CRP/Albumin Ratio and Glasgow Prognostic Score Provide Prognostic Information in Myelofibrosis Independently of MIPSS70—A Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patient Population and Methods
3. Results
3.1. Levels of CRP and Albumin, the CAR in Different MF Subgroups and Their Association with Disease Characteristics
3.2. Prognostic Impact of CRP, Albumin and Derived Indices (CAR and GPS) in MF
3.3. Association of Levels of CRP and Albumin with Inflammatory Cytokines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Passamonti, F.; Mora, B. Myelofibrosis. Blood 2022, blood.2022017423. [Google Scholar] [CrossRef] [PubMed]
- Gangat, N.; Tefferi, A. Myelofibrosis Biology and Contemporary Management. Br. J. Haematol. 2020, 191, 152–170. [Google Scholar] [CrossRef]
- Passamonti, F.; Cervantes, F.; Vannucchi, A.M.; Morra, E.; Rumi, E.; Pereira, A.; Guglielmelli, P.; Pungolino, E.; Caramella, M.; Maffioli, M.; et al. A Dynamic Prognostic Model to Predict Survival in Primary Myelofibrosis: A Study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010, 115, 1703–1708. [Google Scholar] [CrossRef] [Green Version]
- Grinfeld, J. Prognostic Models in the Myeloproliferative Neoplasms. Blood Rev. 2020, 42, 100713. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Carobbio, A.; Finazzi, G.; Guglielmelli, P.; Salmoiraghi, S.; Rosti, V.; Rambaldi, A.; Vannucchi, A.M.; Barosi, G. Elevated C-Reactive Protein Is Associated with Shortened Leukemia-Free Survival in Patients with Myelofibrosis. Leukemia 2013, 27, 2084–2086. [Google Scholar] [CrossRef] [PubMed]
- Veletic, I.; Manshouri, T.; Newberry, K.J.; Garnett, J.; Verstovsek, S.; Estrov, Z. Pentraxin-3 Plasma Levels Correlate with Tumour Burden and Overall Survival in Patients with Primary Myelofibrosis. Br. J. Haematol. 2019, 185, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Kuykendall, A.T.; Talati, C.; Sallman, D.A.; Sweet, K.L.; Padron, E.; Lancet, J.E.; List, A.F.; Zuckerman, K.S.; Komrokji, R.S. Serum albumin is a strong predictor of survival in myelofibrosis, independent of ipss, dipss, and dipss+ scores. Haematologica 2017, 102, E1323. [Google Scholar]
- Lucijanic, M.; Veletic, I.; Rahelic, D.; Pejsa, V.; Cicic, D.; Skelin, M.; Livun, A.; Tupek, K.M.; Stoos-Veic, T.; Lucijanic, T.; et al. Assessing Serum Albumin Concentration, Lymphocyte Count and Prognostic Nutritional Index Might Improve Prognostication in Patients with Myelofibrosis. Wien. Klin. Wochenschr. 2018, 130, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Tefferi, A.; Nicolosi, M.; Penna, D.; Mudireddy, M.; Szuber, N.; Lasho, T.L.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Pardanani, A.D. Development of a Prognostically Relevant Cachexia Index in Primary Myelofibrosis Using Serum Albumin and Cholesterol Levels. Blood Adv. 2018, 2, 1980–1984. [Google Scholar] [CrossRef]
