Tissue vs. Fecal-Derived Bacterial Dysbiosis in Precancerous Colorectal Lesions: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Literature Search Strategy
2.4. Study Selection
2.5. Data Extraction
2.6. Study Quality Assessment and Risk of Bias
3. Results
Search Results and Study Characteristics
4. Discussion
4.1. Structural Gut Microbiota Profile in Patients with Precancerous and Preinvasive Colorectal Lesions vs. HC
4.2. Gut Microbiota Compositional Patterns in Mucosa-Associated (Tissue) vs. Luminal (Fecal) Samples of Patients with Premalignant Colorectal Polyps
4.3. Intestinal Microbiota Studies in Patients with Precancerous CR Lesions: Tissue or Stool?
4.4. Limitations of the Review
4.5. Recommendations and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Garcia-Etxebarria, K.; Clos-Garcia, M.; Telleria, O.; Nafría, B.; Alonso, C.; Iruarrizaga-Lejarreta, M.; Franke, A.; Crespo, A.; Iglesias, A.; Cubiella, J.; et al. Interplay between Genome, Metabolome and Microbiome in Colorectal Cancer. Cancers 2021, 13, 6216. [Google Scholar] [CrossRef]
- Rasmusson, A.; Zilenaite, D.; Nestarenkaite, A.; Augulis, R.; Laurinaviciene, A.; Ostapenko, V.; Poskus, T.; Laurinavicius, A. Immunogradient Indicators for Antitumor Response Assessment by Automated Tumor-Stroma Interface Zone Detection. Am. J. Pathol. 2020, 190, 1309–1322. [Google Scholar] [CrossRef]
- Oliva, M.; Mulet-Margalef, N.; Ochoa-De-Olza, M.; Napoli, S.; Mas, J.; Laquente, B.; Alemany, L.; Duell, E.J.; Nuciforo, P.; Moreno, V. Tumor-Associated Microbiome: Where Do We Stand? Int. J. Mol. Sci. 2021, 22, 1446. [Google Scholar] [CrossRef]
- Vogtmann, E.; Hua, X.; Zeller, G.; Sunagawa, S.; Voigt, A.Y.; Hercog, R.; Goedert, J.J.; Shi, J.; Bork, P.; Sinha, R. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. PLoS ONE 2016, 11, e0155362. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.C.; Wei, S.C.; Ni, Y.H. Impact of microbiota in colorectal carcinogenesis: Lessons from experimental models. Intest. Res. 2018, 16, 346–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Wang, Z.; Li, H.; Cao, Z.; Gao, Z.; Chen, H.; Zhang, X.; Pan, D.; Yang, R.; Zhong, H.; et al. Gut microbiota dysbiosis signature is associated with the colorectal carcinogenesis sequence and improves the diagnosis of colorectal lesions. J. Gastroenterol. Hepatol. 2020, 35, 2109–2121. [Google Scholar] [CrossRef] [PubMed]
- Ohigashi, S.; Sudo, K.; Kobayashi, D.; Takahashi, O.; Takahashi, T.; Asahara, T.; Nomoto, K.; Onodera, H. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer. Dig Dis. Sci. 2013, 58, 1717–1726. [Google Scholar] [CrossRef]
- Datorre, J.G.; de Carvalho, A.C.; Guimarães, D.P.; Reis, R.M. The Role of Fusobacterium nucleatum in Colorectal Carcinogenesis. Pathobiology 2021, 88, 127–140. [Google Scholar] [CrossRef]
- Viljoen, K.S.; Dakshinamurthy, A.; Goldberg, P.; Blackburn, J.M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE 2015, 10, e0119462. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhao, L.; Zhao, R.; Long, X.; Coker, O.O.; Sung, J.J.Y. The role of Parvimonas micra in intestinal tumorigenesis in germ-free and conventional APCmin/+ mice. J. Clin. Oncol. 2019, 37, 531. [Google Scholar] [CrossRef]
- Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020, 580, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.A.; Neoh, H.M.; Ab Mutalib, N.S.; Chin, S.F.; Mazlan, L.; Raja Ali, R.A.; Zakaria, A.D.; Ngiu, C.S.; Jamal, R. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 2021, 11, 2925. [Google Scholar] [CrossRef]
- McCoy, A.N.; Araújo-Pérez, F.; Azcárate-Peril, A.; Yeh, J.J.; Sandler, R.S.; Keku, T.O. Fusobacterium is associated with colorectal adenomas. PLoS ONE 2013, 8, e53653. [Google Scholar] [CrossRef]
- Dulal, S.; Keku, T.O. Gut microbiome and colorectal adenomas. Cancer J. 2014, 20, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Rezasoltani, S.; Asadzadeh Aghdaei, H.; Dabiri, H.; Akhavan Sepahi, A.; Modarressi, M.H.; Nazemalhosseini Mojarad, E. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb. Pathog. 2018, 124, 244–249. [Google Scholar] [CrossRef]
- Shen, X.J.; Rawls, J.F.; Randall, T.; Burcal, L.; Mpande, C.N.; Jenkins, N.; Jovov, B.; Abdo, Z.; Sandler, R.S.; Keku, T.O. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010, 1, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Brim, H.; Yooseph, S.; Zoetendal, E.G.; Lee, E.; Torralbo, M.; Laiyemo, A.O.; Shokrani, B.; Nelson, K.; Ashktorab, H. Microbiome analysis of stool samples from African Americans with colon polyps. PLoS ONE 2013, 8, e81352. [Google Scholar] [CrossRef] [Green Version]
- DeDecker, L.; Coppedge, B.; Avelar-Barragan, J.; Karnes, W.; Whiteson, K. Microbiome distinctions between the CRC carcinogenic pathways. Gut Microbes. 2021, 13, 1854641. [Google Scholar] [CrossRef]
- Olovo, C.V.; Huang, X.; Zheng, X.; Xu, M. Faecal microbial biomarkers in early diagnosis of colorectal cancer. J. Cell Mol. Med. 2021, 25, 10783–10797. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Chiu, J.; Chen, Y.; Huang, Y.; Higashimori, A.; Fang, J.; Brim, H.; Ashktorab, H.; Ng, S.C.; Ng, S.S.M.; et al. Fecal Bacteria Act as Novel Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clin. Cancer Res. 2017, 23, 2061–2070. [Google Scholar] [CrossRef] [Green Version]
- Eklöf, V.; Löfgren-Burström, A.; Zingmark, C.; Edin, S.; Larsson, P.; Karling, P.; Alexeyev, O.; Rutegård, J.; Wikberg, M.L.; Palmqvist, R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer 2017, 141, 2528–2536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mira-Pascual, L.; Cabrera-Rubio, R.; Ocon, S.; Costales, P.; Parra, A.; Suarez, A.; Moris, F.; Rodrigo, L.; Mira, A.; Collado, M.C. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 2015, 50, 167–179. [Google Scholar] [CrossRef]
- Flemer, B.; Lynch, D.B.; Brown, J.M.; Jeffery, I.B.; Ryan, F.J.; Claesson, M.J.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017, 66, 633–643. [Google Scholar] [CrossRef]
- Yu, Y.N.; Yu, T.C.; Zhao, H.J.; Sun, T.T.; Chen, H.M.; Chen, H.Y.; An, H.F.; Weng, Y.R.; Yu, J.; Li, M.; et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 2015, 6, 32013–32026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Li, J.; Li, J.; Zhang, Y.; Li, X.; Cui, Y.; Gao, Q.; Chen, X.; Chen, Y.; Fang, J.Y. Fecal Enterotoxigenic Bacteroides fragilis-Peptostreptococcus stomatis-Parvimonas micra Biomarker for Noninvasive Diagnosis and Prognosis of Colorectal Laterally Spreading Tumor. Front. Oncol. 2021, 11, 661048. [Google Scholar] [CrossRef]
