A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Epidemiology and Classification of Renal Cell Carcinoma
1.2. Treatment of Renal Cell Carcinoma
2. The Tumor Microenvironment in Renal Cell Carcinoma Biology and Therapy
3. The Microbiome as a Novel Member of the Tumor Microenvironment in Renal Cell Carcinoma
3.1. What Is the Microbiome?
3.2. How Does the Microbiome Affect Cancers?
3.3. The Microbiome in Renal Cell Carcinoma
4. The Microbiome and Immunotherapy of Renal Cell Carcinoma
4.1. The Microbiome Related to the Response to ICI
4.2. Effects of Environmental Factors That Alter the Gut Microbiome on ICIs
4.3. Fecal Microbiota Transplantation for RCC Treatment
5. Immunotherapy in Non-Clear Cell Renal Cell Carcinoma
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bedke, J.; Capitanio, U.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2022 Update. Eur. Urol. 2022, 82, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Observatory, G.C. International Agency for Research on Cancer. 2022. Available online: https://gco.iarc.fr/ (accessed on 1 December 2022).
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO classification of tumours of the urinary system and male genital organs—Part A: Renal, penile, and testicular tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Heidegger, I.; Pircher, A.; Pichler, R. Targeting the Tumor Microenvironment in Renal Cell Cancer Biology and Therapy. Front. Oncol. 2019, 9, 490. [Google Scholar] [CrossRef]
- Moch, H.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2022, 82, 458–468. [Google Scholar] [CrossRef]
- Angori, S.; Lobo, J.; Moch, H. Papillary renal cell carcinoma: Current and controversial issues. Curr. Opin. Urol. 2022, 32, 344–351. [Google Scholar] [CrossRef]
- Osawa, T.; Takeuchi, A.; Kojima, T.; Shinohara, N.; Eto, M.; Nishiyama, H. Overview of current and future systemic therapy for metastatic renal cell carcinoma. Jpn. J. Clin. Oncol. 2019, 49, 395–403. [Google Scholar] [CrossRef]
- Cho, Y.H.; Kim, M.S.; Chung, H.S.; Hwang, E.C. Novel immunotherapy in metastatic renal cell carcinoma. Investig. Clin. Urol. 2017, 58, 220–227. [Google Scholar] [CrossRef]
- Ribas, A. Tumor immunotherapy directed at PD-1. N. Engl. J. Med. 2012, 366, 2517–2519. [Google Scholar] [CrossRef]
- Pircher, A.; Wolf, D.; Heidenreich, A.; Hilbe, W.; Pichler, R.; Heidegger, I. Synergies of Targeting Tumor Angiogenesis and Immune Checkpoints in Non-Small Cell Lung Cancer and Renal Cell Cancer: From Basic Concepts to Clinical Reality. Int. J. Mol. Sci. 2017, 18, 2291. [Google Scholar] [CrossRef] [Green Version]
- Lobo, N.; Hensley, P.J.; Bree, K.K.; Nogueras-Gonzalez, G.M.; Navai, N.; Dinney, C.P.; Sylvester, R.J.; Kamat, A.M. Updated European Association of Urology (EAU) Prognostic Factor Risk Groups Overestimate the Risk of Progression in Patients with Non-muscle-invasive Bladder Cancer Treated with Bacillus Calmette-Guerin. Eur. Urol. Oncol. 2022, 5, 84–91. [Google Scholar] [CrossRef]
- Shingarev, R.; Jaimes, E.A. Renal cell carcinoma: New insights and challenges for a clinician scientist. Am. J. Physiol. Ren. Physiol. 2017, 313, F145. [Google Scholar] [CrossRef]
- Qiu, Q.; Lin, Y.; Ma, Y.; Li, X.; Liang, J.; Chen, Z.; Liu, K.; Huang, Y.; Luo, H.; Huang, R.; et al. Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy. Front. Immunol. 2020, 11, 612202. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Gong, X.; Liu, J.; Zheng, T.; Wang, F.; Wu, J.; Zhang, B. Acidic tumor microenvironment-sensitive liposomes enhance colorectal cancer therapy by acting on both tumor cells and cancer-associated fibroblasts. Nanoscale 2021, 13, 10509–10525. [Google Scholar] [CrossRef]
- Ma, J.; Huang, L.; Hu, D.; Zeng, S.; Han, Y.; Shen, H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: Bystander, activator, or inhibitor? J. Exp. Clin. Cancer Res. 2021, 40, 327. [Google Scholar] [CrossRef]
- Roberto, M.; Botticelli, A.; Panebianco, M.; Aschelter, A.M.; Gelibter, A.; Ciccarese, C.; Minelli, M.; Nuti, M.; Santini, D.; Laghi, A.; et al. Metastatic Renal Cell Carcinoma Management: From Molecular Mechanism to Clinical Practice. Front. Oncol. 2021, 11, 657639. [Google Scholar] [CrossRef]
