A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection of Studies
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Basic Characteristics of the Included Studies
3.2. Quality Assessment
3.3. Diagnostic Accuracy of VOCs for the Detection of Hepatobiliary and Pancreatic Cancer
3.4. Subgroup Analysis for the Sample Medium Used
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandrapalan, S.; Arasaradnam, R.P. Urine as a biological modality for colorectal cancer detection. Expert Rev. Mol. Diagn. 2020, 20, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amann, A.; Costello, B.D.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef] [PubMed]
- Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; Costello, B.L. A literature survey of all volatiles from healthy human breath and bodily fluids: The human volatilome. J. Breath Res. 2021, 15, 034001. [Google Scholar] [CrossRef]
- Ambrosone, C.B. Oxidants and antioxidants in breast cancer. Antioxid. Redox Signal. 2000, 2, 903–917. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, P.; Loeseken, C.; Schubert, J.K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010, 126, 2663–2670. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Kremer, R.; Tisch, U.; Gevorkyan, A.; Shiban, A.; Best, L.A.; Haick, H. A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine 2013, 9, 15–21. [Google Scholar] [CrossRef]
- Gaspar, E.M.; Lucena, A.F.; Duro da Costa, J.; Chaves das Neves, H. Organic metabolites in exhaled human breath-A multivariate approach for identification of biomarkers in lung disorders. J. Chromatogr. A 2009, 1216, 2749–2756. [Google Scholar] [CrossRef]
- Song, G.; Qin, T.; Liu, H.; Xu, G.B.; Pan, Y.Y.; Xiong, F.X.; Gu, K.S.; Sun, G.P.; Chen, Z.D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010, 67, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.; Billan, S.; Tisch, U.; Peng, G.; Dvrokind, I.; Marom, O.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosis of head-and-neck cancer from exhaled breath. Br. J. Cancer 2011, 104, 1649–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C.S.; Rahbari-Oskoui, F.; Wong, C. Volatile markers of breast cancer in the breath. Breast J. 2003, 9, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.; Cataneo, R.N.; Saunders, C.; Hope, P.; Schmitt, P.; Wai, J. Volatile biomarkers in the breath of women with breast cancer. J. Breath Res. 2010, 4, 026003. [Google Scholar] [CrossRef]
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef] [Green Version]
- Van Malderen, K.; De Man, J.; De Winter, B.Y.; De Schepper, H.U.; Lamote, K. Mo1533 Volatomics in inflammatory bowel disease and irritable bowel syndrome: Present and future. Gastroenterology 2020, 158, S-884. [Google Scholar] [CrossRef]
- Bosch, S.; Wintjens, D.S.J.; Wicaksono, A.; Kuijvenhoven, J.; van der Hulst, R.; Stokkers, P.; Daulton, E.; Pierik, M.J.; Covington, J.A.; de Meij, T.G.J.; et al. The faecal scent of inflammatory bowel disease: Detection and monitoring based on volatile organic compound analysis. Dig. Liver Dis. 2020, 52, 745–752. [Google Scholar] [CrossRef]