- Watson, K.M.; Gardner, I.H.; Anand, S.; Siemens, K.N.; Sharpton, T.J.; Kasschau, K.D.; Dewey, E.N.; Martindale, R.; Gaulke, C.A.; Tsikitis, V.L. Colonic Microbial Abundances Predict Adenoma Formers. Ann Surg. 2021, 10, 22–28. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) . Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022); John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Zeller, G.; Tap, J.; Voigt, A.Y.; Sunagawa, S.; Kultima, J.R.; Costea, P.I.; Amiot, A.; Böhm, J.; Brunetti, F.; Habermann, N.; et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 2014, 10, 766. [Google Scholar] [CrossRef]
- Avelar-Barragan, J.; DeDecker, L.; Lu, Z.N.; Coppedge, B.; Karnes, W.E.; Whiteson, K.L. Distinct colon mucosa microbiomes associated with tubular adenomas and serrated polyps. NPJ Biofilms Microbiomes 2022, 8, 69. [Google Scholar] [CrossRef]
- Clos-Garcia, M.; Garcia, K.; Alonso, C.; Iruarrizaga-Lejarreta, M.; D’Amato, M.; Crespo, A.; Iglesias, A.; Cubiella, J.; Bujanda, L.; Falcón-Pérez, J.M. Integrative Analysis of Fecal Metagenomics and Metabolomics in Colorectal Cancer. Cancers 2020, 12, 1142. [Google Scholar] [CrossRef]
- Wei, P.L.; Hung, C.S.; Kao, Y.W.; Lin, Y.C.; Lee, C.Y.; Chang, T.H.; Shia, B.C.; Lin, J.C. Classification of Changes in the Fecal Microbiota Associated with Colonic Adenomatous Polyps Using a Long-Read Sequencing Platform. Genes 2020, 11, 1374. [Google Scholar] [CrossRef]
- Bosch, S.; Acharjee, A.; Quraishi, M.N.; Rojas, P.; Bakkali, A.; Jansen, E.E.; Brizzio Brentar, M.; Kuijvenhoven, J.; Stokkers, P.; Struys, E.; et al. The potential of fecal microbiota and amino acids to detect and monitor patients with adenoma. Gut Microbes. 2022, 14, 2038863. [Google Scholar] [CrossRef]
- Hale, V.L.; Chen, J.; Johnson, S.; Harrington, S.C.; Yab, T.C.; Smyrk, T.C.; Nelson, H.; Boardman, L.A.; Druliner, B.R.; Levin, T.R.; et al. Shifts in the Fecal Microbiota Associated with Adenomatous Polyps. Cancer Epidemiol Biomark. Prev. 2017, 26, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Nugent, J.L.; McCoy, A.N.; Addamo, C.J.; Jia, W.; Sandler, R.S.; Keku, T.O. Altered tissue metabolites correlate with microbial dysbiosis in colorectal adenomas. J. Proteome Res. 2014, 13, 1921–1929. [Google Scholar] [CrossRef]
- Goedert, J.J.; Gong, Y.; Hua, X.; Zhong, H.; He, Y.; Peng, P.; Yu, G.; Wang, W.; Ravel, J.; Shi, J.; et al. Fecal Microbiota Characteristics of Patients with Colorectal Adenoma Detected by Screening: A Population-based Study. EBioMedicine 2015, 2, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.W.; Lee, W.H.; Tu, S.J.; Huang, W.C.; Chen, H.M.; Sun, T.H.; Lin, C.C. Enterotype-based Analysis of Gut Microbiota along the Conventional Adenoma-Carcinoma Colorectal Cancer Pathway. Sci. Rep. 2019, 9, 10923. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; He, Y.; Xia, L.; Yi, J.; Wang, Z.; Zhao, Y.; Song, X.; Li, J.; Liu, H.; Liang, X.; et al. Expansion of Colorectal Cancer Biomarkers Based on Gut Bacteria and Viruses. Cancers 2022, 4, 4662. [Google Scholar] [CrossRef] [PubMed]
- Hua, H.; Sun, Y.; He, X.; Chen, Y.; Teng, L.; Lu, C. Intestinal Microbiota in Colorectal Adenoma-Carcinoma Sequence. Front. Med. 2022, 9, 888340. [Google Scholar] [CrossRef]
