMed]
Clinical Trial | Researchers | Phase | Treatment Protocol | Patients (N) | Outcome Measures | Preliminary Results |
---|---|---|---|---|---|---|
Systemic Checkpoint Inhibition | ||||||
NCT 05648487 (HIPEC-10) | Lei et al. | Phase 2 | HIPEC combined with Sintilimab | 46 | Rate of R0 resection, OS, ORR, EFS, RFS | Not yet recruiting |
NCT 05204173 (DRAGON-09) | Yuan et al. [77] | Phase 2 | Sintilimab, IP and IV PTX, plus oral S-1 | 36 | One-year survival rate, R0 resection rate, three-year OS, three-year PFS | Recruiting |
Intraperitoneal Immunotherapy | ||||||
NCT 04222114 | Qi et al. [78] | Phase 3 | IP Catumaxomab vs. localized supportive treatment | 282 | OS, PFS, progression free interval of peritoneal metastatic lesions | Recruiting |
NCT 06016179 | Wagner, et al. | Phase 1 | Four incremental weekly intra-cavitary doses of tocilizumab | 12 | Successful intra-cavitary administration of tocilizumab; adverse events | Recruiting |
Intraperitoneal Vaccination | ||||||
NCT 02151448 | Ramanathan et al. [79] | Phase 1, 2 | Adjuvant alpha-DC1 vaccine combined with celecoxib, IFNα, and rintatolimod in CRS/HIPEC patients | 64 | Recommended phase 2 dose, adverse events, TTP, OS, PFS | Alpha-DC1 vaccine is not appropriate for patients undergoing CRS/HIPEC |
NCT 05751837 | Wagner et al. | Phase 1 | Injection of LPS into one abdominal tumor | 6 | Safety and tolerability | Recruiting |
Oncolytic viral therapy | ||||||
NCT 03866525 | Zhang et al. [80,81] | Phase 1, 2 | OH2 injection with or without irinotecan or HX008 | 300 | DLT, MTD, biodistribution and biologic effect of OH2, anti-tumor activity and immunogenicity of OH2 | Intratumoral injection of OH2 was well-tolerated with a no DLTs and MTD |
Adoptive Cell therapy | ||||||
NCT 03563326 (WCH-GC-CART) | Cao et al. [82] | Phase 1 | EpCAM CAR-T cells vs. chemo | 40 | Adverse effects of EpCAM CAR-T, OS, metabolism kinetics of CAR-T cells, PFS | Recruitment status unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, C.R.; Dadgar, N.; Yellin, S.A.; Donnenberg, V.S.; Donnenberg, A.D.; Bartlett, D.L.; Allen, C.J.; Wagner, P.L. Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers 2023, 15, 5107. https://doi.org/10.3390/cancers15205107
Lewis CR, Dadgar N, Yellin SA, Donnenberg VS, Donnenberg AD, Bartlett DL, Allen CJ, Wagner PL. Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers. 2023; 15(20):5107. https://doi.org/10.3390/cancers15205107
Chicago/Turabian StyleLewis, Catherine R., Neda Dadgar, Samuel A. Yellin, Vera S. Donnenberg, Albert D. Donnenberg, David L. Bartlett, Casey J. Allen, and Patrick L. Wagner. 2023. "Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment" Cancers 15, no. 20: 5107. https://doi.org/10.3390/cancers15205107
APA StyleLewis, C. R., Dadgar, N., Yellin, S. A., Donnenberg, V. S., Donnenberg, A. D., Bartlett, D. L., Allen, C. J., & Wagner, P. L. (2023). Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers, 15(20), 5107. https://doi.org/10.3390/cancers15205107