Treatment Options in Late-Line Colorectal Cancer: Lessons Learned from Recent Randomized Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Systemic Treatment beyond Second-Line
2.1. Unselected Patients with Chemo-Refractory mCRC
Author, Year [Ref.] Trial Name | Regimen | N | ORR % | p | PFS Months | HR 95%CI | OS Months | HR 95%CI | QoL |
---|---|---|---|---|---|---|---|---|---|
Grothey, 2013 [10] CORRECT | Placebo | 255 | 0 | NS | 1.7 | 0.49 0.42–0.58 | 5.0 | 0.77 0.64–0.94 | → |
Regorafenib | 505 | 1 | 1.9 * | 6.4 * | |||||
Li, 2014 [14] CONCUR | Placebo | 68 | 0 | 0.045 | 1.7 | 0.31 0.22–0.44 | 6.3 | 0.55 0.40–0.77 | → |
Regorafenib | 136 | 4 * | 3.2 * | 8.8 * | |||||
Yoshino, 2012 [15] | Placebo | 57 | 0 | NS | 1.0 | 0.41 0.28–0.59 | 6.6 | 0.56 0.53–0.81 | ND |
FTD/TPI | 112 | 1 | 2.0 * | 9.0 * | |||||
Mayer, 2015 [11] RECOURSE | Placebo | 266 | 0 | 0.045 | 1.7 | 0.48 0.41–0.57 | 5.3 | 0.68 0.58–0.81 | ND |
FTD/TPI | 534 | 2 * | 2.0 * | 7.1 * | |||||
Xu, 2018 [16] TERRA | Placebo | 135 | 0 | NS | 1.8 | 0.43 0.34–0.54 | 7.1 | 0.79 0.62–0.99 | ND |
FTD/TPI | 271 | 1 | 2.0 * | 7.8 * | |||||
Li, 2013 [18] FRESCO | Placebo | 138 | 0 | 0.01 | 1.8 | 0.26 0.21–0.34 | 6.6 | 0.65 0.51–0.83 | → |
Fruquintinib | 278 | 5 * | 3.7 * | 9.3 * | |||||
Dasari, 2023 [12] FRESCO-2 (4 L) | Placebo | 229 | 0 | 0.06 | 1.8 | 0.32 0.27–0.39 | 4.8 | 0.66 0.55–0.80 | Ongoing |
Fruquintinib | 458 | 2 | 3.7 * | 7.4 * | |||||
Active therapy as comparator | |||||||||
Pfeiffer, 2020 [17] Danish randomized phase 2 | FTD/TPI | 47 | 0 | NS | 2.6 | 0.45 0.29–0.72 | 6.7 | 0.55 0.32–0.94 | ND¤ |
FTD/TPI + bevacizumab | 46 | 2 | 4.6 * | 9.4 * | |||||
Prager, 2023 [13] SUNLIGHT | FTD/TPI | 246 | 1 | <0.05 | 2.4 | 0.44 0.36–0.54 | 7.5 | 0.61 0.49–0.77 | Ongoing |
FTD/TPI + bevacizumab | 246 | 6 | 5.6 * | 10.8 * |
2.2. Randomized Trials That Did Not Show a Prolonged Survival in Late-Line Treatment of Patients with mCRC
3. Immunotherapy in Later-Lines
4. Selected Subgroup of Patients with Chemo-Refractory mCRC
5. Re-Challenge with Anti-EGFR
6. Patients with KRAS G12C Mutations
7. BRAF
8. HER2
9. TRK
10. Discussion
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Bsc, M.F.B.; Me, J.F.; Soerjomataram, M.I.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; van Krieken, J.H.; Aderka, D.; Aguilar, E.A.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 34, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Sorbye, H.; Dragomir, A.; Sundström, M.; Pfeiffer, P.; Thunberg, U.; Bergfors, M.; Aasebø, K.; Eide, G.E.; Ponten, F.; Qvortrup, C.; et al. High BRAF Mutation Frequency and Marked Survival Differences in Subgroups According to KRAS/BRAF Mutation Status and Tumor Tissue Availability in a Prospective Population-Based Metastatic Colorectal Cancer Cohort. PLoS ONE 2015, 10, e0131046. [Google Scholar] [CrossRef]
- Abrams, T.A.; Meyer, G.; Schrag, D.; Meyerhardt, J.A.; Moloney, J.; Fuchs, C.S. Chemotherapy Usage Patterns in a US-Wide Cohort of Patients With Metastatic Colorectal Cancer. JNCI J. Natl. Cancer Inst. 2014, 106, djt371. [Google Scholar] [CrossRef]
- Tournigand, C.; André, T.; Achille, E.; Lledo, G.; Flesh, M.; Mery-Mignard, D.; Quinaux, E.; Couteau, C.; Buyse, M.; Ganem, G.; et al. FOLFIRI Followed by FOLFOX6 or the Reverse Sequence in Advanced Colorectal Cancer: A Randomized GERCOR Study. J. Clin. Oncol. 2004, 22, 229–237. [Google Scholar] [CrossRef]
- Hansen, T.F.; Qvortrup, C.; Pfeiffer, P. Angiogenesis Inhibitors for Colorectal Cancer. A Review of the Clinical Data. Cancers 2021, 13, 1031. [Google Scholar] [CrossRef]