- Sanapareddy, N.; Legge, R.M.; Jovov, B.; McCoy, A.; Burcal, L.; Araujo-Perez, F.; Randall, T.A.; Galanko, J.; Benson, A.; Sandler, R.S.; et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 2012, 6, 1858–1868. [Google Scholar] [CrossRef] [Green Version]
- Dejea, C.M.; Wick, E.C.; Hechenbleikner, E.M.; White, J.R.; Mark Welch, J.L.; Rossetti, B.J.; Peterson, S.N.; Snesrud, E.C.; Borisy, G.G.; Lazarev, M.; et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 18321–18326. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Song, Q.; Tang, X.; Liang, X.; Fan, H.; Peng, H.; Guo, Q.; Zhang, Z. Co-occurrence of driver and passenger bacteria in human colorectal cancer. Gut Pathog. 2014, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Chen, J.; Zheng, J.; Hu, G.; Wang, J.; Huang, C.; Lou, L.; Wang, X.; Zeng, Y. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci. Rep. 2016, 6, 26337. [Google Scholar] [CrossRef]
- Xu, K.; Jiang, B. Analysis of Mucosa-Associated Microbiota in Colorectal Cancer. Med. Sci. Monit. 2017, 23, 4422–4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachsmannova, L.; Majek, J.; Zajac, V.; Stevurkova, V.; Ciernikova, S. The study of bacteria in biopsies from Slovak colorectal adenoma and carcinoma patients. Neoplasma 2018, 65, 644–648. [Google Scholar] [CrossRef]
- Bundgaard-Nielsen, C.; Baandrup, U.T.; Nielsen, L.P.; Sørensen, S. The presence of bacteria varies between colorectal adenocarcinomas, precursor lesions and non-malignant tissue. BMC Cancer 2019, 19, 399. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Xu, H.; Li, S.; Lau, H.C.; Chen, Q.; Zhang, B.; Zhao, L.; Chen, H.; Sung, J.J.; et al. Microbial Community Heterogeneity Within Colorectal Neoplasia and its Correlation With Colorectal Carcinogenesis. Gastroenterology 2021, 160, 2395–2408. [Google Scholar] [CrossRef]
- Chen, H.M.; Yu, Y.N.; Wang, J.L.; Lin, Y.W.; Kong, X.; Yang, C.Q.; Yang, L.; Liu, Z.J.; Yuan, Y.Z.; Liu, F.; et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am. J. Clin. Nutr. 2013, 97, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liang, S.; Jia, H.; Stadlmayr, A.; Tang, L.; Lan, Z.; Zhang, D.; Xia, H.; Xu, X.; Jie, Z.; et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 2015, 6, 6528. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.A.; Dominianni, C.; Shapiro, J.A.; Church, T.R.; Wu, J.; Miller, G.; Yuen, E.; Freiman, H.; Lustbader, I.; Salik, J.; et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome 2016, 4, 69. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, M.; Lu, B.; Liu, C.; Ma, Y.; Liu, L.; Miao, X.; Qin, J.; Chen, H.; Dai, M. Leveraging Fecal Microbial Markers to Improve the Diagnostic Accuracy of the Fecal Immunochemical Test for Advanced Colorectal Adenoma. Clin. Transl. Gastroenterol. 2021, 12, e00389. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Zhou, Y.L.; He, J.; Feng, Z.Q.; Zhang, L.; Lai, X.B.; Zhou, J.X.; Wang, H. Characterizing the composition of intestinal microflora by 16S rRNA gene sequencing. World J. Gastroenterol. 2020, 26, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, Y.; Fu, X.; Zhou, X.; Peng, Y.; Shi, L.; Chen, T.; Wu, Y. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int. J. Cancer. 2016, 139, 1318–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasai, C.; Sugimoto, K.; Moritani, I.; Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: Terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol. Rep. 2016, 35, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.H.; Han, D.S.; Oh, Y.H.; Lee, A.R.; Lee, Y.R.; Eun, C.S. Role of Fusobacteria in the serrated pathway of colorectal carcinogenesis. Sci. Rep. 2016, 6, 25271. [Google Scholar] [CrossRef] [Green Version]
- Stary, L.; Mezerova, K.; Skalicky, P.; Zboril, P.; Raclavsky, V. Are we any closer to screening for colorectal cancer using microbial markers? A critical review. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 2017, 161, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Huang, P.; Yang, C.; Xiao, S.; Zhang, G.; Ling, F.; Li, L. Meta-analysis of 16S rRNA Microbial Data Identified Distinctive and Predictive Microbiota Dysbiosis in Colorectal Carcinoma Adjacent Tissue. mSystems 2020, 5, e00138-20. [Google Scholar] [CrossRef] [Green Version]
- Rezasoltani, S.; Dabiri, H.; Asadzadeh-Aghdaei, H.; Sepahi, A.A.; Modarressi, M.H.; Nazemalhosseini-Mojarad, E. The gut microflora assay in patients with colorectal cancer: In feces or tissue samples? Iran J. Microbiol. 2019, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zackular, J.P.; Rogers, M.A.; Ruffin MT 4th Schloss, P.D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 2014, 7, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef] [PubMed]
- Vacante, M.; Ciuni, R.; Basile, F.; Biondi, A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020, 8, 489. [Google Scholar] [CrossRef] [PubMed]
- Aprile, F.; Bruno, G.; Palma, R.; Mascellino, M.T.; Panetta, C.; Scalese, G.; Oliva, A.; Severi, C.; Pontone, S. Microbiota Alterations in Precancerous Colon Lesions: A Systematic Review. Cancers 2021, 13, 3061. [Google Scholar] [CrossRef] [PubMed]
Author (Publish Date) | Quality Assessment (NOS) ≥5/9 | Study Group Size (n) | Control Group Size (n) | Type of Matrix (F/T) | Detection Method | Clinical Evidence |
---|---|---|---|---|---|---|
Human studies examining FECAL and/vs. TISSUE-derived gut bacterial composition in precancerous colorectal lesions (and/or CRC) | ||||||
Zeller et al. (2014) [30] | 5/9 | French cohort (Fr): TA: 42, CRC: 53; German cohort (G): CRC: 38, CRC: 48 (at the time of surgery) | Fr: HC: 61, A <1 cm: 27; German, Danish, and Spanish cohort (H): HC: 297 | Fr and G: F; H: F; G: T | 16S, metagenomic sequencing | Microbiota changes during the early stages of neoplastic growth. |
Mira-Pascual et al. (2015) [23] | 7/9 | TA: 11; CRC: 7 | HC: 10 | F; T | 16S: V1–V3 PCoA; Fn qPCR | Microbial changes according to disease progression stage and tumor severity. T samples represented the underlying dysbiosis. F samples seem not to be appropriate to detect shifts in microbial composition. |
Yu et al. (2015) [25] | 5/9 | F: A: 47, CRC: 42; T: A: 30, CRC: 31 | F: HC: 52; T: HC: 37 | F; T | 16S; 454 FLX pyrosequencing; Fn qPCR | Microbial structures were altered in the lumen and the mucosa during the progression of the A-carcinoma sequence. Fn expression in the T samples was consistent with that in the F samples. |