- Bielenberg, D.R.; Zetter, B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015, 21, 267–273. [Google Scholar] [CrossRef]
- Li, Z.; Ning, F.; Wang, C.; Yu, H.; Ma, Q.; Sun, Y. Normalization of tumor microvasculature basing on targeting and modulation of tumor microenvironment. Nanoscale 2021, 13, 17254–17271. [Google Scholar] [CrossRef]
- Matuszewska, K.; Pereira, M.; Petrik, D.; Lawler, J.; Petrik, J. Normalizing Tumor Vasculature to Reduce Hypoxia, Enhance Perfusion, and Optimize Therapy Uptake. Cancers 2021, 13, 4444. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, Q.; Zhang, Y.; Liu, Z.; Jiang, X. Targeting hypoxia in the tumor microenvironment: A potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 2021, 40, 24. [Google Scholar] [CrossRef]
- Díaz-Montero, C.M.; Rini, B.I.; Finke, J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol. 2020, 16, 721–735. [Google Scholar] [CrossRef]
- Ana Marisa, C.-T.; Kátia Luciano Pereira, M.; de Souza, J.G.; Chammas, R. Role of immune system in kidney cancer. In Evolving Trends in Kidney Cancer; Sashi, S.K., Inderbir, S.G., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Rassy, E.; Flippot, R.; Albiges, L. Tyrosine kinase inhibitors and immunotherapy combinations in renal cell carcinoma. Ther. Adv. Med. Oncol. 2020, 12, 175883592090750. [Google Scholar] [CrossRef] [PubMed]
- Wong-Rolle, A.; Wei, H.K.; Zhao, C.; Jin, C. Unexpected guests in the tumor microenvironment: Microbiome in cancer. Protein Cell 2021, 12, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Proctor, L.M. The Integrative Human Microbiome Project. Nature 2019, 569, 641–648. [Google Scholar]
- Oliva, M.; Mulet-Margalef, N.; Ochoa-De-Olza, M.; Napoli, S.; Mas, J.; Laquente, B.; Alemany, L.; Duell, E.J.; Nuciforo, P.; Moreno, V. Tumor-associated microbiome: Where do we stand? Int. J. Mol. Sci. 2021, 22, 1446. [Google Scholar] [CrossRef]
- Martinez-Guryn, K.; Hubert, N.; Frazier, K.; Urlass, S.; Musch, M.W.; Ojeda, P.; Pierre, J.F.; Miyoshi, J.; Sontag, T.J.; Cham, C.M.; et al. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe 2018, 23, 458–469.e455. [Google Scholar] [CrossRef]
- Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef]
- Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv. Nutr. 2020, 11, 890–907. [Google Scholar] [CrossRef]
- Belkaid, Y.; Naik, S. Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol. 2013, 14, 646–653. [Google Scholar] [CrossRef] [Green Version]
- Quigley, E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017, 17, 94. [Google Scholar] [CrossRef]
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s role in health and diseases. Environ. Sci. Pollut. Res. 2021, 28, 36967–36983. [Google Scholar] [CrossRef]
- Tang, W.H.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef]
- Cummins, J.; Tangney, M. Bacteria and tumours: Causative agents or opportunistic inhabitants? Infect. Agent Cancer 2013, 8, 11. [Google Scholar] [CrossRef]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2019, 178, 795–806.e712. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, F.H.; Wu, P.Q.; Xing, H.Y.; Ma, T. The Role of The Tumor Microbiome in Tumor Development and Its Treatment. Front. Immunol. 2022, 13, 935846. [Google Scholar] [CrossRef]
- Ahn, H.K.; Kim, K.; Park, J.; Kim, K.H. Urinary microbiome profile in men with genitourinary malignancies. Investig. Clin. Urol. 2022, 63, 569–576. [Google Scholar] [CrossRef]
- Shoemaker, R.; Kim, J. Urobiome: An outlook on the metagenome of urological diseases. Investig. Clin. Urol. 2021, 62, 611–622. [Google Scholar] [CrossRef]
- Parker, A.S.; Cerhan, J.R.; Lynch, C.F.; Leibovich, B.C.; Cantor, K.P. History of urinary tract infection and risk of renal cell carcinoma. Am. J. Epidemiol. 2004, 159, 42–48. [Google Scholar] [CrossRef]
- Heidler, S.; Lusuardi, L.; Madersbacher, S.; Freibauer, C. The microbiome in benign renal tissue and in renal cell carcinoma. Urol. Int. 2020, 104, 247–252. [Google Scholar] [CrossRef]
