MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Related Work
2.1. MGMT Promoter Methylation
2.2. Confidence Scores & Out-of-Distribution (OOD) Detection
3. Materials and Methods
3.1. Dataset
3.2. Data Preprocessing
3.2.1. RSNA-MICCAI Data
3.2.2. Private Dataset
3.3. Deep Learning Models and Results
- Early fusion: it refers to the process of joining multiple input modalities into a single feature vector before feeding into one single machine learning model for training.
- Late fusion: It refers to the process of leveraging predictions from multiple models to make a final decision.
4. Confidence Scores & OOD Detection
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MRI | Magnetic Resonance Imaging |
OOD | Out-of-distribution |
Appendix A. Private Dataset
Appendix B. Full Confidence Results
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.65 | 0.65 | 0.62 |
75 | 0.66 | 0.66 | 0.65 | |
50 | 0.63 | 0.61 | 0.66 | |
30 | 0.65 | 0.62 | 0.63 | |
ODIN | 100 | 0.65 | 0.65 | 0.62 |
75 | 0.66 | 0.66 | 0.64 | |
50 | 0.63 | 0.61 | 0.66 | |
30 | 0.67 | 0.65 | 0.66 | |
Confidence Branch | 100 | 0.63 | 0.65 | 0.61 |
75 | 0.66 | 0.66 | 0.64 | |
50 | 0.64 | 0.60 | 0.66 | |
30 | 0.66 | 0.66 | 0.69 | |
ABC Metric | 100 | 0.65 | 0.65 | 0.62 |
- | - | - | - | |
54 | 0.55 | 0.43 | 0.60 | |
- | - | - | - |
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.60 | 0.64 | 0.58 |
75 | 0.61 | 0.65 | 0.59 | |
50 | 0.62 | 0.70 | 0.63 | |
30 | 0.61 | 0.73 | 0.65 | |
ODIN | 100 | 0.60 | 0.64 | 0.58 |
75 | 0.61 | 0.64 | 0.60 | |
50 | 0.62 | 0.70 | 0.64 | |
30 | 0.62 | 0.74 | 0.65 | |
Confidence Branch | 100 | 0.61 | 0.62 | 0.63 |
75 | 0.69 | 0.68 | 0.69 | |
50 | 0.66 | 0.65 | 0.66 | |
30 | 0.60 | 0.54 | 0.60 | |
ABC Metric | 100 | 0.60 | 0.64 | 0.58 |
- | - | - | - | |
50 | 0.58 | 0.70 | 0.60 | |
- | - | - | - |
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.60 | 0.61 | 0.63 |
75 | 0.59 | 0.62 | 0.62 | |
50 | 0.55 | 0.62 | 0.60 | |
30 | 0.51 | 0.64 | 0.60 | |
ODIN | 100 | 0.60 | 0.61 | 0.63 |
75 | 0.59 | 0.62 | 0.62 | |
50 | 0.55 | 0.62 | 0.60 | |
30 | 0.52 | 0.63 | 0.60 | |
Confidence Branch | 100 | 0.57 | 0.60 | 0.58 |
75 | 0.59 | 0.58 | 0.62 | |
50 | 0.62 | 0.59 | 0.62 | |
30 | 0.63 | 0.67 | 0.65 | |
ABC Metric | 100 | 0.60 | 0.61 | 0.63 |
76 | 0.55 | 0.54 | 0.62 | |
51 | 0.45 | 0.44 | 0.58 | |
41 | 0.36 | 0.38 | 0.58 |
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.57 | 0.59 | 0.58 |
75 | 0.56 | 0.60 | 0.57 | |
50 | 0.57 | 0.61 | 0.59 | |
30 | 0.65 | 0.66 | 0.58 | |
ODIN | 100 | 0.57 | 0.59 | 0.58 |
75 | 0.56 | 0.60 | 0.57 | |
50 | 0.57 | 0.61 | 0.57 | |
30 | 0.65 | 0.66 | 0.58 | |
Confidence Branch | 100 | 0.58 | 0.58 | 0.58 |
75 | 0.58 | 0.60 | 0.57 | |
50 | 0.50 | 0.48 | 0.60 | |
30 | 0.60 | 0.58 | 0.65 | |
ABC Metric | 100 | 0.57 | 0.59 | 0.58 |
76 | 0.55 | 0.60 | 0.57 | |
51 | 0.49 | 0.62 | 0.60 | |
31 | 0.51 | 0.73 | 0.62 |
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.59 | 0.63 | 0.57 |
75 | 0.58 | 0.64 | 0.61 | |
50 | 0.57 | 0.66 | 0.59 | |
30 | 0.60 | 0.71 | 0.56 | |
ODIN | 100 | 0.59 | 0.63 | 0.57 |
75 | 0.58 | 0.64 | 0.60 | |
50 | 0.56 | 0.65 | 0.59 | |
30 | 0.58 | 0.69 | 0.54 | |
Confidence Branch | 100 | 0.56 | 0.58 | 0.55 |
75 | 0.58 | 0.60 | 0.58 | |
50 | 0.51 | 0.49 | 0.52 | |
30 | 0.44 | 0.42 | 0.46 | |