Flemer et al. (2017) [24] | 6/9 | A: 21; CRC: 59 | HC: 56 (32 age-matched) | F; T | 16S; qRT-PCR | Microbiota compositional differences in patients with CRC are not secondary to the cancer per se. F microbiota only partially reflected T microbiota. T microbiota in A was similar to CRC. |
Shen et al. (2021) [26] | 7/9 | T: A: 8, LST: 11; F: A: 208, LST: 109, CRC: 45 | T: HC: 5; F: HC: 113 | F; T | 16S; qPCR | F microbial biomarkers ETBF–P. stomatis–P. micra were defined as early noninvasive biomarkers of LST. |
Watson et al. (2021) [27] | 5/9 | A: 48 | Non-A patients: 56 | F; T; oral swab | 16S: V4 | F- and T-associated microbiomes are distinct; T microbiome is highly predictive of A status. |
Avelar-Barragan et al. (2022) [31] | 5/9 | TA: 45; SP (HP, TSA, or SSP): 33 | HC: 50 | F; T | 16S; ITS sequencing; WGS | Microbiomes of F samples were significantly diverse and compositionally distinct vs. mucosal aspirates. Mucosal samples are sensitive enough to study the microbiome of CRA found within the proximal colon. |
Human studies examining FECAL-derived gut bacterial composition in precancerous colorectal lesions (and/or CRC) | ||||||
Brim et al. (2013) [18] | 5/9 | A: 6 | HC: 6 | F | 16S; Human Intestinal Tract Chip; 454 pyrosequencing | Bacteroides group needs to be further analyzed for potential actors in the early colon oncogenic transformation. |
Chen et al. (2013) [49] | 5/9 | AA: 47 (sex- and age-matched) | HC: 47 | F | 16S | A high-fiber dietary pattern, the subsequent consistent production of SCFAs, and healthy gut microbiota are associated with a decreased risk of AA. |
Feng et al. (2015) [50] | 7/9 | AA: 44, CRC: 46 (sex-, age-, race-matched) | HC: 57 | F | MGWAS | Development of AA and CRC. |
Goedert et al. (2015) [37] | 5/9 | A: 20; CRC: 2; other: 15 | HC: 24 | F | 16S | If confirmed in larger, more diverse populations, F microbiota analysis might be employed to improve screening for CRA. |
Kasai et al. (2016) [55] | 5/9 | A: 50; CRC: 9 (3—invasive; 6—Cis) | HC: 49 | F | T-RFLP; NGS | Gut microbiota is related to CRC prevention and development. |
Peters et al. (2016) [51] | 7/9 | CA: 144 (proximal: 87, distal: 55, NAA: 121, AA: 22); SA: 73 (HP: 40, SSA: 33) | HC: 323 | F | 16S | Gut microbes may play a role in the early stages of CR carcinogenesis through the development of CAs. |
Hale et al. (2017) [35] | 5/9 | A (>1 cm): 233 | HC: 547 | F | 16S | Bilophilia and Desulfovibrio may produce genotoxic or inflammatory metabolites (H2S and secondary bile acids) playing a role in catalyzing A development and eventually CRC. |
Yang et al. (2019) [38] | 6/9 | A: 117; CRC: 62 | HC: 104 | F | 16S: V3-4 | F microbiota differs along the A-carcinoma sequence and across enterotypes. |
Clos-Garcia et al. (2020) [32] | 7/9 | AA: 69; CRC: 99 | HC: 77 | F | 16S: V1–V2, targeted UPLC-MS metabolomics | Integration of metabolomics and microbiome data revealed tight interactions between the bacteria and host and performed better than the FOB test for CRC diagnosis. |
Wei et al. (2020) [33] | 5/9 | A: 43 | HC: 53 | F | 16S: V3-4, short- and long-read sequencing | Identification of adenomatous polyp-associated microbiomes could potentially function as an auxiliary biomarker for predicting CRC development. |