- Avagyan, S.; Binder, H. Subtyping or not subtyping- Quo vadis for precision medicine of colorectal cancer. Transl. Cancer Res. 2023, 12, 1067–1072. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Palshof, J.A.; Larsen, F.O.; Jensen, B.V.; Pfeiffer, P. A systematic review of salvage therapy to patients with metastatic colorectal cancer previously treated with fluorouracil, oxaliplatin and irinotecan +/− targeted therapy. Cancer Treat. Rev. 2014, 40, 701–715. [Google Scholar] [CrossRef]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Mayer, R.J.; Van Cutsem, E.; Falcone, A.; Yoshino, T.; Garcia-Carbonero, R.; Mizunuma, N.; Yamazaki, K.; Shimada, Y.; Tabernero, J.; Komatsu, Y.; et al. Randomized Trial of TAS-102 for Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2015, 372, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Lonardi, S.; Garcia-Carbonero, R.; Elez, E.; Yoshino, T.; Sobrero, A.; Yao, J.; García-Alfonso, P.; Kocsis, J.; Gracian, A.C.; et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study. Lancet 2023, 402, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Prager, G.W.; Taieb, J.; Fakih, M.; Ciardiello, F.; Van Cutsem, E.; Elez, E.; Cruz, F.M.; Wyrwicz, L.; Stroyakovskiy, D.; Pápai, Z.; et al. Trifluridine–Tipiracil and Bevacizumab in Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2023, 388, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, S.; Xu, R.; Yau, T.C.C.; Ma, B.; Pan, H.; Xu, J.; Bai, Y.; Chi, Y.; Wang, L.; et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015, 16, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Mizunuma, N.; Yamazaki, K.; Nishina, T.; Komatsu, Y.; Baba, H.; Tsuji, A.; Yamaguchi, K.; Muro, K.; Sugimoto, N.; et al. TAS-102 monotherapy for pretreated metastatic colorectal cancer: A double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 2012, 13, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kim, T.W.; Shen, L.; Sriuranpong, V.; Pan, H.; Xu, R.; Guo, W.; Han, S.-W.; Liu, T.; Park, Y.S.; et al. Results of a Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Trifluridine/Tipiracil (TAS-102) Monotherapy in Asian Patients with Previously Treated Metastatic Colorectal Cancer: The TERRA Study. J. Clin. Oncol. 2018, 36, 350–358. [Google Scholar] [CrossRef]
- Pfeiffer, P.; Yilmaz, M.; Möller, S.; Zitnjak, D.; Krogh, M.; Petersen, L.N.; Poulsen, L.; Winther, S.B.; Thomsen, K.G.; Qvortrup, C. TAS-102 with or without bevacizumab in patients with chemorefractory metastatic colorectal cancer: An investigator-initiated, open-label, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 412–420. [Google Scholar] [CrossRef]
- Li, J.; Qin, S.; Xu, R.H.; Shen, L.; Xu, J.; Bai, Y.; Yang, L.; Deng, Y.; Chen, Z.-D.; Zhong, H.; et al. Effect of fruquintinib vs placebo on overall survival in patients with previously treated metastatic colorectal cancer: The FRESCO randomized clinical trial. JAMA 2018, 319, 2486–2496. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Yoshino, T.; Lenz, H.; Lonardi, S.; Falcone, A.; Limón, M.; Saunders, M.; Sobrero, A.; Park, Y.; Ferreiro, R.; et al. Nintedanib for the treatment of patients with refractory metastatic colorectal cancer (LUME-Colon 1): A phase III, international, randomized, placebo-controlled study. Ann. Oncol. 2018, 29, 1955–1963. [Google Scholar] [CrossRef]
- Jonker, D.J.; Nott, L.; Yoshino, T.; Gill, S.; Shapiro, J.; Ohtsu, A.; Zalcberg, J.; Vickers, M.M.; Wei, A.C.; Gao, Y.; et al. Napabucasin versus placebo in refractory advanced colorectal cancer: A randomised phase 3 trial. Lancet Gastroenterol. Hepatol. 2018, 3, 263–270. [Google Scholar] [CrossRef]