- Lucijanic, M.; Galusic, D.; Krecak, I.; Sedinic, M.; Soric, E.; Holik, H.; Perisa, V.; Moric Peric, M.; Zekanovic, I.; Stoos-Veic, T.; et al. C Reactive Protein to Albumin Ratio as Prognostic Marker in Primary and Secondary Myelofibrosis. Leuk. Lymphoma 2020, 61, 2969–2974. [Google Scholar] [CrossRef]
- Lucijanic, M.; Cicic, D.; Stoos-Veic, T.; Pejsa, V.; Rahelic, D.; Lucijanic, T.; Vasilj, T.; Ivic, M.; Sedinic, M.; Kusec, R. Combining Information on C Reactive Protein and Serum Albumin into the Glasgow Prognostic Score Strongly Discriminates Survival of Myelofibrosis Patients. Blood Cells. Mol. Dis. 2018, 72, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Lasho, T.L.; Rotunno, G.; Mudireddy, M.; Mannarelli, C.; Nicolosi, M.; Pacilli, A.; Pardanani, A.; Rumi, E.; Rosti, V.; et al. MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients with Primary Myelofibrosis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Forrest, L.M.; McMillan, D.C.; McArdle, C.S.; Angerson, W.J.; Dunlop, D.J. Evaluation of Cumulative Prognostic Scores Based on the Systemic Inflammatory Response in Patients with Inoperable Non-Small-Cell Lung Cancer. Br. J. Cancer 2003, 89, 1028–1030. [Google Scholar] [CrossRef] [Green Version]
- Koschmieder, S.; Chatain, N. Role of Inflammation in the Biology of Myeloproliferative Neoplasms. Blood Rev. 2020, 42, 100711. [Google Scholar] [CrossRef]
- Rai, S.; Grockowiak, E.; Hansen, N.; Luque Paz, D.; Stoll, C.B.; Hao-Shen, H.; Mild-Schneider, G.; Dirnhofer, S.; Farady, C.J.; Méndez-Ferrer, S.; et al. Inhibition of Interleukin-1β Reduces Myelofibrosis and Osteosclerosis in Mice with JAK2-V617F Driven Myeloproliferative Neoplasm. Nat. Commun. 2022, 13, 5346. [Google Scholar] [CrossRef]
- Rahman, M.F.-U.; Yang, Y.; Le, B.T.; Dutta, A.; Posyniak, J.; Faughnan, P.; Sayem, M.A.; Aguilera, N.S.; Mohi, G. Interleukin-1 Contributes to Clonal Expansion and Progression of Bone Marrow Fibrosis in JAK2V617F-Induced Myeloproliferative Neoplasm. Nat. Commun. 2022, 13, 5347. [Google Scholar] [CrossRef]
- Patel, H.J.; Patel, B.M. TNF-α and Cancer Cachexia: Molecular Insights and Clinical Implications. Life Sci. 2017, 170, 56–63. [Google Scholar] [CrossRef]
- Senjo, H.; Onozawa, M.; Hidaka, D.; Yokoyama, S.; Yamamoto, S.; Tsutsumi, Y.; Haseyama, Y.; Nagashima, T.; Mori, A.; Ota, S.; et al. High CRP-Albumin Ratio Predicts Poor Prognosis in Transplant Ineligible Elderly Patients with Newly Diagnosed Acute Myeloid Leukemia. Sci. Rep. 2022, 12, 8885. [Google Scholar] [CrossRef]
- De Simone, G.; di Masi, A.; Ascenzi, P. Serum Albumin: A Multifaced Enzyme. Int. J. Mol. Sci. 2021, 22, 10086. [Google Scholar] [CrossRef]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The Antioxidant Properties of Serum Albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Pioggia, G.; Tonacci, A.; Casciaro, M.; Musolino, C.; Gangemi, S. Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants 2020, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Arques, S. Serum Albumin and Cardiovascular Disease: State-of-the-Art Review. Ann. Cardiol. Angeiol. (Paris) 2020, 69, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Emerging Risk Factors Collaboration; Kaptoge, S.; Di Angelantonio, E.; Lowe, G.; Pepys, M.B.; Thompson, S.G.; Collins, R.; Danesh, J. C-Reactive Protein Concentration and Risk of Coronary Heart Disease, Stroke, and Mortality: An Individual Participant Meta-Analysis. Lancet Lond. Engl. 2010, 375, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Mesa, R.A.; Verstovsek, S.; Gupta, V.; Mascarenhas, J.O.; Atallah, E.; Burn, T.; Sun, W.; Sandor, V.; Gotlib, J. Effects of Ruxolitinib Treatment on Metabolic and Nutritional Parameters in Patients with Myelofibrosis From COMFORT-I. Clin. Lymphoma Myeloma Leuk. 2015, 15, 214–221.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravi, N.; Stoner, L.; Farajivafa, V.; Hanson, E.D. Exercise Training, Circulating Cytokine Levels and Immune Function in Cancer Survivors: A Meta-Analysis. Brain. Behav. Immun. 2019, 81, 92–104. [Google Scholar] [CrossRef]
- Caldo-Silva, A.; Furtado, G.E.; Chupel, M.U.; Bachi, A.L.L.; de Barros, M.P.; Neves, R.; Marzetti, E.; Massart, A.; Teixeira, A.M. Effect of Training-Detraining Phases of Multicomponent Exercises and BCAA Supplementation on Inflammatory Markers and Albumin Levels in Frail Older Persons. Nutrients 2021, 13, 1106. [Google Scholar] [CrossRef] [PubMed]
- Mendez, L.F.; Nguyen, H.; Nguyen, J.; Himstead, A.; Lemm, M.R.; Heide, E.S.; Scherber, R.M.; Choudhry, A.; McKinney, C.O.; Mesa, R.A.; et al. The Nutrient Trial (NUTRitional Intervention among MyEloproliferative Neoplasms): Feasibility Phase. Blood 2019, 134, 5380. [Google Scholar] [CrossRef]
- Tefferi, A.; Saeed, L.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A.; Gangat, N. Application of Current Prognostic Models for Primary Myelofibrosis in the Setting of Post-Polycythemia Vera or Post-Essential Thrombocythemia Myelofibrosis. Leukemia 2017, 31, 2851–2852. [Google Scholar] [CrossRef] [Green Version]
- Masarova, L.; Verstovsek, S. The Evolving Understanding of Prognosis in Post-Essential Thrombocythemia Myelofibrosis and Post-Polycythemia Vera Myelofibrosis vs Primary Myelofibrosis. Clin. Adv. Hematol. Oncol. HO 2019, 17, 299–307. [Google Scholar]
- Passamonti, F.; Giorgino, T.; Mora, B.; Guglielmelli, P.; Rumi, E.; Maffioli, M.; Rambaldi, A.; Caramella, M.; Komrokji, R.; Gotlib, J.; et al. A Clinical-Molecular Prognostic Model to Predict Survival in Patients with Post Polycythemia Vera and Post Essential Thrombocythemia Myelofibrosis. Leukemia 2017, 31, 2726–2731. [Google Scholar] [CrossRef] [PubMed]
- Vannucchi, A.M.; Guglielmelli, P. Molecular Prognostication in Ph-Negative MPNs in 2022. Hematology 2022, 2022, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Guglielmelli, P.; Lasho, T.L.; Gangat, N.; Ketterling, R.P.; Pardanani, A.; Vannucchi, A.M. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1769–1770. [Google Scholar] [CrossRef] [PubMed]
Whole Population | CRP ≤8 mg/L | CRP >8 mg/L | p | Albumin ≥ 40 g/L | Albumin < 40 g/L | p | |
---|---|---|---|---|---|---|---|
