Blood-Based Biomarker Analysis for Predicting Efficacy of Chemoradiotherapy and Durvalumab in Patients with Unresectable Stage III Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients, Treatment and Assessment
2.2. Blood Sample Collection and Procession
2.3. Enrichment, Isolation and Identification of CTC
2.4. Detection and Quantification of PD-L1 + Platelets in PBMC
2.5. Statistical Analyses
3. Results
3.1. Patient Enrollment and Baseline Characteristics
3.2. CTC as a Predictive Biomarker for DC
3.3. PBC Count as a Potential Biomarker for DC
3.4. Multivariable Analysis of PFS According to Blood-Based Biomarkers
3.5. PD-L1 Expression in Pbmcs and Relationship between Ctcs and Platelets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Blood Sampling Processing
Preparation and Quantification of cfDNA
References
- Daly, M.E.; Singh, N.; Ismaila, N.; Antonoff, M.B.; Arenberg, D.A.; Bradley, J.; David, E.; Detterbeck, F.; Früh, M.; Gubens, M.A.; et al. Management of Stage III Non–Small-Cell Lung Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 40, 1356–1384. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Faivre-Finn, C.; Vicente, D.; Kurata, T.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Spigel, D.R.; Garassino, M.C.; Reck, M.; Senan, S.; et al. Four-Year Survival with Durvalumab After Chemoradiotherapy in Stage III NSCLC-an Update from the PACIFIC Trial. J. Thorac. Oncol. 2021, 16, 860–867. [Google Scholar] [CrossRef]
- Faehling, M.; Schumann, C.; Christopoulos, P.; Hoffknecht, P.; Alt, J.; Horn, M.; Eisenmann, S.; Schlenska-Lange, A.; Schütt, P.; Steger, F.; et al. Durvalumab after definitive chemoradiotherapy in locally advanced unresectable non-small cell lung cancer (NSCLC): Real-world data on survival and safety from the German expanded-access program (EAP). Lung Cancer 2020, 150, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Bar, J.; Garrido, P.; Garassino, M.C.; McDonald, F.; Mornex, F.; Filippi, A.R.; Smit, H.J.M.; Peters, S.; Field, J.K.; et al. Treatment Characteristics and Real-World Progression-Free Survival in Patients with Unresectable Stage III NSCLC Who Received Durvalumab After Chemoradiotherapy: Findings from the PACIFIC-R Study. J. Thorac. Oncol. 2022, 18, 181–193. [Google Scholar] [CrossRef]
- Alfranca, Y.L.; Garcia, M.E.O.; Rueda, A.G.; Ballesteros, P.; Rodríguez, D.R.; Velasco, M.T. Blood Biomarkers of Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. J. Clin. Med. 2022, 11, 3245. [Google Scholar] [CrossRef] [PubMed]
- Park, C.K.; Oh, H.J.; Kim, M.S.; Koh, B.G.; Cho, H.J.; Kim, Y.C.; Yang, H.J.; Lee, J.Y.; Chun, S.M.; Oh, I.J. Comprehensive analysis of blood-based biomarkers for predicting immunotherapy benefits in patients with advanced non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 2103–2117. [Google Scholar] [CrossRef]
- Wu, C.Y.; Lee, C.L.; Wu, C.F.; Fu, J.Y.; Yang, C.T.; Wen, C.T.; Liu, Y.H.; Liu, H.P.; Hsieh, J.C. Circulating Tumor Cells as a Tool of Minimal Residual Disease Can Predict Lung Cancer Recurrence: A longitudinal, Prospective Trial. Diagnostics 2020, 10, 144. [Google Scholar] [CrossRef]
- Chemi, F.; Rothwell, D.G.; McGranahan, N.; Gulati, S.; Abbosh, C.; Pearce, S.P.; Zhou, C.; Wilson, G.A.; Jamal-Hanjani, M.; Birkbak, N.; et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat. Med. 2019, 25, 1534–1539. [Google Scholar] [CrossRef]