- van Gaal, N.; Lakenman, R.; Covington, J.; Savage, R.; de Groot, E.; Bomers, M.; Benninga, M.; Mulder, C.; de Boer, N.; de Meij, T. Faecal volatile organic compounds analysis using field asymmetric ion mobility spectrometry: Non-invasive diagnostics in paediatric inflammatory bowel disease. J. Breath Res. 2018, 12, 016006. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P.; Sunkara, T.; Muralidharan, P.; Raj, J.P. Update in global trends and aetiology of hepatocellular carcinoma. Contemp. Oncol. 2018, 22, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Debruyne, E.N.; Delanghe, J.R. Diagnosing and monitoring hepatocellular carcinoma with alpha-fetoprotein: New aspects and applications. Clin. Chim. Acta 2008, 395, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sangiovanni, A.; Prati, G.M.; Fasani, P.; Ronchi, G.; Romeo, R.; Manini, M.; Del Ninno, E.; Morabito, A.; Colombo, M. The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology 2006, 43, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Costentin, C.E.; Layese, R.; Bourcier, V.; Cagnot, C.; Marcellin, P.; Guyader, D.; Pol, S.; Larrey, D.; De Lédinghen, V.; Ouzan, D.; et al. Compliance with Hepatocellular Carcinoma Surveillance Guidelines Associated with Increased Lead-Time Adjusted Survival of Patients with Compensated Viral Cirrhosis: A Multi-Center Cohort Study. Gastroenterology 2018, 155, 431–442.e10. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Pereira, S.P.; Oldfield, L.; Ney, A.; Hart, P.A.; Keane, M.G.; Pandol, S.J.; Li, D.; Greenhalf, W.; Jeon, C.Y.; Koay, E.J.; et al. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol. 2020, 5, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Mayerle, J.; Kalthoff, H.; Reszka, R.; Kamlage, B.; Peter, E.; Schniewind, B.; González Maldonado, S.; Pilarsky, C.; Heidecke, C.D.; Schatz, P.; et al. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut 2018, 67, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma—Evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 2018, 15, 95–111. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, K. Updates in Cholangiocarcinoma. J. Adv. Pract. Oncol. 2022, 13, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Siriwong, N.; Sukaram, T.; Tansawat, R.; Apiparakoon, T.; Tiyarattanachai, T.; Marukatat, S.; Rerknimitr, R.; Chaiteerakij, R. Exhaled volatile organic compounds for cholangiocarcinoma diagnosis. Liver Res. 2022, 6, 191–197. [Google Scholar] [CrossRef]
- García, P.; Lamarca, A.; Díaz, J.; Carrera, E.; Roa, J.C.; On Behalf of the European-Latin American ESCALON Consortium. Current and New Biomarkers for Early Detection, Prognostic Stratification, and Management of Gallbladder Cancer Patients. Cancers 2020, 12, 3670. [Google Scholar] [CrossRef]
- Goetze, T.O. Gallbladder carcinoma: Prognostic factors and therapeutic options. World J. Gastroenterol. 2015, 21, 12211–12217. [Google Scholar] [CrossRef] [PubMed]
- Altekruse, S.F.; McGlynn, K.A.; Reichman, M.E. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J. Clin. Oncol. 2009, 27, 1485–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.Z.; Zhang, T.; Chen, M.Y.; Shen, J.L. Novel biomarkers for the diagnosis and prognosis of gallbladder cancer. J. Dig. Dis. 2021, 22, 62–71. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- The EndNote Team. EndNote, EndNote 20; Clarivate: Philadelphia, PA, USA, 2013.
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing. 2020. Available online: http://www.r-project.org/index.html (accessed on 3 April 2023).