Zhang, He et al. (2022) [39] | 5/9 | A: 29; CRC: 30 | HC: 35 | F | Shotgun metagenomic sequencing | Peptostreptococcus stomatis, Clostridium symbiosum, Hungatella hathewayi, Parvimonas micra, and Gemella Morbillorum were identified as a diagnostic model to identify CRC patients. |
Hua et al. (2022) [40] | 5/9 | A: 20; CRC: 154 | HC: 199 | F | 16S | Several intestinal bacteria changed along the A-carcinoma sequence and might be potential markers for the diagnosis and treatment of CRA/CRC. |
Bosch et al. (2022) [34] | 6/9 | A: 32 (19 strictly matched on age, BMI and smoking habits, AA: 9; NAA: 10) | HC: 32 | F | 16S: V4; HPLC | The F microbiome of post-endoscopy patients resembled those of HC patients. |
Zhang, Lu et al. (2022) [52] | 6/9 | AA: 268; NAA: 490 | HC: 788 | F | 16S | Identified microbial signatures could complement FITs for detecting AA. |
Human studies examining TISSUE-derived bacterial composition in precancerous colorectal lesions (and/or CRC) | ||||||
Sanapareddy et al. (2012) [41] | 5/9 | A: 33 | A-free controls: 38 | T | 16S; 454 pyrosequencing | Sequence analysis of the microbiota could be used to identify patients at risk of developing A. |
Dejea et al. (2014) [42] | 5/9 | Right-sided: A: 6, CRC: 15; Left-sided: A: 2, CRC: 15 | HC: 22; paired normal adjacent tissue | T | 16S: V3–V5; high-throughput sequencing; FISH | Mucosal biofilm detection correlates with bacterial tissue invasion and may predict an increased risk for the development of sporadic CRC. |
Geng et al. (2014) [43] | 6/9 | A:10; CRC: 8 | HC: 10 (location-matched) | T | 16S, 454 pyrosequencing | Bacterial driver-passenger model for CRC. |
Nugent et al. (2014) [36] | 6/9 | A: 15 | A-free controls: 15 | T | qPCR; LC−TOFMS; GC−TOFMS | Metabolic bacterial products and the interplay between bacteria and metabolites is important in the development of CRA and CRC. |
Lu et al. (2016) [44] | 7/9 | A: 31 | HC: 20; paired normal adjacent tissue | T | 16S pyrosequencing | CR preneoplastic lesion may be the most important factor leading to alterations in the bacterial community composition. |
Yu et al. (2016) [54] | 6/9 | Proximal HP: 35; SSA: 33; Distal HP: 40; Proximal TA: 38; Distal TA: 41; Distal CRC: 45; Proximal CRC: 48 | HC: 20 | T | 16S; FISH; Fn PCR | Invasive Fn is involved primarily in the development of proximal colon cancers along the serrated neoplasia pathway, having only a minor role in the traditional A-carcinoma sequence. |
Xu et al. (2017) [45] | 6/9 | A: 47; CRC: 52 | HC: 61 | T | 16S | Butyricicoccus, E. coli, and Fusobacterium can be used as potential biomarkers for HC, A, and CRC groups, respectively. |
Wachsmannova et al. (2018) [46] | 5/9 | A: 10; CRC: 10 | HC: 9; paired nonmalignant tissue | T | ENTEROtest 24 plus MALDI-TOF mass spectrometry Gentamicin-protection assay | Data supports E. coli’s role as a pro-oncogenic pathogen. |
Bundgaard-Nielsen et al. (2019) [47] | 7/9 | A: 96; CRC: 99; diverticular disease: 104 | Paired normal tissue; No HC | T | 16S; S. gallolyticus, Fn, ETBF qPCR | Findings do not support a role for Fn or ETBF during the first stages of CR, while S. gallolyticus was not implicated in the CR tissue of a Danish population. Potential role of the bacterial genera Prevotella and Acinetobacter requires further investigations. |