- Pellini, B.; Chaudhuri, A.A. Circulating Tumor DNA Minimal Residual Disease Detection of Non-Small-Cell Lung Cancer Treated with Curative Intent. J. Clin. Oncol. 2022, 40, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Park, J.; Lowe, A.C.; Jeong, H.O.; Lee, S.; Park, H.C.; Lee, K.; Kim, G.H.; Kim, M.H.; Cho, Y.K. A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC. Theranostics 2020, 10, 5181–5194. [Google Scholar] [CrossRef]
- Kim, H.; Lim, M.; Kim, J.Y.; Shin, S.J.; Cho, Y.K.; Cho, C.H. Circulating Tumor Cells Enumerated by a Centrifugal Microfluidic Device as a Predictive Marker for Monitoring Ovarian Cancer Treatment: A Pilot Study. Diagnostics 2020, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Park, J.; Lim, M.; Sunkara, V.; Kim, S.Y.; Kim, G.H.; Kim, M.H.; Cho, Y.K. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity. Anal. Chem. 2014, 86, 11349–11356. [Google Scholar] [CrossRef]
- Kim, T.H.; Lim, M.; Park, J.; Oh, J.M.; Kim, H.; Jeong, H.; Lee, S.J.; Park, H.C.; Jung, S.; Kim, B.C.; et al. FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole Blood at a Liquid-Liquid Interface. Anal. Chem. 2017, 89, 1155–1162. [Google Scholar] [CrossRef]
- Bledsoe, T.J.; Nath, S.K.; Decker, R.H. Radiation Pneumonitis. Clin. Chest Med. 2017, 38, 201–208. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease—Latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019, 16, 409–424. [Google Scholar] [CrossRef]
- Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef]
- Leone, K.; Poggiana, C.; Zamarchi, R. The Interplay between Circulating Tumor Cells and the Immune System: From Immune Escape to Cancer Immunotherapy. Diagnostics 2018, 8, 59. [Google Scholar] [CrossRef]
- Pereira-Veiga, T.; Schneegans, S.; Pantel, K.; Wikman, H. Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep. 2022, 40, 111298. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A.A.; Chabon, J.J.; Lovejoy, A.F.; Newman, A.M.; Stehr, H.; Azad, T.D.; Khodadoust, M.S.; Esfahani, M.S.; Liu, C.L.; Zhou, L.; et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov. 2017, 7, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Moding, E.J.; Liu, Y.; Nabet, B.Y.; Chabon, J.J.; Chaudhuri, A.A.; Hui, A.B.; Bonilla, R.F.; Ko, R.B.; Yoo, C.H.; Gojenola, L.; et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nat. Cancer 2020, 1, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Schuster, E.; Taftaf, R.; Reduzzi, C.; Albert, M.K.; Romero-Calvo, I.; Liu, H. Better together: Circulating tumor cell clustering in metastatic cancer. Trends Cancer 2021, 7, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Hu, W.; Liu, B.; Yang, T. Insights into Circulating Tumor Cell Clusters: A Barometer for Treatment Effects and Prognosis for Prostate Cancer Patients. Cancers 2022, 14, 3985. [Google Scholar] [CrossRef]
- Amintas, S.; Bedel, A.; Moreau-Gaudry, F.; Boutin, J.; Buscail, L.; Merlio, J.P.; Vendrely, V.; Dabernat, S.; Buscail, E. Circulating Tumor Cell Clusters: United We Stand Divided We Fall. Int. J. Mol. Sci. 2020, 21, 2653. [Google Scholar] [CrossRef]
- Maddipati, R.; Stanger, B.Z. Pancreatic Cancer Metastases Harbor Evidence of Polyclonality. Cancer Discov. 2015, 5, 1086–1097. [Google Scholar] [CrossRef]