- Doebler, P.; Holling, H. Meta-Analysis of Diagnostic Accuracy with mada, 2017. R Package 2015, 1, 15. [Google Scholar]
- Navaneethan, U.; Parsi, M.A.; Lourdusamy, V.; Bhatt, A.; Gutierrez, N.G.; Grove, D.; Sanaka, M.R.; Hammel, J.P.; Stevens, T.; Vargo, J.J.; et al. Volatile organic compounds in bile for early diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis: A pilot study. Gastrointest. Endosc. 2015, 81, 943–949.e1. [Google Scholar] [CrossRef] [Green Version]
- Navaneethan, U.; Spencer, C.; Zhu, X.; Vargo, J.J.; Grove, D.; Dweik, R.A. Volatile organic compounds in bile can distinguish pancreatic cancer from chronic pancreatitis: A prospective observational study. Endoscopy 2021, 53, 732–736. [Google Scholar] [CrossRef]
- Teränen, V.; Nissinen, S.; Roine, A.; Antila, A.; Siiki, A.; Vaalavuo, Y.; Kumpulainen, P.; Oksala, N.; Laukkarinen, J. Bile-volatile organic compounds in the diagnostics of pancreatic cancer and biliary obstruction: A prospective proof-of-concept study. Front. Oncol. 2022, 12, 918539. [Google Scholar] [CrossRef]
- Zhang, X.; Gui, X.; Zhang, Y.; Liu, Q.; Zhao, L.; Gao, J.; Ji, J.; Zhang, Y. A Panel of Bile Volatile Organic Compounds Servers as a Potential Diagnostic Biomarker for Gallbladder Cancer. Front. Oncol. 2022, 12, 858639. [Google Scholar] [CrossRef]
- Hirata, Y.; Kobayashi, T.; Nishiumi, S.; Yamanaka, K.; Nakagawa, T.; Fujigaki, S.; Iemoto, T.; Kobayashi, M.; Okusaka, T.; Nakamori, S.; et al. Identification of highly sensitive biomarkers that can aid the early detection of pancreatic cancer using GC/MS/MS-based targeted metabolomics. Clin. Chim. Acta 2017, 468, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Nishiumi, S.; Ikeda, A.; Yoshie, T.; Sakai, A.; Matsubara, A.; Izumi, Y.; Tsumura, H.; Tsuda, M.; Nishisaki, H.; et al. A novel serum metabolomics-based diagnostic approach to pancreatic cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, A.; Suzuki, M.; Kobayashi, T.; Nishiumi, S.; Yamanaka, K.; Hirata, Y.; Nakagawa, T.; Azuma, T.; Yoshida, M. Pancreatic cancer screening using a multiplatform human serum metabolomics system. Biomark. Med. 2016, 10, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Markar, S.R.; Brodie, B.; Chin, S.-T.; Romano, A.; Spalding, D.; Hanna, G.B. Profile of exhaled-breath volatile organic compounds to diagnose pancreatic cancer. Br. J. Surg. 2018, 105, 1493–1500. [Google Scholar] [CrossRef] [Green Version]
- Miller-Atkins, G.; Acevedo-Moreno, L.-A.; Grove, D.; Dweik, R.A.; Tonelli, A.R.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M. Breath Metabolomics Provides an Accurate and Noninvasive Approach for Screening Cirrhosis, Primary, and Secondary Liver Tumors. Hepatol. Commun. 2020, 4, 1041–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Princivalle, A.; Monasta, L.; Butturini, G.; Bassi, C.; Perbellini, L. Pancreatic ductal adenocarcinoma can be detected by analysis of volatile organic compounds (VOCs) in alveolar air. BMC Cancer 2018, 18, 529. [Google Scholar] [CrossRef]