- Chi, Y.; Shu, Y.; Ba, Y.; Bai, Y.; Qin, B.; Wang, X.; Xiong, J.; Xu, N.; Zhang, H.; Zhou, J.; et al. Anlotinib Monotherapy for Refractory Metastatic Colorectal Cancer: A Double-Blinded, Placebo-Controlled, Randomized Phase III Trial (ALTER0703). Oncologist 2021, 26, e1693–e1703. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.-H.; Shen, L.; Wang, K.-M.; Wu, G.; Shi, C.-M.; Ding, K.-F.; Lin, L.-Z.; Wang, J.-W.; Xiong, J.-P.; Wu, C.-P.; et al. Famitinib versus placebo in the treatment of refractory metastatic colorectal cancer: A multicenter, randomized, double-blinded, placebo-controlled, phase II clinical trial. Chin. J. Cancer 2017, 36, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Strosberg, J.R.; Renfro, L.A.; Hurwitz, H.I.; Marshall, J.L.; Safran, H.; Guarino, M.J.; Kim, G.P.; Hecht, J.R.; Weil, S.C.; et al. Grothey A Randomized, Double-Blind, Placebo-Controlled Phase II Study of the Efficacy and Safety of Monotherapy Ontuxizumab (MORAb-004) Plus Best Supportive Care in Patients with Chemorefractory Metastatic Colorectal Cancer. Clin. Cancer Res. 2017, 24, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Cunningham, D.; de Gramont, A.; Scheithauer, W.; Smakal, M.; Humblet, Y.; Kourteva, G.; Iveson, T.; Andre, T.; Dostalova, J.; et al. Phase III Double-Blind Placebo-Controlled Study of Farnesyl Transferase Inhibitor R115777 in Patients With Refractory Advanced Colorectal Cancer. J. Clin. Oncol. 2004, 22, 3950–3957. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Baños, M.; Benitez-Ribas, D.; Tabera, J.; Varea, S.; Vilana, R.; Bianchi, L.; Ayuso, J.R.; Pagés, M.; Carrera, G.; Cuatrecasas, M.; et al. Phase II randomised trial of autologous tumour lysate dendritic cell plus best supportive care compared with best supportive care in pre-treated advanced colorectal cancer patients. Eur. J. Cancer 2016, 64, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Bekaii-Saab, T.S.; Ou, F.-S.; Ahn, D.H.; Boland, P.M.; Ciombor, K.K.; Heying, E.N.; Dockter, T.J.; Jacobs, N.L.; Pasche, B.C.; Cleary, J.M.; et al. Regorafenib dose-optimisation in patients with refractory metastatic colorectal cancer (ReDOS): A randomised, multicentre, open-label, phase 2 study. Lancet Oncol. 2019, 20, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Argilés, G.; Mulet, N.; Valladares-Ayerbes, M.; Viéitez, J.M.; Grávalos, C.; García-Alfonso, P.; Santos, C.; Tobeña, M.; García-Paredes, B.; Benavides, M.; et al. A randomised phase 2 study comparing different dose approaches of induction treatment of regorafenib in previously treated metastatic colorectal cancer patients (REARRANGE trial). Eur. J. Cancer 2022, 177, 154–163. [Google Scholar] [CrossRef]
- Fogelman, D.; Cubillo, A.; García-Alfonso, P.; Mirón, M.L.L.; Nemunaitis, J.; Flora, D.; Borg, C.; Mineur, L.; Vieitez, J.M.; Cohn, A.; et al. Randomized, double-blind, phase two study of ruxolitinib plus regorafenib in patients with relapsed/refractory metastatic colorectal cancer. Cancer Med. 2018, 7, 5382–5393. [Google Scholar] [CrossRef]
- Shitara, K.; Yamanaka, T.; Denda, T.; Tsuji, Y.; Shinozaki, K.; Komatsu, Y.; Kobayashi, Y.; Furuse, J.; Okuda, H.; Asayama, M.; et al. REVERCE: A randomized phase II study of regorafenib followed by cetuximab versus the reverse sequence for previously treated metastatic colorectal cancer patients. Ann. Oncol. 2019, 30, 259–265. [Google Scholar] [CrossRef]