- Cheung, K.J.; Ewald, A.J. A collective route to metastasis: Seeding by tumor cell clusters. Science 2016, 352, 167–169. [Google Scholar] [CrossRef]
- Fabisiewicz, A.; Grzybowska, E. CTC clusters in cancer progression and metastasis. Med. Oncol. 2017, 34, 12. [Google Scholar] [CrossRef]
- Hou, J.M.; Krebs, M.G.; Lancashire, L.; Sloane, R.; Backen, A.; Swain, R.K.; Priest, L.J.; Greystoke, A.; Zhou, C.; Morris, K.; et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol. 2012, 30, 525–532. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Amo, L.; Tamayo-Orbegozo, E.; Maruri, N.; Eguizabal, C.; Zenarruzabeitia, O.; Riñón, M.; Arrieta, A.; Santos, S.; Monge, J.; Vesga, M.A.; et al. Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1. Front. Oncol. 2014, 4, 245. [Google Scholar] [CrossRef] [PubMed]
- Whiteheart, S.W. Platelet granules: Surprise packages. Blood 2011, 118, 1190–1191. [Google Scholar] [CrossRef] [PubMed]
- Flavell, R.A.; Sanjabi, S.; Wrzesinski, S.H.; Licona-Limón, P. The polarization of immune cells in the tumour environment by TGFbeta. Nat. Rev. Immunol. 2010, 10, 554–567. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhong, H.; Ye, L.; Li, Q.; Fang, S.; Gu, W.; Qian, Y. Prognostic value of pretreatment platelet counts in lung cancer: A systematic review and meta-analysis. BMC Pulm. Med. 2020, 20, 96. [Google Scholar] [CrossRef]
- Zhou, K.; Cao, J.; Lin, H.; Liang, L.; Shen, Z.; Wang, L.; Peng, Z.; Mei, J. Prognostic role of the platelet to lymphocyte ratio (PLR) in the clinical outcomes of patients with advanced lung cancer receiving immunotherapy: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 962173. [Google Scholar] [CrossRef]
- Rolfes, V.; Idel, C.; Pries, R.; Plötze-Martin, K.; Habermann, J.; Gemoll, T.; Bohnet, S.; Latz, E.; Ribbat-Idel, J.; Franklin, B.S.; et al. PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy. Oncotarget 2018, 9, 27460–27470. [Google Scholar] [CrossRef]
- Zaslavsky, A.B.; Adams, M.P.; Cao, X.; Maj, T.; Choi, J.E.; Stangl-Kremser, J.; Patel, S.; Putelo, A.; Lee, S.K.; Nallandhighal, S.; et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci. Rep. 2020, 10, 19296. [Google Scholar] [CrossRef]
Characteristics | Total (n = 50) | CCRT Alone (n = 27) | DC (n = 23) | p-Value |
---|---|---|---|---|
Age | 68.2 (7.9) | 68.5 (7.7) | 67.2 (8.5) | 0.740 |
Sex | 0.322 | |||
Female | 4 (8.0) | 1 (3.7) | 3 (13.0) | |
Male | 46 (92.0) | 26 (96.3) | 20 (87.0) | |
Smoking | 0.900 | |||
Never smoker | 3 (6.0) | 2 (7.4) | 1 (4.3) | |
Current smoker | 28 (56.0) | 15 (55.6) | 13 (56.5) | |
Ex-smoker | 19 (38.0) | 10 (37.0) | 9 (39.1) | |
Pack × Years | 39.8 (19.8) | 37.1 (17.3) | 43.4 (22.4) | 0.277 |
Histology | 0.402 | |||
ADC | 16 (32.0) | 10 (37.0) | 6 (26.1) | |
SQC | 30 (60.0) | 14 (51.9) | 16 (69.6) | |
NSCLC, NOS | 4 (8.0) | 3 (11.1) | 1 (4.3) | |
Stage (TNM 8th) | 0.906 | |||
IIIA | 23 (46.0) | 12 (44.4) | 11 (47.8) | |
IIIB | 19 (38.0) | 11 (40.7) | 8 (34.8) | |
IIIC | 8 (16.0) | 4 (14.8) | 4 (17.4) | |
EGFR mutation | 0.264 | |||
Wild type | 22 (44.0) | 14 (51.9) | 8 (34.8) | |
Mutant | 1 (2.0) | 1 1 (3.7) | 0 (0.0) | |
Unknown | 27 (54.0) | 12 (44.4) | 15 (65.2) | |
ALK translocation | 0.442 | |||
Negative | 20 (40.0) | 13 (48.1) | 7 (30.4) | |
Positive | 2 (4.0) | 1 (3.7) | 1 (4.3) | |