- Qin, T.; Liu, H.; Song, Q.; Song, G.; Wang, H.Z.; Pan, Y.Y.; Xiong, F.X.; Gu, K.S.; Sun, G.P.; Chen, Z.D. The screening of volatile markers for hepatocellular carcinoma. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2247–2253. [Google Scholar] [CrossRef] [Green Version]
- Sukaram, T.; Tansawat, R.; Apiparakoon, T.; Tiyarattanachai, T.; Marukatat, S.; Rerknimitr, R.; Chaiteerakij, R. Exhaled volatile organic compounds for diagnosis of hepatocellular carcinoma. Sci. Rep. 2022, 12, 5326. [Google Scholar] [CrossRef]
- Uslu, H.I.; Dölle, A.R.; Dullemen, H.M.; Aktas, H.; Kolkman, J.J.; Venneman, N.G. Pancreatic ductal adenocarcinoma and chronic pancreatitis may be diagnosed by exhaled-breath profiles: A multicenter pilot study. Clin. Exp. Gastroenterol. 2019, 12, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Arasaradnam, R.P.; Wicaksono, A.; O’Brien, H.; Kocher, H.M.; Covington, J.A.; Crnogorac-Jurcevic, T. Noninvasive Diagnosis of Pancreatic Cancer through Detection of Volatile Organic Compounds in Urine. Gastroenterology 2018, 154, 485–487.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannaga, A.S.; Tyagi, H.; Miler, E.; Covington, J.A.; Arasaradnam, R.P. Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules 2021, 26, 2447. [Google Scholar] [CrossRef] [PubMed]
- Daulton, E.; Wicaksono, A.N.; Tiele, A.; Kocher, H.M.; Debernardi, S.; Crnogorac-Jurcevic, T.; Covington, J.A. Volatile organic compounds (VOCs) for the non-invasive detection of pancreatic cancer from urine. Talanta 2021, 221, 121604. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Parsi, M.A.; Lourdusamy, D.; Grove, D.; Sanaka, M.R.; Hammel, J.P.; Vargo, J.J.; Dweik, R.A. Volatile Organic Compounds in Urine for Noninvasive Diagnosis of Malignant Biliary Strictures: A Pilot Study. Dig. Dis. Sci. 2015, 60, 2150–2157. [Google Scholar] [CrossRef]
- Nissinen, S.I.; Roine, A.; Hokkinen, L.; Karjalainen, M.; Venäläinen, M.; Helminen, H.; Niemi, R.; Lehtimäki, T.; Rantanen, T.; Oksala, N. Detection of Pancreatic Cancer by Urine Volatile Organic Compound Analysis. Anticancer Res. 2019, 39, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, A.B.; D’Angelica, M.I.; Abbott, D.E.; Anaya, D.A.; Anders, R.; Are, C.; Bachini, M.; Borad, M.; Brown, D.; Burgoyne, A.; et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 541–565. [Google Scholar] [CrossRef]
- Thomas, M.; Bayha, C.; Vetter, S.; Hofmann, U.; Schwarz, M.; Zanger, U.M.; Braeuning, A. Activating and Inhibitory Functions of WNT/β-Catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Mol. Pharmacol. 2015, 87, 1013–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamamoto, I.; Tanaka, S.; Maeba, T.; Chikaishi, K.; Ichikawa, Y. Microsomal cytochrome P-450-linked monooxygenase systems and lipid composition of human hepatocellular carcinoma. Br. J. Cancer 1989, 59, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Jiao, L. Molecular epidemiology of pancreatic cancer. Int. J. Gastrointest. Cancer 2003, 33, 3–14. [Google Scholar] [CrossRef]
- Farrow, B.; Evers, B.M. Inflammation and the development of pancreatic cancer. Surg. Oncol. 2002, 10, 153–169. [Google Scholar] [CrossRef]