ABC Metric | 100 | 0.59 | 0.63 | 0.57 |
75 | 0.56 | 0.60 | 0.55 | |
56 | 0.52 | 0.58 | 0.54 | |
47 | 0.52 | 0.58 | 0.54 |
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.63 | 0.65 | 0.61 |
75 | 0.65 | 0.67 | 0.62 | |
50 | 0.66 | 0.67 | 0.61 | |
30 | 0.70 | 0.70 | 0.60 | |
ODIN | 100 | 0.63 | 0.65 | 0.61 |
75 | 0.65 | 0.67 | 0.62 | |
50 | 0.67 | 0.68 | 0.61 | |
30 | 0.69 | 0.67 | 0.60 | |
Confidence Branch | 100 | 0.62 | 0.63 | 0.61 |
75 | 0.65 | 0.65 | 0.62 | |
50 | 0.53 | 0.68 | 0.62 | |
30 | 0.49 | 0.69 | 0.67 |
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.60 | 0.60 | 0.59 |
75 | 0.57 | 0.62 | 0.62 | |
50 | 0.53 | 0.63 | 0.61 | |
30 | 0.48 | 0.63 | 0.63 | |
ODIN | 100 | 0.60 | 0.60 | 0.59 |
75 | 0.60 | 0.63 | 0.58 | |
50 | 0.59 | 0.64 | 0.60 | |
30 | 0.54 | 0.68 | 0.67 | |
Confidence Branch | 100 | 0.60 | 0.62 | 0.55 |
75 | 0.59 | 0.62 | 0.55 | |
50 | 0.58 | 0.64 | 0.53 | |
30 | 0.62 | 0.66 | 0.56 | |
ABC Metric | 100 | 0.60 | 0.60 | 0.59 |
- | - | - | - | |
50 | 0.63 | 0.64 | 0.60 | |
34 | 0.57 | 0.62 | 0.60 |
Appendix C. Reproducibility
Training Method | Modality.ies | Fusion | Time by Experiment |
---|---|---|---|
Regular/ Conf Branch | 1 | - | ∼40 min |
2 | early | ∼1 h | |
intermediate | ∼2 h |
Hyperparameter | Value | |
---|---|---|
Generalities | Learning rate | 1 |
Batch Size | 6 | |
Epochs | 30 (early), 60 (intermediate) | |
Conf Branch | 0.1 | |
Budget | 0.3 | |
ODIN | Temperature T | 100 |
1 | ||
ABC Metric | Patch size | 6 × 6 × 2 |
40 | ||
S | 50 | |
Methyl% | 5.5 | |
10 |
References
- Taylor, O.G.; Brzozowski, J.S.; Skelding, K.A. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front. Oncol. 2019, 9, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, M.; Stupp, R.; Reifenberger, G.; Brandes, A.A.; van den Bent, M.J.; Wick, W.; Hegi, M.E. MGMT promoter methylation in malignant gliomas: Ready for personalized medicine? Nat. Rev. Neurol. 2010, 6, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef]
- Drabycz, S.; Roldán, G.; Robles, P.d.; Adler, D.; McIntyre, J.B.; Magliocco, A.M.; Cairncross, J.G.; Mitchell, J.R. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. NeuroImage 2010, 49, 1398–1405. [Google Scholar] [CrossRef]
- Eoli, M.; Menghi, F.; Bruzzone, M.G.; De Simone, T.; Valletta, L.; Pollo, B.; Bissola, L.; Silvani, A.; Bianchessi, D.; D’Incerti, L.; et al. Methylation of O 6-Methylguanine DNA Methyltransferase and Loss of Heterozygosity on 19q and/or 17p Are Overlapping Features of Secondary Glioblastomas with Prolonged Survival. Clin. Cancer Res. 2007, 13, 2606–2613. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Yan, L.F.; Wang, X.B.; Sun, Y.Z.; Zhang, X.; Liu, Z.C.; Nan, H.Y.; Hu, Y.C.; Yang, Y.; Zhang, J.; et al. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: A region of interest based analysis. BMC Cancer 2018, 18, 215. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, V.E.; Dai, H.Y.; Stensjøen, A.L.; Berntsen, E.M.; Salvesen, O.; Solheim, O.; Torp, S.H. MGMT Promoter Methylation Status Is Not Related to Histological or Radiological Features in IDH Wild-type Glioblastomas. J. Neuropathol. Exp. Neurol. 2020, 79, 855–862. [Google Scholar] [CrossRef]
- Yogananda, C.G.B.; Shah, B.R.; Nalawade, S.S.; Murugesan, G.K.; Yu, F.F.; Pinho, M.C.; Wagner, B.C.; Mickey, B.; Patel, T.R.; Fei, B.; et al. MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status. AJNR Am. J. Neuroradiol. 2021, 42, 845–852. [Google Scholar] [CrossRef]