- Siu, L.L.; Shapiro, J.D.; Jonker, D.J.; Karapetis, C.S.; Zalcberg, J.R.; Simes, J.; Couture, F.; Moore, M.J.; Price, T.J.; Siddiqui, J.; et al. Phase III Randomized, Placebo-Controlled Study of Cetuximab Plus Brivanib Alaninate Versus Cetuximab Plus Placebo in Patients With Metastatic, Chemotherapy-Refractory, Wild-Type K-RAS Colorectal Carcinoma: The NCIC Clinical Trials Group and AGITG CO.20 Trial. J. Clin. Oncol. 2013, 31, 2477–2484. [Google Scholar] [CrossRef]
- Price, T.J.; Peeters, M.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Zhang, K.; et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): A randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014, 15, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Reid, T.R.; Abrouk, N.; Caroen, S.; Oronsky, B.; Stirn, M.; Larson, C.; Beale, K.; Knox, S.J.; Fisher, G. ROCKET: Phase II Randomized, Active-controlled, Multicenter Trial to Assess the Safety and Efficacy of RRx-001 + Irinotecan vs. Single-agent Regorafenib in Third/Fourth Line Colorectal Cancer. Clin. Color. Cancer 2022, 22, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, S.; De Falco, V.; Martini, G.; Ciardiello, D.; Martinelli, E.; Della Corte, C.M.; Esposito, L.; Famiglietti, V.; Di Liello, A.; Avallone, A.; et al. Panitumumab plus trifluridine-tipiracil as anti-epidermal growth factor receptor rechallenge therapy for refractory RAS wild-type metastatic colorectal cancer: A phase 2 randomized clinical trial. JAMA Oncol. 2023, 9, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, S.; Ciardiello, D.; De Falco, V.; Martini, G.; Martinelli, E.; Della Corte, C.M.; Esposito, L.; Famiglietti, V.; Di Liello, A.; Avallone, A.; et al. Panitumumab plus trifluridine/tipiracil as anti-EGFR rechallenge therapy in patients with refractory RAS wild-type metastatic colorectal cancer: Overall survival and subgroup analysis of the randomized phase II VELO trial. Int. J. Cancer 2023, 153, 1520–1528. [Google Scholar] [CrossRef]
- Samalin, E.; de La Fouchardière, C.; Thèzenas, S.; Boige, V.; Senellart, H.; Guimbaud, R.; Taïeb, J.; François, E.; Galais, M.-P.; Lièvre, A.; et al. Sorafenib Plus Irinotecan Combination in Patients With RAS–mutated Metastatic Colorectal Cancer Refractory to Standard Combined Chemotherapies: A Multicenter, Randomized Phase 2 Trial (NEXIRI–2/PRODIGE 27). Clin. Color. Cancer 2020, 19, 301–310. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Mettu, N.B.; Ou, F.S.; Zemla, T.J.; Halfdanarson, T.R.; Lenz, H.J.; Breakstone, R.A.; Boland, P.M.; Crysler, O.V.; Wu, C.; Nixon, A.B.; et al. Assessment of Capecitabine and Bevacizumab with or without Atezolizumab for the Treatment of Refractory Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2149040. [Google Scholar] [CrossRef]
- Chen, E.X.; Jonker, D.J.; Loree, J.M.; Kennecke, H.F.; Berry, S.R.; Couture, F.; Ahmad, C.E.; Goffin, J.R.; Kavan, P.; Harb, M.; et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: The Canadian Cancer Trials Group CO.26 study. JAMA Oncol. 2020, 6, 831–838. [Google Scholar] [CrossRef]
- Eng, C.; Kim, T.W.; Bendell, J.; Argilés, G.; Tebbutt, N.C.; Di Bartolomeo, M.; Falcone, A.; Fakih, M.; Kozloff, M.; Segal, N.H.; et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019, 20, 849–861. [Google Scholar] [CrossRef]
- Parseghian, C.; Eluri, M.; Kopetz, S.; Raghav, K. Mechanisms of resistance to EGFR-targeted therapies in colorectal cancer: More than just genetics. Front. Cell Dev. Biol. 2023, 11, 1176657. [Google Scholar] [CrossRef]