Unknown | 28 (56.0) | 13 (48.1) | 15 (65.2) | |
PD-L1 IHC (SP263) | <0.001 | |||
TPS < 1% | 21 (42.0) | 20 (74.1) | 1 (4.3) | |
TPS ≥ 1% | 28 (56.0) | 6 (22.2) | 22 (95.7) | |
Unknown | 1 (2.0) | 1 (3.7) | 0 (0.0) | |
Chemotherapy Rx | 0.827 | |||
Pac-Cis | 34 (68.0) | 18 (66.7) | 16 (69.6) | |
Pac-Car | 16 (32.0) | 9 (33.3) | 7 (30.4) | |
Chemotherapy cycle | 5.4 (1.3) | 5.1 (1.6) | 5.9 (0.4) | 0.035 |
RT fraction | 29.0 (4.1) | 28.2 (5.8) | 30.0 (0.0) | 0.032 |
RT dose, Gy | 58.5 (8.4) | 57.5 (12.2) | 59.8 (0.7) | 0.711 |
Last RT to C1 2 sample | 32.5 (16.9) | 39.5 (20.4) | 27.1 (7.9) | 0.004 |
CCRT best response | 0.221 | |||
CR | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
PR | 33 (66.0) | 16 (59.3) | 17 (73.9) | |
SD | 14 (28.0) | 8 (29.6) | 6 (26.1) | |
PD | 3 (6.0) | 3 (11.1) | 0 (0.0) | |
ORR, % | 66.0 | 59.3 | 73.9 | |
Radiation pneumonitis | 40 (80.0) | 21 (77.8) | 19 (82.6) | 0.736 |
On steroid treatment | 10 (25.0) | 4 (19.0) | 6 (31.6) | 0.473 |
Radiation esophagitis | 24 (48.0) | 13 (48.1) | 11 (47.8) | 0.982 |
IrAEs | - | - | 13 (56.5) | - |
Thyroiditis | - | - | 9 (39.1) | - |
Skin eruption | - | - | 2 (8.7) | - |
Fever | - | - | 1 (4.3) | - |
Pericardial effusion | - | - | 1 (4.3) | - |
Pneumonitis | - | - | 1 (4.3) | - |
Hearing loss | - | - | 1 (4.3) | - |
Progression | 32 (64.0) | 19 (70.4) | 13 (56.5) | 0.309 |
PD during CCRT | - | 2 (7.4) | - | - |
DC completion | - | - | 9 (39.1) | - |
PD during DC | - | - | 11 (47.8) | - |
Progression type | 0.169 | |||
Localized/Regional | 17 (53.1) | 12 (63.2) | 5 (38.5) | |
Distant | 15 (46.9) | 7 (36.8) | 8 (61.5) | |
Post-PD treatment (1st) | 0.398 | |||
OP or RT | 2 (4.0) | 1 (3.7) | 1 (4.3) | |
Chemotherapy 3 | 16 (32.0) | 7 (25.9) | 9 (39.1) | |
ICIs | 3 (6.0) | 3 (11.1) | 0 (0.0) | |
TKIs | 3 (6.0) | 2 (7.4) | 1 (4.3) | |
BSC or loss of follow-up | 8 (16.0) | 6 (22.2) | 2 (8.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.-K.; Lee, S.-W.; Cho, H.-J.; Oh, H.-J.; Kim, Y.-C.; Kim, Y.-H.; Ahn, S.-J.; Cho, J.-H.; Oh, I.-J. Blood-Based Biomarker Analysis for Predicting Efficacy of Chemoradiotherapy and Durvalumab in Patients with Unresectable Stage III Non-Small Cell Lung Cancer. Cancers 2023, 15, 1151. https://doi.org/10.3390/cancers15041151
Park C-K, Lee S-W, Cho H-J, Oh H-J, Kim Y-C, Kim Y-H, Ahn S-J, Cho J-H, Oh I-J. Blood-Based Biomarker Analysis for Predicting Efficacy of Chemoradiotherapy and Durvalumab in Patients with Unresectable Stage III Non-Small Cell Lung Cancer. Cancers. 2023; 15(4):1151. https://doi.org/10.3390/cancers15041151
Chicago/Turabian StylePark, Cheol-Kyu, Sung-Woo Lee, Hyun-Ju Cho, Hyung-Joo Oh, Young-Chul Kim, Yong-Hyub Kim, Sung-Ja Ahn, Jae-Ho Cho, and In-Jae Oh. 2023. "Blood-Based Biomarker Analysis for Predicting Efficacy of Chemoradiotherapy and Durvalumab in Patients with Unresectable Stage III Non-Small Cell Lung Cancer" Cancers 15, no. 4: 1151. https://doi.org/10.3390/cancers15041151
APA StylePark, C.-K., Lee, S.-W., Cho, H.-J., Oh, H.-J., Kim, Y.-C., Kim, Y.-H., Ahn, S.-J., Cho, J.-H., & Oh, I.-J. (2023). Blood-Based Biomarker Analysis for Predicting Efficacy of Chemoradiotherapy and Durvalumab in Patients with Unresectable Stage III Non-Small Cell Lung Cancer. Cancers, 15(4), 1151. https://doi.org/10.3390/cancers15041151