- Korfiatis, P.; Kline, T.L.; Lachance, D.H.; Parney, I.F.; Buckner, J.C.; Erickson, B.J. Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status. J. Digit. Imaging 2017, 30, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Grinband, J.; Weinberg, B.D.; Bardis, M.; Khy, M.; Cadena, G.; Su, M.Y.; Cha, S.; Filippi, C.G.; Bota, D.; et al. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR Am. J. Neuroradiol. 2018, 39, 1201–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, D.T.; Yang, M.R.; Lam, L.H.T.; Le, N.Q.K.; Wu, Y.W. Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Sci. Rep. 2022, 12, 13412. [Google Scholar] [CrossRef] [PubMed]
- Le, N.Q.K.; Do, D.T.; Chiu, F.Y.; Yapp, E.K.Y.; Yeh, H.Y.; Chen, C.Y. XGBoost Improves Classification of MGMT Promoter Methylation Status in IDH1 Wildtype Glioblastoma. J. Pers. Med. 2020, 10, 128. [Google Scholar] [CrossRef]
- Saeed, N.; Hardan, S.; Abutalip, K.; Yaqub, M. Is it Possible to Predict MGMT Promoter Methylation from Brain Tumor MRI Scans using Deep Learning Models? arXiv 2022, arXiv:2201.06086. [Google Scholar] [CrossRef]
- Baid, U.; Ghodasara, S.; Mohan, S.; Bilello, M.; Calabrese, E.; Colak, E.; Farahani, K.; Kalpathy-Cramer, J.; Kitamura, F.C.; Pati, S.; et al. The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. arXiv 2021, arXiv:2107.02314. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 25–28 October 2016; pp. 770–778. [Google Scholar]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Philips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015, 19, A68–A77. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks. arXiv 2017, arXiv:1610.02136. [Google Scholar]
- Liang, S.; Li, Y.; Srikant, R. Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks. Technical Report. arXiv 2020, arXiv:1706.02690. [Google Scholar]
- Corbière, C.; Thome, N.; Saporta, A.; Vu, T.H.; Cord, M.; Perez, P. Confidence Estimation via Auxiliary Models. arXiv 2021, arXiv:2012.06508. [Google Scholar] [CrossRef] [PubMed]
- DeVries, T.; Taylor, G.W. Learning Confidence for Out-of-Distribution Detection in Neural Networks. arXiv 2018, arXiv:1802.04865. [Google Scholar]
- Jha, S.; Raj, S.; Fernandes, S.; Jha, S.K.; Jha, S.; Jalaian, B.; Verma, G.; Swami, A. Attribution-Based Confidence Metric For Deep Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., d′Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32. [Google Scholar]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Stimper, V.; Bauer, S.; Ernstorfer, R.; Schölkopf, B.; Xian, R.P. Multidimensional Contrast Limited Adaptive Histogram Equalization. IEEE Access 2019, 7, 165437–165447. [Google Scholar] [CrossRef]
- Rohlfing, T.; Zahr, N.M.; Sullivan, E.V.; Pfefferbaum, A. The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 2010, 31, 798–819. [Google Scholar] [CrossRef] [Green Version]
- Pati, S.; Singh, A.; Rathore, S.; Gastounioti, A.; Bergman, M.; Ngo, P.; Ha, S.M.; Bounias, D.; Minock, J.; Murphy, G.; et al. The Cancer Imaging Phenomics Toolkit (CaPTk): Technical Overview. Brainlesion Glioma, Mult. Sclerosis Stroke Trauma. Brain Inj. Brainles (Workshop) 2020, 11993, 380–394. [Google Scholar] [CrossRef]