- Chandrapalan, S.; Bosch, S.; Cubiella, J.; Guardiola, J.; Kimani, P.; Mulder, C.; Persaud, K.; de Meij, T.G.J.; Altomare, D.F.; Brenner, H.; et al. Systematic review with meta-analysis: Volatile organic compound analysis to improve faecal immunochemical testing in the detection of colorectal cancer. Aliment. Pharmacol. Ther. 2021, 54, 14–23. [Google Scholar] [CrossRef] [PubMed]
- McFarlan, E.M.; Mozdia, K.E.; Daulton, E.; Arasaradnam, R.; Covington, J.; Nwokolo, C. Pre-analytical and analytical variables that influence urinary volatile organic compound measurements. PLoS ONE 2020, 15, e0236591. [Google Scholar] [CrossRef] [PubMed]
- Covington, J.A.; van der Schee, M.P.; Edge, A.S.; Boyle, B.; Savage, R.S.; Arasaradnam, R.P. The application of FAIMS gas analysis in medical diagnostics. Analyst 2015, 140, 6775–6781. [Google Scholar] [CrossRef] [PubMed]
- Hanna, G.B.; Boshier, P.R.; Markar, S.R.; Romano, A. Accuracy and Methodologic Challenges of Volatile Organic Compound-Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, e182815. [Google Scholar] [CrossRef] [Green Version]
- ATS—American Thoracic Society; ERS—European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.; Carr, L.; Cordell, R.; Wilde, M.J.; Salman, D.; Monks, P.S.; Thomas, P.; Brightling, C.E.; Siddiqui, S.; Greening, N.J. Breathomics for the clinician: The use of volatile organic compounds in respiratory diseases. Thorax 2021, 76, 514–521. [Google Scholar] [CrossRef]
- Klimczak, T.; Kaczka, K.; Klimczak, J.; Tyczkowska-Sieroń, E.; Tyczkowska, A. Primary bacterial culture of bile and pancreatic juice in tumor related jaundice (TROJ)—Is ascending cholangitis always our fault? Scand. J. Gastroenterol. 2018, 53, 1569–1574. [Google Scholar] [CrossRef]
- Thomas, R.M.; Jobin, C. Microbiota in pancreatic health and disease: The next frontier in microbiome research. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 53–64. [Google Scholar] [CrossRef]
- Markar, S.R.; Chin, S.-T.; Romano, A.; Wiggins, T.; Antonowicz, S.; Paraskeva, P.; Ziprin, P.; Darzi, A.; Hanna, G.B. Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann. Surg. 2019, 269, 903–910. [Google Scholar] [CrossRef]
Study name | Method | Medium | Cases | Controls | TP | FP | TN | FN | SN | SP | Type |
---|---|---|---|---|---|---|---|---|---|---|---|
Bile-based | |||||||||||
Navaneethan et al. 2015 (b) [40] | SIFT/MS | Bile | 11 | 21 | 10 | 6 | 15 | 1 | 0.91 | 0.73 | Cholangio |
Navaneethan et al. 2021 [41] | SIFT/MS | Bile | 65 | 23 | 61 | 0 | 23 | 4 | 0.94 | 1.00 | Pancreatic |
Teranen et al. 2022 (a) [42] | GC/IMS | Bile | 8 | 9 | 8 | 2 | 7 | 0 | 1.00 | 0.78 | Pancreatic |
Teranen et al. 2022 (b) [42] | GC/IMS | Bile | 19 | 75 | 4 | 4 | 71 | 15 | 0.21 | 0.95 | Cholangio |
Zhang et al. 2022 (a) [43] | GC/MS | Bile | 24 | 36 | 23 | 1 | 35 | 1 | 0.96 | 0.97 | Cholangio |
Zhang et al. 2022 (b) [43] | GC/MS | Bile | 8 | 18 | 8 | 1 | 17 | 0 | 1.00 | 0.94 | Cholangio |
Blood-based | |||||||||||
Hirata et al. 2017 (a) [44] | GC/MS | Blood | 54 | 58 | 40 | 8 | 50 | 14 | 0.74 | 0.86 | Pancreatic |
Hirata et al. 2017 (b) [44] | GC/MS | Blood | 16 | 16 | 13 | 2 | 14 | 3 | 0.81 | 0.88 | Pancreatic |