- Diaz, L.A., Jr.; Williams, R.T.; Wu, J.; Kinde, I.; Hecht, J.R.; Berlin, J.; Allen, B.; Bozic, I.; Reiter, J.G.; Nowak, M.A.; et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012, 486, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Siravegna, G.; Mussolin, B.; Buscarino, M.; Corti, G.; Cassingena, A.; Crisafulli, G.; Ponzetti, A.; Cremolini, C.; Amatu, A.; Lauricella, C.; et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 2015, 21, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Santini, D.; Vincenzi, B.; Addeo, R.; Garufi, C.; Masi, G.; Scartozzi, M.; Mancuso, A.; Frezza, A.M.; Venditti, O.; Imperatori, M.; et al. Cetuximab rechallenge in metastatic colorectal cancer patients: How to come away from acquired resistance? Ann. Oncol. 2012, 23, 2313–2318. [Google Scholar] [CrossRef] [PubMed]
- Cremolini, C.; Rossini, D.; Dell’aquila, E.; Lonardi, S.; Conca, E.; Del Re, M.; Busico, A.; Pietrantonio, F.; Danesi, R.; Aprile, G.; et al. Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan. JAMA Oncol. 2019, 5, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Masuishi, T.; Tsuji, A.; Kotaka, M.; Nakamura, M.; Kochi, M.; Takagane, A.; Shimada, K.; Denda, T.; Segawa, Y.; Tanioka, H.; et al. Phase 2 study of irinotecan plus cetuximab rechallenge as third-line treatment in KRAS wild-type metastatic colorectal cancer: JACCRO CC-08. Br. J. Cancer 2020, 123, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Pietrantonio, F.; Lonardi, S.; Mussolin, B.; Rua, F.; Fenocchio, E.; Amatu, A.; Corallo, S.; Manai, C.; Tosi, F.; et al. Phase II study of anti-EGFR rechallenge therapy with panitumumab driven by circulating tumor DNA molecular selection in metastatic colorectal cancer: The CHRONOS trial. J. Clin. Oncol. 2021, 39, 3506. [Google Scholar] [CrossRef]
- Strickler, J.H.; Yoshino, T.; Stevinson, K.; Eichinger, C.S.; Giannopoulou, C.; Rehn, M.; Modest, D.P. Prevalence of KRAS G12C Mutation and Co-mutations and Associated Clinical Outcomes in Patients With Colorectal Cancer: A Systematic Literature Review. Oncologist 2023, 28, e981–e994. [Google Scholar] [CrossRef]
- Yaeger, R.; Weiss, J.; Pelster, M.S.; Spira, A.I.; Barve, M.; Ou, S.H.I.; Leal, T.A.; Bekaii-Saab, T.S.; Paweletz, C.P.; Heavey, G.A.; et al. Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated KRAS G12C. N. Engl. J. Med. 2023, 388, 44–54. [Google Scholar] [CrossRef]
- Fakih, M.G.; Salvatore, L.; Esaki, T.; Modest, D.P.; Lopez-Bravo, D.P.; Taieb, J.; Karamouzis, M.V.; Ruiz-Garcia, E.; Kim, T.-W.; Kuboki, Y.; et al. Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. N. Engl. J. Med. 2023, 389, 2125–2139. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef]
- Grothey, A.; Fakih, M.; Tabernero, J. Management of BRAF-mutant metastatic colorectal cancer: A review of treatment options and evidence-based guidelines. Ann. Oncol. 2021, 32, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.N.; Kopetz, E.S. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: Clinical characteristics, clinical behavior, and response to targeted therapies. J. Gastrointest. Oncol. 2015, 6, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Grothey, A.; Van Cutsem, E.; Yaeger, R.; Wasan, H.; Yoshino, T.; Desai, J.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E–Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study. J. Clin. Oncol. 2021, 39, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Bekaii-Saab, T.S.; Lach, K.; Hsu, L.