- Davatzikos, C.; Rathore, S.; Bakas, S.; Pati, S.; Bergman, M.; Kalarot, R.; Sridharan, P.; Gastounioti, A.; Jahani, N.; Cohen, E.; et al. Cancer imaging phenomics toolkit: Quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 2018, 5, 011018. [Google Scholar] [CrossRef]
- Rathore, S.; Bakas, S.; Pati, S.; Akbari, H.; Kalarot, R.; Sridharan, P.; Rozycki, M.; Bergman, M.; Tunc, B.; Verma, R.; et al. Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma. Brainlesion Glioma Mult. Sclerosis Stroke Trauma. Brain Inj. Brainles (Workshop) 2018, 10670, 133–145. [Google Scholar] [CrossRef]
- Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. UNETR: Transformers for 3D Medical Image Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 574–584. [Google Scholar]
- Yang, X.; Gobeawan, L.; Yeo, S.; Tang, W.; Wu, Z.; Su, Y. Automatic segmentation of left ventricular myocardium by deep convolutional and de-convolutional neural networks. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 81–84. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- CiCek, O.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, Athens, Greece, 17–21 October 2016; pp. 424–432. [Google Scholar]
- Chen, S.; Ma, K.; Zheng, Y. Med3D: Transfer Learning for 3D Medical Image Analysis. arXiv 2019, arXiv:1904.00625. [Google Scholar]
- Choi, J.H.; Lee, J.S. EmbraceNet: A robust deep learning architecture for multimodal classification. Inf. Fusion 2019, 51, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
Pret. | Modality.ies | Fusion Type | LR | Val AUC | Val Acc |
---|---|---|---|---|---|
Yes | FLAIR | None | 1 | 0.65 | 0.62 |
Yes | T1wCE | None | 1 | 0.60 | 0.58 |
No | FLAIR-T1wCE | early | 1 | 0.62 | 0.64 |
Yes | 4 MRI | late | 1 | 0.63 | 0.64 |
Yes | FLAIR-T1wCE | intermediate | 1 | 0.63 | 0.61 |
No | 4 MRI | early | 1 | 0.60 | 0.59 |
Method | % Considered | Val AUC | Val AP | Val Acc |
---|---|---|---|---|
Baseline | 100 | 0.62 | 0.62 | 0.64 |
75 | 0.59 | 0.59 | 0.62 | |
50 | 0.58 | 0.59 | 0.56 | |
30 | 0.58 | 0.61 | 0.65 | |
ODIN | 100 | 0.62 | 0.62 | 0.64 |
75 | 0.59 | 0.59 | 0.62 | |
50 | 0.58 | 0.59 | 0.55 | |
30 | 0.60 | 0.63 | 0.65 | |
Confidence Branch | 100 | 0.63 | 0.65 | 0.64 |
75 | 0.66 | 0.67 | 0.67 | |
50 | 0.62 | 0.65 | 0.62 | |
30 | 0.70 | 0.70 | 0.65 | |
ABC Metric | 100 | 0.62 | 0.62 | 0.64 |
- | - | - | - | |
55 | 0.49 | 0.44 | 0.60 | |
- | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robinet, L.; Siegfried, A.; Roques, M.; Berjaoui, A.; Cohen-Jonathan Moyal, E. MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation. Cancers 2023, 15, 2253. https://doi.org/10.3390/cancers15082253
Robinet L, Siegfried A, Roques M, Berjaoui A, Cohen-Jonathan Moyal E. MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation. Cancers. 2023; 15(8):2253. https://doi.org/10.3390/cancers15082253
Chicago/Turabian StyleRobinet, Lucas, Aurore Siegfried, Margaux Roques, Ahmad Berjaoui, and Elizabeth Cohen-Jonathan Moyal. 2023. "MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation" Cancers 15, no. 8: 2253. https://doi.org/10.3390/cancers15082253
APA StyleRobinet, L., Siegfried, A., Roques, M., Berjaoui, A., & Cohen-Jonathan Moyal, E. (2023). MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation. Cancers, 15(8), 2253. https://doi.org/10.3390/cancers15082253