Kobayashi et al. 2013 (a) [45] | GC/MS | Blood | 43 | 42 | 37 | 5 | 37 | 6 | 0.86 | 0.88 | Pancreatic |
Kobayashi et al. 2013 (b) [45] | GC/MS | Blood | 42 | 64 | 29 | 14 | 50 | 13 | 0.69 | 0.78 | Pancreatic |
Sakai et al. 2016 (a) [46] | GC/MS | Blood | 15 | 15 | 15 | 3 | 12 | 0 | 1.00 | 0.80 | Pancreatic |
Sakai et al. 2016 (b) [46] | GC/MS | Blood | 44 | 44 | 32 | 7 | 37 | 12 | 0.73 | 0.84 | Pancreatic |
Breath-based | |||||||||||
Markar et al. 2018 (a) [47] | GC/MS | Breath | 25 | 43 | 20 | 2 | 41 | 5 | 0.80 | 0.95 | Pancreatic |
Markar et al. 2018 (b) [47] | GC/MS | Breath | 32 | 32 | 26 | 13 | 19 | 6 | 0.81 | 0.58 | Pancreatic |
Miller Atkins et al. 2020 [48] | SIFT/MS | Breath | 92 | 159 | 67 | 46 | 113 | 25 | 0.73 | 0.71 | HCC |
Princivalle et al. 2018 [49] | E-nose | Breath | 65 | 102 | 65 | 16 | 86 | 0 | 1.00 | 0.84 | Pancreatic |
Qin et al. 2010 [50] | GC/MS | Breath | 30 | 36 | 26 | 3 | 33 | 4 | 0.87 | 0.92 | HCC |
Siriwong et al. 2022 (a) [30] | GC/IMS | Breath | 30 | 30 | 25 | 7 | 23 | 5 | 0.82 | 0.76 | Cholangio |
Siriwong et al. 2022 (b) [30] | GC/IMS | Breath | 18 | 22 | 11 | 7 | 15 | 7 | 0.59 | 0.67 | Cholangio |
Sukaram et al. 2022 (a) [51] | GC/MS | Breath | 61 | 91 | 47 | 16 | 75 | 14 | 0.77 | 0.83 | HCC |
Sukaram et al. 2022 (b) [51] | GC/MS | Breath | 36 | 20 | 16 | 5 | 15 | 20 | 0.44 | 0.75 | HCC |
Uslu et al. 2019 [52] | E-nose | Breath | 29 | 74 | 24 | 13 | 61 | 5 | 0.83 | 0.82 | Pancreatic |
Urine-based | |||||||||||
Arasaradnam et al. 2018 [53] | GC/IMS | Urine | 81 | 81 | 74 | 14 | 67 | 7 | 0.91 | 0.83 | Pancreatic |
Bannaga et al. 2020 [54] | GC/IMS | Urine | 20 | 30 | 12 | 7 | 23 | 8 | 0.60 | 0.74 | HCC |
Daulton et al. 2021 [55] | GC/IMS | Urine | 45 | 78 | 32 | 31 | 47 | 13 | 0.72 | 0.62 | Pancreatic |
Navaneethan et al. 2015 (a) [56] | SIFT/MS | Urine | 15 | 29 | 14 | 11 | 18 | 1 | 0.93 | 0.62 | Cholangio and pancreatic |
Nissinen et al. 2019 [57] | FAIMS | Urine | 68 | 52 | 54 | 11 | 41 | 14 | 0.79 | 0.79 | Pancreatic |
Volatile Organic Compound | Sample Medium |
---|---|
Acetone | Bile, breath |
Benzene | Bile, breath |
Acetaldehyde | Bile, breath |
Valine | Blood |
2-Aminoethanol | Blood |
2-Butanone | Bile, breath, urine |
Pentane | Bile, breath |
n-Hexanone | Bile, breath, urine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelling, M.; Chandrapalan, S.; West, E.; Arasaradnam, R.P. A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers. Cancers 2023, 15, 2308. https://doi.org/10.3390/cancers15082308
Pelling M, Chandrapalan S, West E, Arasaradnam RP. A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers. Cancers. 2023; 15(8):2308. https://doi.org/10.3390/cancers15082308
Chicago/Turabian StylePelling, Melina, Subashini Chandrapalan, Emily West, and Ramesh P. Arasaradnam. 2023. "A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers" Cancers 15, no. 8: 2308. https://doi.org/10.3390/cancers15082308
APA StylePelling, M., Chandrapalan, S., West, E., & Arasaradnam, R. P. (2023). A Systematic Review and Meta-Analysis: Volatile Organic Compound Analysis in the Detection of Hepatobiliary and Pancreatic Cancers. Cancers, 15(8), 2308. https://doi.org/10.3390/cancers15082308