n | 78 | 47 | 24 | 31 | 30 | ||
Age [years], median, (IQR) | 72 (60–78) | 70 (60–77) | 76 (63–80) | 0.068 | 69 (60–77) | 76 (67–79) | 0.075 |
Female n, (%) | 37 (46.2) | 24/47 (51) | 10/24 (41.7) | 0.616 | 14/31 (45.2) | 16/30 (53.3) | 0.612 |
Bone marrow fibrosis grade 2, n (%) | 54/78 (70) | 37/47 (78.7) | 14/24 (58.3) | 25/31 (80.6%) | 20/30 (67) | ||
Bone marrow fibrosis grade 3, n (%) | 24/78 (30) | 10/47 (21.3) | 10/24 (41.7) | 0.096 | 6/31 (19.4) | 10/30 (33) | 0.255 |
Hemoglobin [g/L], median (IQR) | 107 (88–122) | 117 (102–131) | 86 (77–103 | <0.001 | 115 (103–130) | 96 (80–113) | 0.003 |
Platelet count (×109/L) median (IQR) | 410 (197–663) | 550 (340–773) | 255 (110–442) | 0.001 | 541 (200–770) | 391 (231–576) | 0.329 |
Leukocytes (×109/L), median (IQR) | 8.9 (6.0–15.6) | 9.5 (6.8–16) | 8.7 (5.5–20) | 0.551 | 9.4 (6.8–16) | 10 (6.3–21) | 0.751 |
Neutrophils (×109/L), median (IQR) | 6.15 (3.8–12.8) | 6.8 (4.3–13.4) | 6.15 (2.7–1.4) | 0.378 | 6.1 (4.3–13) | 7.25 (3.3–14.9) | 0.902 |
Monocytes (×109/L), median (IQR) | 0.56 (0.33–0.84) | 0.65 (0.38–0.83) | 0.44 (0.28–0.87) | 0.397 | 0.54 (0.36–0.82) | 0.56 (0.29–0.85) | 0.813 |
Blasts PB (%), median (IQR) | 0 (0–1) | 0 (0–1) | 1 (0–2) | 0.017 | 0 (0–1) | 0 (0–1) | 0.605 |
Constitutional symptoms, n (%) | 36/78 (46) | 16/47 (34) | 16/24 (66.7) | 0.012 | 12/31 (38.7) | 19/30 (63.3) | 0.074 |
LDH available, n (%) Median [U/L] (IQR) | 69/78 (88) 525 (347–700) | 41/47 (87) 457 (329–606) | 23/24 (96) 609 (463–932) | 0.043 | 30/31 (97) 541 (365–829) | 26/30 (87) 541 (321–686) | 0.730 |
CRP available, n (%) Median [mg/L] (IQR) | 71/78 (91) 5 (2–12) | 47/47 (100) 3 (1–5) | 24/24 (100) 21 (11–35) | 28/31 (90) 4 (1.25–6) | 29/30 (97) 10 (3.5–24.5) | 0.005 | |
Albumin available, n (%) Median [g/L] (IQR) | 61/78 (78) 40 (37–43) | 36/47 (76) 42 (39–43) | 21/24 (88) 37 (35–38) | <0.001 | 31/31 43 (42–44) | 30/30 37 (35–38) | |
CAR available, n (%) Median (IQR) | 57/78 (73) 0.128 (0.051–0.374) | 36/57 (63) 0.073 (0.0263–0.125) | 21/24 (87) 0.579 (0.315–0.808) | <0.001 | 28/31 (90) 0.093 (0.029–0.142) | 29/30 (97) 0.263 (0.094–0.727) | 0.001 |
Need of transfusion, n (%) | 12/78 (15) | 2/47 (4.3) | 8/24 (33.3) | 0.002 | 3/31 (9.7) | 6/30 (20) | 0.301 |
Platelets < 100 × 109/L, n (%) | 5/77 (6.5) | 0/47 (0) | 4/24 (17) | 0.011 | 1/30 (3) | 2/30 (17) | 1.00 |
Splenomegaly (clinically or imaging), n (%) | 63/78 (81) | 37/47 (79) | 20/24 (83) | 0.759 | 25/31 (80.6) | 26/30 (86.7) | 0.731 |
BMI, available, n (%) Median (kg/m2) (IQR) | 72/78 (92) 24.5 (21–28) | 42/47 (89) 24.4 (21.1–28.3) | 23/24 (96) 26 (22.0–28.2) | 0.484 | 27/31 (87) 26.4 (22.9–29.2) | 30/30 22.1 (20.4–26.1) | 0.008 |
Driver Mutations | |||||||
JAK2-V617F (n, %) | 46/78 (59) | ||||||
CALR (n, %) | 16/78, (20.5) | ||||||
MPL (n, %) | 3/78, (3.8) | ||||||
Triple negative (n, %) | 5/78, (6.4) | ||||||
Unknown * (n, %) | 8/78, (10.3) |
Univariate | Bivariate | |||||||
---|---|---|---|---|---|---|---|---|
n | HR | 95% CI | p | n | HR | 95% CI | p | |