- Liss, M.A.; Chen, Y.; Rodriguez, R.; Pruthi, D.; Kaushik, D. Microbiome within Primary Tumor Tissue from Renal Cell Carcinoma May Be Associated with PD-L1 Expression of the Venous Tumor Thrombus. Adv. Urol. 2020, 2020, 9068068. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Wu, X.; Wang, Z.; Zhang, C.; Cao, G.; Liu, K.; Yan, T. Uncovering the microbiota in renal cell carcinoma tissue using 16S rRNA gene sequencing. J. Cancer Res. Clin. Oncol. 2021, 147, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Kovaleva, O.V.; Podlesnaya, P.; Sorokin, M.; Mochalnikova, V.; Kataev, V.; Khlopko, Y.A.; Plotnikov, A.O.; Stilidi, I.S.; Kushlinskii, N.E.; Gratchev, A. Macrophage Phenotype in Combination with Tumor Microbiome Composition Predicts RCC Patients’ Survival: A Pilot Study. Biomedicines 2022, 10, 1516. [Google Scholar] [CrossRef] [PubMed]
- Adam, T.; Becker, T.M.; Chua, W.; Bray, V.; Roberts, T.L. The Multiple Potential Biomarkers for Predicting Immunotherapy Response—Finding the Needle in the Haystack. Cancers 2021, 13, 277. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Salgia, N.J.; Bergerot, P.G.; Maia, M.C.; Dizman, N.; Hsu, J.; Gillece, J.D.; Folkerts, M.; Reining, L.; Trent, J.; Highlander, S.K. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti–PD-1 immune checkpoint inhibitors. Eur. Urol. 2020, 78, 498–502. [Google Scholar] [CrossRef]
- Tsikala-Vafea, M.; Belani, N.; Vieira, K.; Khan, H.; Farmakiotis, D. Use of antibiotics is associated with worse clinical outcomes in patients with cancer treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Int. J. Infect. Dis. 2021, 106, 142–154. [Google Scholar] [CrossRef]
- Agarwal, A.; Modliszewski, J.; Davey, L.; Reyes-Martinez, M.; Runyambo, D.; Corcoran, D.; Dressman, H.; George, D.J.; Valdivia, R.; Armstrong, A.J. Investigating the role of the gastrointestinal microbiome in response to immune checkpoint inhibitors (ICIs) among patients (pts) with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 2020, 38, 730. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, J.; Wu, Q.; Fang, H.; Shi, C.; Li, Z.; Lin, C.; Tang, D.; Wang, D. Intestinal microbiota: A new force in cancer immunotherapy. Cell Commun. Signal. 2020, 18, 90. [Google Scholar] [CrossRef]
- Barbosa, A.M.; Gomes-Gonçalves, A.; Castro, A.G.; Torrado, E. Immune system efficiency in cancer and the microbiota influence. Pathobiology 2021, 88, 170–186. [Google Scholar] [CrossRef]
- Troy, E.B.; Kasper, D.L. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front. Biosci. Landmark 2010, 15, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dai, Z.; Yan, C.; Zhang, W.; Wang, D.; Tang, D. A new biological triangle in cancer: Intestinal microbiota, immune checkpoint inhibitors and antibiotics. Clin. Transl. Oncol. 2021, 23, 2415–2430. [Google Scholar] [CrossRef] [PubMed]
- Velikova, T.; Krastev, B.; Lozenov, S.; Gencheva, R.; Peshevska-Sekulovska, M.; Nikolaev, G.; Peruhova, M. Antibiotic-related changes in microbiome: The hidden villain behind colorectal carcinoma immunotherapy failure. Int. J. Mol. Sci. 2021, 22, 1754. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Su, H.; Johnson, C.H.; Khan, S.A.; Kluger, H.; Lu, L. Intratumour microbiome associated with the infiltration of cytotoxic CD8+ T cells and patient survival in cutaneous melanoma. Eur. J. Cancer 2021, 151, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; Le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017, 28, 1368–1379. [Google Scholar] [CrossRef]
- Meza, L.A.; Choi, Y.; Govindarajan, A.; Dizman, N.; Zengin, Z.B.; Hsu, J.; Salgia, N.; Salgia, S.; Malhotra, J.; Chawla, N.S. Association of intra-tumoral microbiome and response to immune checkpoint inhibitors (ICIs) in patients with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 2022, 40, 372. [Google Scholar] [CrossRef]
- Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: A randomized phase 1 trial. Nat. Med. 2022, 28, 704–712. [Google Scholar] [CrossRef]
- CBM588 in Combination With Nivolumab and Cabozantinib for the Treatment of Advanced or Metastatic Kidney Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT05122546 (accessed on 23 December 2022).