-I.; Siadak, M.; Stecher, M.; Ward, J.; Beckerman, R.; Strickler, J.H. Impact of Anti-EGFR Therapies on HER2-Positive Metastatic Colorectal Cancer: A Systematic Literature Review and Meta-Analysis of Clinical Outcomes. Oncologist 2023, 28, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Amatu, A.; Porcu, L.; Ghezzi, S.; Lonardi, S.; Leone, F.; Bergamo, F.; Fenocchio, E.; Martinelli, E.; Borelli, B.; et al. HER2 Positivity Predicts Unresponsiveness to EGFR-Targeted Treatment in Metastatic Colorectal Cancer. Oncologist 2019, 24, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Trusolino, L.; Martino, C.; Bencardino, K.; Lonardi, S.; Bergamo, F.; Zagonel, V.; Leone, F.; Depetris, I.; Martinelli, E.; et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory KRAS codon 12/13 wild-type HER2-positive metastatic colorectal cancer (HERACLES): A proof-of-concept multicentre open-label phase 2 trial. Lancet Oncol. 2016, 17, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Sartore-Bianchi, A.; Lonardi, S.; Martino, C.; Fenocchio, E.; Tosi, F.; Ghezzi, S.; Leone, F.; Bergamo, F.; Zagonel, V.; Ciardiello, F.; et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: The phase II HERACLES-B trial. ESMO Open 2020, 5, e000911. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Hurwitz, H.; Raghav, K.P.S.; McWilliams, R.R.; Fakih, M.; VanderWalde, A.; Swanton, C.; Kurzrock, R.; Burris, H.; Sweeney, C.; et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): An updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2019, 20, 518–530. [Google Scholar] [CrossRef]
- Nakamura, Y.; Okamoto, W.; Kato, T.; Esaki, T.; Kato, K.; Komatsu, Y.; Yuki, S.; Masuishi, T.; Nishina, T.; Ebi, H.; et al. Circulating tumor DNA-guided treatment with pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer: A phase 2 trial. Nat. Med. 2021, 27, 1899–1903. [Google Scholar] [CrossRef]
- Gupta, R.; Garrett-Mayer, E.; Halabi, S.; Mangat, P.K.; D’Andre, S.D.; Meiri, E.; Shrestha, S.; Warren, S.L.; Ranasinghe, S.; Schilsky, R.L. Pertuzumab plus trastuzumab (P+T) in patients (Pts) with colorectal cancer (CRC) with ERBB2 amplification or overexpression: Results from the TAPUR Study. J. Clin. Oncol. 2020, 38, 132. [Google Scholar] [CrossRef]
- Chang, J.; Xu, M.; Wang, C.; Huang, D.; Zhang, Z.; Chen, Z.; Zhu, X.; Li, W. Dual HER2 Targeted Therapy With Pyrotinib and Trastuzumab in Refractory HER2 Positive Metastatic Colorectal Cancer: A Result From HER2-FUSCC-G Study. Clin. Color. Cancer 2022, 21, 347–353. [Google Scholar] [CrossRef]
- Siena, S.; Di Bartolomeo, M.; Raghav, K.; Masuishi, T.; Loupakis, F.; Kawakami, H.; Yamaguchi, K.; Nishina, T.; Fakih, M.; Elez, E.; et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): A multicentre, open-label, phase 2 trial. Lancet Oncol. 2021, 22, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Di Bartolomeo, M.; Raghav, K.P.S.; Masuishi, T.; Loupakis, F.; Kawakami, H.; Yamaguchi, K.; Nishina, T.; Wainberg, Z.A.; Elez, E.; et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): Final results from a phase 2, multicenter, open-label study (DESTINY-CRC01). J. Clin. Oncol. 2021, 39, 3505. [Google Scholar] [CrossRef]
- Strickler, J.H.; Cercek, A.; Siena, S.; André, T.; Ng, K.; Van Cutsem, E.; Wu, C.; Fountzilas, C.; Kardosh, A.; Lenz, H.-J.; et al. Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): A multicentre, open-label, phase 2 study. Lancet Oncol. 2023, 24, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Raghav, K.P.S.; Siena, S.; Takashima, A.; Kato, T.; Eynde, M.V.D.; Di Bartolomeo, M.; Komatsu, Y.; Kawakami, H.; Peeters, M.; Andre, T.; et al. Trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-overexpressing/amplified (HER2+) metastatic colorectal cancer (mCRC): Primary results from the multicenter, randomized, phase 2 DESTINY-CRC02 study. J. Clin. Oncol. 2023, 41 (Suppl. 16), 3501. [Google Scholar] [CrossRef]