MIPSS70dich | 59 | 4.90 | 1.99–12.0 | 0.001 | 56 | 3.45 | 1.28–9.32 | 0.0148 |
CRP > 8 mg/L | 71 | 3.85 | 1.85–8.0 | <0.001 | 2.50 | 1.13–5.52 | 0.0236 | |
MIPSS70dich | 50 | 8.65 | 2.87–26.07 | <0.001 | ||||
Albumin < 40 g/L | 61 | 2.49 | 1.13–5.49 | 0.024 | 5.49 | 1.89–15.96 | 0.0018 | |
MIPSS70dich | 47 | 4.86 | 1.99–11.88 | 0.0005 | ||||
CAR > 0.204 | 57 | 1.84 | 1.01–3.34 | 0.046 | 1.37 | 0.66–2.84 | 0.4026 | |
MIPSS70dich | 47 | 5.98 | 1.84–19.46 | 0.0030 | ||||
CAR > 0.374 | 57 | 4.25 | 1.75–10.32 | 0.001 | 3.53 | 1.36–9.17 | 0.0095 | |
MIPSS70dich | 47 | 6.35 | 1.95–20.73 | 0.0022 | ||||
GPS > 0 | 57 | 5.38 | 2.17–13.37 | <0.001 | 4.63 | 1.76–12.1 | 0.0019 |
Univariate | Bivariate | |||||||
---|---|---|---|---|---|---|---|---|
n | HR | 95% CI | p | n | HR | 95% CI | p | |
MIPSS70dich | 45 | 6.26 | 2.19–17.89 | 0.0006 | 42 | 4.21 | 1.40–12.65 | 0.0104 |
CRP > 8 mg/L | 52 | 3.86 | 1.52–9.76 | 0.0044 | 2.12 | 0.77–5.87 | 0.146 | |
MIPSS70dich | 37 | 9.92 | 2.46–40.0 | 0.0013 | ||||
Albumin < 40 g/L | 48 | 2.12 | 0.91–4.92 | 0.0823 | 4.89 | 1.15–20.78 | 0.0317 | |
MIPSS70dich | 35 | 10.15 | 2.61–39.44 | 0.0008 | ||||
CAR > 0.204 | 44 | 4.06 | 1.41–11.66 | 0.0093 | 2.71 | 0.85–8.64 | 0.0923 | |
MIPSS70dich | 35 | 8.33 | 2.09–33.18 | 0.0026 | ||||
CAR > 0.374 | 44 | 3.88 | 1.39–10.80 | 0.0094 | 3.38 | 1.09–10.50 | 0.0353 | |
MIPSS70dich | 35 | 9.83 | 2.22–43.60 | 0.0026 | ||||
GPS > 0 | 44 | 4.60 | 1.61–13.18 | 0.0044 | 4.32 | 1.33–14.02 | 0.0148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messerich, N.-M.; Uda, N.R.; Volken, T.; Cogliatti, S.; Lehmann, T.; Holbro, A.; Benz, R.; Graf, L.; Gupta, V.; Jochum, W.; et al. CRP/Albumin Ratio and Glasgow Prognostic Score Provide Prognostic Information in Myelofibrosis Independently of MIPSS70—A Retrospective Study. Cancers 2023, 15, 1479. https://doi.org/10.3390/cancers15051479
Messerich N-M, Uda NR, Volken T, Cogliatti S, Lehmann T, Holbro A, Benz R, Graf L, Gupta V, Jochum W, et al. CRP/Albumin Ratio and Glasgow Prognostic Score Provide Prognostic Information in Myelofibrosis Independently of MIPSS70—A Retrospective Study. Cancers. 2023; 15(5):1479. https://doi.org/10.3390/cancers15051479
Chicago/Turabian StyleMesserich, Nora-Medea, Narasimha Rao Uda, Thomas Volken, Sergio Cogliatti, Thomas Lehmann, Andreas Holbro, Rudolf Benz, Lukas Graf, Vikas Gupta, Wolfram Jochum, and et al. 2023. "CRP/Albumin Ratio and Glasgow Prognostic Score Provide Prognostic Information in Myelofibrosis Independently of MIPSS70—A Retrospective Study" Cancers 15, no. 5: 1479. https://doi.org/10.3390/cancers15051479
APA StyleMesserich, N. -M., Uda, N. R., Volken, T., Cogliatti, S., Lehmann, T., Holbro, A., Benz, R., Graf, L., Gupta, V., Jochum, W., Demmer, I., Rao, T. N., & Silzle, T. (2023). CRP/Albumin Ratio and Glasgow Prognostic Score Provide Prognostic Information in Myelofibrosis Independently of MIPSS70—A Retrospective Study. Cancers, 15(5), 1479. https://doi.org/10.3390/cancers15051479