- Derosa, L.; Hellmann, M.; Spaziano, M.; Halpenny, D.; Fidelle, M.; Rizvi, H.; Long, N.; Plodkowski, A.; Arbour, K.; Chaft, J. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018, 29, 1437–1444. [Google Scholar] [CrossRef]
- Iglesias-Santamaría, A. Impact of antibiotic use and other concomitant medications on the efficacy of immune checkpoint inhibitors in patients with advanced cancer. Clin. Transl. Oncol. 2020, 22, 1481–1490. [Google Scholar] [CrossRef]
- Kapoor, V.; Runnels, J.; Boyce, T.; Pankratz, V.S.; Rixe, O. Effect of antibiotic exposure in patients with metastatic melanoma treated with PD-1 inhibitor or CTLA-4 inhibitor or a combination of both. J. Clin. Oncol. 2019, 37, e14141. [Google Scholar] [CrossRef]
- Kulkarni, A.; Kumar, M.; Pease, D.F.; Wang, Y.; DeFor, T.E.; Patel, M. Impact of antibiotics and proton pump inhibitors on clinical outcomes of immune check point blockers in advanced non-small cell lung cancers and metastatic renal cell cancer. J. Clin. Oncol. 2019, 37, e20520. [Google Scholar] [CrossRef]
- Lalani, A.-K.A.; Xie, W.; Braun, D.A.; Kaymakcalan, M.; Bossé, D.; Steinharter, J.A.; Martini, D.J.; Simantov, R.; Lin, X.; Wei, X.X. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur. Urol. Oncol. 2020, 3, 372–381. [Google Scholar] [CrossRef]
- Masini, C.; Berselli, A.; Romagnani, A.; Bonelli, C.; Fantinel, E.; Pagano, M.; Banzi, M.; Prati, G.; Gasparini, E.; Moretti, G. Results of an Italian CORE-IMMUNO study: Safety and clinical-related biomarkers as predictors of immunotherapy (IT) benefit in real-world treatment of various advanced tumors (ATs). J. Clin. Oncol. 2019, 37, e14156. [Google Scholar] [CrossRef]
- Sen, S.; Pestana, R.C.; Hess, K.; Viola, G.; Subbiah, V. Impact of antibiotic use on survival in patients with advanced cancers treated on immune checkpoint inhibitor phase I clinical trials. Ann. Oncol. 2018, 29, 2396–2398. [Google Scholar] [CrossRef]
- Spakowicz, D.; Hoyd, R.; Muniak, M.; Husain, M.; Bassett, J.S.; Wang, L.; Tinoco, G.; Patel, S.H.; Burkart, J.; Miah, A. Inferring the role of the microbiome on survival in patients treated with immune checkpoint inhibitors: Causal modeling, timing, and classes of concomitant medications. BMC Cancer 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Tinsley, N.; Zhou, C.; Tan, G.; Rack, S.; Lorigan, P.; Blackhall, F.; Krebs, M.; Carter, L.; Thistlethwaite, F.; Graham, D. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist 2020, 25, 55–63. [Google Scholar] [CrossRef]
- Wilson, B.E.; Routy, B.; Nagrial, A.; Chin, V.T. The effect of antibiotics on clinical outcomes in immune-checkpoint blockade: A systematic review and meta-analysis of observational studies. Cancer Immunol. Immunother. 2020, 69, 343–354. [Google Scholar] [CrossRef]
- Meriggi, F. Controversial link between proton pump inhibitors and anticancer agents: Review of the literature. Tumori J. 2022, 108, 204–212. [Google Scholar] [CrossRef]
- Jun, T.; Ozbek, U.; Dharmapuri, S.; Hardy-Abeloos, C.; Zhu, H.; Lin, J.-Y.; Personeni, N.; Pressiani, T.; Nishida, N.; Lee, P.-C. Antacid exposure and immunotherapy outcomes among patients with advanced hepatocellular carcinoma. Ther. Adv. Med. Oncol. 2021, 13, 17588359211010937. [Google Scholar] [CrossRef]