- Bhamidipati, D.; Subbiah, V. Impact of tissue-agnostic approvals for patients with gastrointestinal malignancies. Trends Cancer 2023, 9, 237–249. [Google Scholar] [CrossRef]
- Garralda, E.; Hong, D.; Xu, R.; Deeken, J.; Italiano, A.; Liu, T.; Ferrandiz, A.; Patel, J.; Lee, D.; Chung, H.; et al. Long-term efficacy and safety of larotrectinib in patients with tropomyosin receptor kinase (TRK) fusion gastrointestinal (GI) cancer: An expanded dataset. Ann. Oncol. 2022, 33 (Suppl. 4), S370. [Google Scholar] [CrossRef]
- Garrido-Laguna, I.; Lonardi, S.; Bazhenova, L.; Peeters, M.; Longo, F.; Sigal, D.; Conkling, P.; Duffaud, F.; Klingbiel, D.; Bordogna, W.; et al. SO-32 Entrectinib in NTRK fusion-positive gastrointestinal cancers: Updated integrated analysis. Ann. Oncol. 2022, 33 (Suppl. 4), S370–S371. [Google Scholar] [CrossRef]
- Cervantes, A.; Martinelli, E. Updated treatment recommendation for third-line treatment in advanced colorectal cancer from the ESMO Metastatic Colorectal Cancer Living Guideline. Ann. Oncol. 2023. [Google Scholar] [CrossRef]
Trial Name [Ref.] | % of mCRC | Phase | Treatment Options | N | ORR % | PFS Months | OS Months |
---|---|---|---|---|---|---|---|
No therapy, data from numerous randomized trials with BSC | >1000 | 0 | 1.5 | 5 | |||
Unselected patients, data from pivotal randomized trials | |||||||
CORRECT [10] | 100% | 3 | Regorafenib | 505 | 1 | 1.9 | 6.4 |
RECOURSE [11] | 100% | 3 | FTD/TPI (TAS-102) | 534 | 2 | 2.0 | 7.1 |
FRESCO-2 [12] | 100% | 3 | Fruquintinib | 458 | 2 | 3.7 | 7.4 |
SUNLIGHT [13] | 100% | 3 | FTD/TPI + bevacizumab | 246 | 6 | 5.6 | 10.8 |
Selected patients, data mainly from phase 2 | |||||||
BRAFmut | 8–12% | 3 | Encorafenib + cetuximab (2nd line) | 220 | 20 | 4.2 | 8.4 |
HER2+ and RASwt | 3–5% | 2 | Anti-HER2 treatment | 19–53 | 10–55 | 2.9–6.9 | 10.6–24.1 |
RASwt and BRAFwt | 30% | 2 | Anti-EGFR rechallenge | 28–39 | 3–54 | 2.4–6.6 | 8.2–9.8 |
KRASG12C | 3% | 1/2 | Adagrasib and cetuximab | 28 | 46 | 6.9 | 13.4 |
KRASG12C | 3% | 3 | Sotorasib and panitumumab | 53 | 26 | 5.6 | NR |
NTRK gene fusions | <1% | 2 | Entrectinib, larotrectinib | 10–19 | 20–47 | 3.0–5.5 | 12–16 |
Author, Year [Ref.] Trial Name | Regimen | N | ORR (%) | p | PFS (mo) | HR (95%CI) | OS (mo) | HR (95%CI) | QoL |
---|---|---|---|---|---|---|---|---|---|
Van Cutsem, 2018 [19] LUME | Placebo | 382 | 0 | NS | 1.4 | 0.58 0.49–0.69 | 6.0 | 1.01 0.86–1.19 | → |
Nintedanib | 386 | 0 | 1.5 * | 6.4 | |||||
Jonker, 2018 [20] | Placebo | 144 | 0 | NS | 1.8 | 0.97 0.76–1.26 | 4.8 | 1.13 0.88–1·46 | ⇩ |
Napabucasin | 138 | 0 | 1.8 | 4.4 | |||||
Chi, 2021 [21] ALTER0703 | Placebo | 137 | 1 | 0.07 | 1.5 | 0.34 0.27–0.43 | 7.2 | 1.02 0.82–1.27 | → |
Anlotinib | 282 | 4 | 4.1 * | 8.6 | |||||
Xu, 2017 [22] | Placebo | 55 | 0 | NS | 1.5 | 0.60 0.41–0.86 | 7.2 | NS | → |
Famitinib | 99 | 2 | 2.8 * | 7.4 | |||||
Grothey, 2018 [23] | Placebo | 42 | 2 | NS | 1.9 | 1.13 0.76–1.67 | 6.1 | 1.43 0.93–2.19 | ND |
Ontuxizumab | 84 | 0 | 1.9 | 4.8 | |||||
Rao, 2004 [24] | Placebo | 133 | 0 | NS | 2.6 | 1.22 | 6.1 | NS | → |
Tipifarnib | 235 | 1 | 2.6 | 5.7 | |||||
Caballero-Baños, 2016 [25] | Placebo | 24 | 0 | NS | 2.3 | NS | 4.7 | NS | ND |
ADC | 28 | 0 | 2.7 | 6.2 |
Author, Year [Ref.] Trial Name | Regimen | N | ORR % | p | PFS Months | HR 95%CI | OS Months | HR 95%CI | QoL |
---|---|---|---|---|---|---|---|---|---|
Bekaii-Saab, 2019 [26] ReDOS | Regorafenib 160 | 62 | - | - | 2.0 | 0.84 0.57–1.24 | 6.0 | 0.72 0.47–1.10 | → |