Wang et al. (2020) [53] | 5/9 | AA: 49 | HC: 36; normal adjacent tissue | T | 16S: V4; high-throughput sequencing | Increasing Halomonadaceae and Shewanella algae, and decreasing Coprococcus and Bacteroides ovatus could serve as a biomarker of CRA. |
Liu et al. (2021) [48] | 5/9 | Cohort 1: A: 10, CRC: 11; Cohort 2: A: 10, CRC: 10; +A: 12, CRC: 15 | Paired normal adjacent tissue; No HC | T | 16S: V4 | Intra-neoplasia microbiota is heterogeneous and correlates with CR carcinogenesis. |
Author | Selection | Comparability | Outcome/ Exposure | Total Score |
---|---|---|---|---|
Tissue + Stool | ||||
Zeller et al. (2014) [30] | ** | * | ** | 5 |
Mira-Pascual et al. (2015) [23] | *** | ** | ** | 7 |
Yu et al. (2015) [25] | **** | - | ** | 6 |
Flemer et al. (2017) [24] | *** | ** | * | 6 |
Shen et al. (2021) [26] | **** | - | *** | 7 |
Watson et al. (2021) [27] | *** | - | ** | 5 |
Avelar-Barragan (2022) [31] | ** | - | *** | 5 |
Stool | ||||
Brim et al. (2013) [18] | *** | - | ** | 5 |
Chen et al. (2013) [49] | *** | ** | - | 5 |
Feng et al. (2015) [50] | *** | ** | ** | 7 |
Goedert et al. (2015) [37] | ** | - | *** | 5 |
Kasai et al. (2016) [55] | ** | - | *** | 5 |
Peters et al. (2016) [51] | **** | - | *** | 7 |
Hale et al. (2017) [35] | *** | - | ** | 5 |
Yang et al. (2019) [38] | **** | - | ** | 6 |
Clos-Garcia et al. (2020) [32] | **** | - | *** | 7 |
Wei et al. (2020) [33] | ** | - | *** | 5 |
Zhang, He et al. (2022) [39] | ** | - | *** | 5 |
Hua et al. (2022) [40] | *** | - | ** | 5 |
Bosch et al. (2022) [34] | ** | ** | ** | 6 |
Zhang, Lu et al. (2022) [52] | *** | - | *** | 6 |
Tissue | ||||
Sanapareddy et al. (2012) [41] | *** | - | ** | 5 |
Dejea et al. (2014) [42] | ** | * | ** | 5 |
Geng et al. (2014) [43] | *** | * | ** | 6 |
Nugent et al. (2014) [36] | *** | * | ** | 6 |
Lu et al. (2016) [44] | *** | ** | ** | 7 |
Yu et al. (2016) [54] | *** | * | ** | 6 |
Xu et al. (2017) [45] | **** | - | ** | 6 |
Wachsmannova et al. (2018) [46] | *** | - | ** | 5 |
Bundgaard-Nielsen et al. (2019) [47] | **** | - | *** | 7 |
Wang et al. (2020) [53] | *** | - | ** | 5 |
Liu et al. (2021) [48] | *** | - | ** | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valciukiene, J.; Strupas, K.; Poskus, T. Tissue vs. Fecal-Derived Bacterial Dysbiosis in Precancerous Colorectal Lesions: A Systematic Review. Cancers 2023, 15, 1602. https://doi.org/10.3390/cancers15051602
Valciukiene J, Strupas K, Poskus T. Tissue vs. Fecal-Derived Bacterial Dysbiosis in Precancerous Colorectal Lesions: A Systematic Review. Cancers. 2023; 15(5):1602. https://doi.org/10.3390/cancers15051602
Chicago/Turabian StyleValciukiene, Jurate, Kestutis Strupas, and Tomas Poskus. 2023. "Tissue vs. Fecal-Derived Bacterial Dysbiosis in Precancerous Colorectal Lesions: A Systematic Review" Cancers 15, no. 5: 1602. https://doi.org/10.3390/cancers15051602
APA StyleValciukiene, J., Strupas, K., & Poskus, T. (2023). Tissue vs. Fecal-Derived Bacterial Dysbiosis in Precancerous Colorectal Lesions: A Systematic Review. Cancers, 15(5), 1602. https://doi.org/10.3390/cancers15051602