- Giordan, Q.; Salleron, J.; Vallance, C.; Moriana, C.; Clement-Duchene, C. Impact of Antibiotics and Proton Pump Inhibitors on Efficacy and Tolerance of Anti-PD-1 Immune Checkpoint Inhibitors. Front. Immunol. 2021, 12, 716317. [Google Scholar] [CrossRef]
- Mollica, V.; Santoni, M.; Matrana, M.R.; Basso, U.; De Giorgi, U.; Rizzo, A.; Maruzzo, M.; Marchetti, A.; Rosellini, M.; Bleve, S. Concomitant proton pump inhibitors and outcome of patients treated with nivolumab alone or plus ipilimumab for advanced renal cell carcinoma. Target. Oncol. 2022, 17, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.W.; Froerer, C.; VanAlstine, S.; Rathi, N.; Bailey, E.B.; Stenehjem, D.D.; Agarwal, N. Targeting Bacteroides in stool microbiome and response to treatment with first-line VEGF tyrosine kinase inhibitors in metastatic renal-cell carcinoma. Clin. Genitourin. Cancer 2018, 16, 365–368. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, C.; Ren, Y.; Xu, H.; Weng, S.; Liu, L.; Guo, C.; Wang, L.; Han, X. Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Front. Immunol. 2022, 13, 949490. [Google Scholar] [CrossRef]
- Ishaq, H.M.; Mohammad, I.S.; Muhammad, K.S.; Li, H.; Abbas, R.Z.; Ullah, S.; Fan, Y.; Sadiq, A.; Raza, M.A.; Hussain, R.; et al. Gut microbial dysbiosis and its association with esophageal cancer. J. Appl. Biomed. 2021, 19, 1–13. [Google Scholar] [CrossRef]
- Ruo, S.W.; Alkayyali, T.; Win, M.; Tara, A.; Joseph, C.; Kannan, A.; Srivastava, K.; Ochuba, O.; Sandhu, J.K.; Went, T.R.; et al. Role of gut microbiota dysbiosis in breast cancer and novel approaches in prevention, diagnosis, and treatment. Cureus 2021, 13, e17472. [Google Scholar] [CrossRef]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.; Wang, Y.X.; Chan, A.W.; Wei, H.; Yang, X.; Sung, J.J.; et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021, 70, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Deluce, J.; Maleki Vareki, S.; Fernandes, R. The role of gut microbiome in immune modulation in metastatic renal cell carcinoma. Ther. Adv. Med. Oncol. 2022, 14, 17588359221122714. [Google Scholar] [CrossRef]
- Saeed, M.; Shoaib, A.; Kandimalla, R.; Javed, S.; Almatroudi, A.; Gupta, R.; Aqil, F. Microbe-based therapies for colorectal cancer: Advantages and limitations. Semi. Cancer Biol. 2022, 86, 652–665. [Google Scholar] [CrossRef]
- Baunwall, S.M.D.; Terveer, E.M.; Dahlerup, J.F.; Erikstrup, C.; Arkkila, P.; Vehreschild, M.J.; Ianiro, G.; Gasbarrini, A.; Sokol, H.; Kump, P.K.; et al. The use of faecal microbiota transplantation (FMT) in Europe: A Europe-wide survey. Lancet Reg. Health Eur. 2021, 9, 100181. [Google Scholar] [CrossRef]
- Markowski, M.C.; Boorjian, S.A.; Burton, J.P.; Hahn, N.M.; Ingersoll, M.A.; Vareki, S.M.; Pal, S.K.; Sfanos, K.S. The microbiome and genitourinary cancer: A collaborative review. Eur. Urol. 2019, 75, 637–646. [Google Scholar] [CrossRef]
- Ianiro, G.; Rossi, E.; Thomas, A.M.; Schinzari, G.; Masucci, L.; Quaranta, G.; Settanni, C.R.; Lopetuso, L.R.; Armanini, F.; Blanco-Miguez, A.; et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nat. Commun. 2020, 11, 4333. [Google Scholar] [CrossRef]