Regorafenib 80 to 160 mg | 54 | - | 2.8 | 9.8 | |||||
Argiles, 2022 [27] REARRANGE | Regorafenib 160 | 101 | 2 | NS | 1.9 | NS | 7.4 | NS | ND |
Regorafenib 120 to 160 mg | 99 | 2 | 2.0 | 8.6 | |||||
Regorafenib 160 1 w | 99 | 3 | 2.0 | 7.1 | |||||
Fogelman, 2018 [28] | Regorafenib + placebo | 111 | 5 | NS | 2.0 | 0.79 0.58–1.07 | 10.9 | 0.77 0.48–1.23 | → |
Regorafenib + ruxolitinib | 110 | 3 | 3.5 | 11.4 | |||||
Reid, 2023 [32] ROCKET | Regorafenib | 10 | 0 | NS | 1.7 | 0.24 0.09–0.61 | 4.7 | 0.71 0.27–1.9 | ND |
RRx-001 → irinotecan | 24 | 21 | 6.1 * | 8.6 | |||||
Shitara, 2019 [29] REVERCE | Regorafenib → cetuximab | 51 | 4 | 0.03 | 2.4 | 0.97 0.62–1.54 | 17.4 | 0.61 0.39–0.96 | → |
Cetuximab → regorafenib | 50 | 20 * | 4.2 | 11.6 * | |||||
Siu, 2013 [30] AGITG CO.20 (KRASwt) | Cetuximab | 374 | 7 | 0.004 | 3.4 | 0.72 0.62–0.84 | 8.1 | 0.88 0.74–1.03 | ⇩ |
Cetuximab + brivanib | 376 | 14 * | 5.0 * | 8.8 | |||||
Price, 2014 [31] ASPECCT | Cetuximab | 500 | 20 | NS | 4.4 | 1.19 0.66–2.13 | 10.0 | 0.97 0.84–1.11 | → |
Panitumumab | 499 | 22 | 4.1 | 10.4 | |||||
Napolitano, 2023 [33,34] VELO | FTD/TPI | 31 | 0 | NS | 2.5 | 0.48 0.28–0.82 | 13.1 | 0.96 0.54–1.71 | ND |
FTD/TPI + panitumumab | 31 | 10 | 4.0 * | 11.6 | |||||
Samalin, 2020 [35] PRODIGE27 (RASmut) | Irinotecan | 57 | 2 | NS | 1.9 | NS | 6.3 | NS | → |
Sorafenib | 57 | 2 | 2.1 | 5.6 | |||||
Irinotecan + Sorafenib | 59 | 4 | 3.6 | 7.2 |
Author, Year [Ref.] Trial Name | Treatment | N | Line | (K) RAS | ORR % | PFS Months | OS Months |
---|---|---|---|---|---|---|---|
Sartore-Bianchi, 2014 [56] Heracles-A | Trastuzumab + lapatinib | 27 | 74% 4 L+ | KRASwt | 30 | 4.8 | 10.6 |
Sartore-Bianchi, 2020 [57] Heracles-B | Pertuzumab + TDM1 | 31 | 48% 4 L+ | RASwt | 10 | 4.1 | - |
Meric-Bernstam, 2019 [58] MyPathway | Trastuzumab + pertuzumab KRASwt KRASmut | 57 43 13 | 67% 4 L+ | 23% RASmut | 32 40 8 | 2.9 5.3 1.4 | 11.5 14.0 8.5 |
Nakamura, 2022 [59] Triumph | Trastuzumab + pertuzumab | 27 | 78% 3 L+ | RASwt | 30 | 4.0 | 10.1 |
Gupta, 2020 [60] Tapur | Trastuzumab + pertuzumab | 28 | 79% 3 L+ | RASwt | 14 | 4.0 | 58% 1Y |
Chang, 2022 [61] HER2-FUSCC | Trastuzumab + pyrotinib | 16 | 100% 2 L+ | 13% RASmut | 50 | 7.5 | 16.8 |
Siena, 2021 [62,63] Destiny-CRC01 | Trastuzumab-deruxtecan | 53 | Median 4 | RASwt | 45 | 6.9 | 15.5 |
Strickler, 2023 [64] Mountaineer | Trastuzumab + tucatinib | 86 | 39% 3 L+ | RASwt | 38 | 8.2 | 24.1 |
Raghav, 2023 [65] Destiny-CRC02 | T-DXd 5.4 mg/kg | 82 | Median 4 | 85% RASwt | 38 | 5.8 | 13.4 |
T-DXd 6.4 mg/kg | 40 | Median 4 | 85% RASwt | 28 | 5.5 | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarpgaard, L.S.; Winther, S.B.; Pfeiffer, P. Treatment Options in Late-Line Colorectal Cancer: Lessons Learned from Recent Randomized Studies. Cancers 2024, 16, 126. https://doi.org/10.3390/cancers16010126
Tarpgaard LS, Winther SB, Pfeiffer P. Treatment Options in Late-Line Colorectal Cancer: Lessons Learned from Recent Randomized Studies. Cancers. 2024; 16(1):126. https://doi.org/10.3390/cancers16010126
Chicago/Turabian StyleTarpgaard, Line Schmidt, Stine Brændegaard Winther, and Per Pfeiffer. 2024. "Treatment Options in Late-Line Colorectal Cancer: Lessons Learned from Recent Randomized Studies" Cancers 16, no. 1: 126. https://doi.org/10.3390/cancers16010126
APA StyleTarpgaard, L. S., Winther, S. B., & Pfeiffer, P. (2024). Treatment Options in Late-Line Colorectal Cancer: Lessons Learned from Recent Randomized Studies. Cancers, 16(1), 126. https://doi.org/10.3390/cancers16010126