- Maughan, B.L. Start of a New Era: Management of Non-Clear Cell Renal Cell Carcinoma in 2022. Curr. Oncol. Rep. 2022, 24, 1201–1208. [Google Scholar] [CrossRef]
- Brodziak, A.; Sobczuk, P.; Bartnik, E.; Fiedorowicz, M.; Porta, C.; Szczylik, C.; Czarnecka, A.M. Drug resistance in papillary RCC: From putative mechanisms to clinical practicalities. Nat. Rev. Urol. 2019, 16, 655–673. [Google Scholar] [CrossRef]
- Khoshdel Rad, N.; Vahidyeganeh, M.; Mohammadi, M.; Shpichka, A.; Timashev, P.; Hossein-Khannazer, N.; Vosough, M. Non-Clear Cell Renal Cell Carcinoma: Molecular Pathogenesis, Innovative Modeling, and Targeted Therapeutic Approaches. Int. J. Transl. Med. 2022, 2, 555–573. [Google Scholar] [CrossRef]
Different Microbiome in Normal and RCC Tissues. | ||||||
---|---|---|---|---|---|---|
Study | Year of Publication | Number of Specimens | Method | Microbiome Diversity in RCC | Specific Microbiome in RCC | Specific Microbiome in Normal Control |
Heidler et al. [42] | 2019 | Ten FFPE tissue samples (malignant tissues and tumor-free renal cortex tissues) of five RCC patients | 16S rRNA sequencing | Increased |
|
|
Found in both normal and cancer tissues, but more frequent in cancer tissues:
| ||||||
Chen et al. [38] | 2022 | Fecal samples from 51 ccRCC and 40 healthy controls | 16s rRNA sequencing | Increased |
|
|
Liss et al. [43] | 2020 | Eighteen fresh frozen tissue samples (normal adjacent renal parenchyma, tumor, and thrombus tissues) of six RCC patients | Illumina HiSeq 3000 | Increased | More abundant in tumor specimens than in normal adjacent kidney and tumor thrombus:
| |
Kovaleva et al. [45] | 2022 | Forty FFPE tissue samples (10 ccRCC, 10 pRCC, and 10 chRCC; 10 normal kidney tissues) | 16s rRNA sequencing | Phylum level: No differences | Tenericutes phylum in ccRCC, pRCC |
|
Genus level: Decreased | ccRCC:
|
| ||||
Wang et al. [44] | 2021 | Forty-eight tissue samples (malignant and normal adjacent tissues) of 24 RCC patients | 16s rRNA sequencing | Decreased |
Nostocophycideae
Actinomycetales, Nitriliruptorales, Nostocales, Oceanospirillales
Actinomycetaceae, Gordoniaceae, Pseudonocardiaceae, Nitriliruptoraceae, Nostocaceae, Acetobacteraceae
Deinococcus, Actinomyces, Gordonia, Pseudoclavibacter, Microlunatus, Amycolatopsis, Weissella, Brevundimonas, Phyllobacterium |
Anaerolineae, Chloroplast, Erysipelotrichi, Gemmatimonadetes, Pedosphaerae
H39, SJA_15, Streptophyta, Erysipelotrichales, Gemmatimonadales, Rickettsiales, Burkholderiales, Enterobacteriales, Pedosphaerales
Bifdobacteriaceae, Coriobacteriaceae, Marinilabiaceae, Caldilineaceae, SHA_31, Erysipelotrichaceae, Bradyrhizobiaceae, Hyphomicrobiaceae, mitochondria, Alcaligenaceae, Comamonadaceae, Myxococcaceae, Enterobacteriaceae, auto67_4W
Alloiococcus, Caloramator, Allobaculum, Rhodoplanes, Carludovica, Novosphingobium, Dechloromonas, Klebsiella, Coxiella, Pseudomonas |
Differentially abundant taxa between normal and RCC groups:
| ||||||
Differences in the Microbiome between Responders and Non-Responders to ICI Therapy | ||||||
Study | Year of Publication | Number of RCC Patients | Method | Microbiome Diversity in ICI Responders | Specific Microbiome in Responders | Specific Microbiome in Non-Responders |
Agarwal et al. [50] | 2020 | 22 | 16s rRNA sequencing | No significant difference |
| Unspecified |
Derosa et al. [61] | 2020 | 67 | Whole genome sequencing | Increased |
|
|
Routy et al. [47] | 2018 | 40 | Shotgun metagenomic sequencing | Increased |
|
|
Salgia et al. [48] | 2020 | 31 | Shotgun metagenomic sequencing | Increased |
|
|
Meza et al. [58] | 2022 | 28 | RNA sequencing | Unspecified | Cutibacterium acne, Moraxella osloensis and Pasteurella multocida were abundant in both responders and non-responders.Increased in responders:
| |
Combination of Microbiome with ICI Therapy | ||||||
Study | Year of Publication | Number of RCC Patients | Method | Management | Efficacy Outcome | Microbiome Analysis |
Dizman et al. [59] | 2022 | 29 | Stool metagenomic sequencing | Ipilimumab (anti-CTLA4) and nivolumab (anti-PD1) + live bacterial product CBM588 contains Clostridium butyricum |
| In patients receiving CBM588:
|
Clinical Outcomes of Concomitant Use of Factors that Alter the Gut Microbiome (Antibiotics, PPI) with ICIs | ||||||
Study | Year of Publication | Number of RCC Patients | Treatment | Effect of Treatment | ||
Giordan et al. [49] | 2021 | 33 | Antibiotics/PPI+ post-ICI(anti-PD1) | Use of antibiotics and PPIs alone or combined negatively associated with PFS and OS. | ||
Mollica et al. [50] | 2022 | 62 (Cohort 1); 156 (Cohort 2) | Pre-ICI: ipilimumab (anti-CTLA4) and nivolumab (anti-PD1) + PPI (Cohort 1); Pre-ICI: nivolumab (anti-PD1) + PPI (Cohort 2) | Concomitant use of PPI with ICIs did not affect survival outcomes. | ||
Tsikala-Vafea et al. [49] | 2021 | 603: 121 [61] 12 [62] 35 [63] 55 [64] 146 [65] 29 [66] 67 [47] 25 [67] 65 [68] 48 [69] | Antibiotics + post-ICI | The use of antibiotics was associated with shorter PFS and shorter OS. | ||
Hahn et al. [74] | 2018 | 145 | Pre-VEGF-TKI + antibiotics targeting Bacteroides species | Targeting stool Bacteroides sp. with antibiotics improves PFS in patients receiving first-line VEGF-TKIs in a duration-dependent manner. | ||
The Microbiome as a Prognostic Biomarker | ||||||
Study | Year of Publication | Number of Specimens | Discoveries | |||
Kovaleva et al. [45] | 2022 | Seventy-seven FFPE tissue samples (23 ccRCC, 19 pRCC and 24 chRCC; 11 normal kidney tissues) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piao, X.-M.; Byun, Y.J.; Zheng, C.-M.; Song, S.J.; Kang, H.W.; Kim, W.T.; Yun, S.J. A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC. Cancers 2023, 15, 935. https://doi.org/10.3390/cancers15030935
Piao X-M, Byun YJ, Zheng C-M, Song SJ, Kang HW, Kim WT, Yun SJ. A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC. Cancers. 2023; 15(3):935. https://doi.org/10.3390/cancers15030935
Chicago/Turabian StylePiao, Xuan-Mei, Young Joon Byun, Chuang-Ming Zheng, Sun Jin Song, Ho Won Kang, Won Tae Kim, and Seok Joong Yun. 2023. "A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC" Cancers 15, no. 3: 935. https://doi.org/10.3390/cancers15030935
APA StylePiao, X. -M., Byun, Y. J., Zheng, C. -M., Song, S. J., Kang, H. W., Kim, W. T., & Yun, S. J. (2023). A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC. Cancers, 15(3), 935. https://doi.org/10.3390/cancers15030935