Comparative Effectiveness of First-Line Selpercatinib versus Standard Therapies in Patients with RET-Activated Cancers: An Exploratory Interpatient Analysis of LIBRETTO-001
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Measures and Definitions
Demographic and Clinical Variables
- TTD was defined as the time from the index date of 1L for the aNSCLC and TC cohorts or the given line for the MTC cohort to the date of treatment discontinuation. The follow-up date was variable depending on the time-to-event outcome. For patients who did not have a discontinuation, TTD was censored on the last date of the trial treatment.
- TTNT-D was defined as the time from the index date (1L for the aNSCLC and TC cohorts and given line for the MTC cohort) to the start date of the next line of therapy or death, whichever occurred first. For patients whose treatment was ongoing, the TTNT-D was ended on the cut-off date. If treatment was discontinued, the TTNT-D was the time until the start of the next treatment. Otherwise, the TTNT-D was ended at the last long-term follow-up visit or study end date.
- TTP was defined as the time from the index date (1L for the aNSCLC and TC cohorts and given line for the MTC cohort) to the date of the INV-assessed progression date (PD). Otherwise, the TTP was ended on the analysis date of the end of the study or the date of the last evaluable disease assessment, whichever occurred first.
- The ORR was defined as the proportion of patients with a documented complete response or partial response (CR/PR) based on an INV-reported assessment.
2.2. Statistical Analysis
2.3. Research Ethics
2.4. Subgroup Analyses
2.4.1. NSCLC Cohort
- Patients naïve to standard therapy (1L selpercatinib arm) compared to patients with only one prior line of standard therapy (1L comparator arm).
- Patients naïve to standard therapy (1L selpercatinib arm) compared to patients that received pembrolizumab plus pemetrexed-platinum chemotherapy in 1L (comparator arm).
2.4.2. MTC Cohort
- Patients naïve to any standard therapy (1L selpercatinib arm) compared to patients with only one prior line of standard therapy (1L comparator arm).
- Patients naïve to any standard therapy (1L selpercatinib arm) compared to patients treated with cabozantinib and/or vandetanib in 1L (comparator arm).
2.4.3. TC Cohort
- Patients naïve to standard therapy (1L selpercatinib arm) compared to patients who received lenvatinib or sorafenib in 1L (comparator arm). No matching was applied due to the limited sample size.
3. Results
3.1. RET Fusion-Positive aNSCLC Cohort
Subgroup Analyses
3.2. RET-Mutated MTC Cohort
Subgroup Analyses
3.3. RET Fusion-Positive TC Cohort
Subgroup Analyses
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; et al. Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. Cancer Discov. 2018, 8, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Ohashi, K.; et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): A phase 1/2, open-label, basket trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboullex, S.; et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Moccia, M.; Federico, G.; Carlomagno, F. RET Gene Fusions in Malignancies of the Thyroid and Other Tissues. Genes 2020, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Cote, G.J. Advances in Targeting RET-Dependent Cancers. Cancer Discov. 2020, 10, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Bradford, D.; Larkins, E.; Mushti, S.L.; Rodriguez, L.; Skinner, A.M.; Helms, W.S.; Price, L.S.L.; Zirkelbach, J.F.; Li, Y.; Liu, J.; et al. FDA Approval Summary: Selpercatinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions. Clin. Cancer Res. 2021, 27, 2130–2135. [Google Scholar] [CrossRef]
- Subbiah, V.; Velcheti, V.; Touch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef]
- Drilon, A.; Subbiah, V.; Gautschi, O.; Tomasini, P.; de Braud, F.; Solomon, B.J.; Tan, D.S.W.; Alonso, G.; Wolf, J.; Park, K.; et al. Selpercatinib in Patients with RET Fusion-Positive Non-Small-Cell Lung Cancer: Updated Safety and Efficacy from the Registrational LIBRETTO-001 Phase I/II Trial. J. Clin. Oncol. 2023, 41, 385–394. [Google Scholar] [CrossRef]
- Drilon, A. A Phase 1/2 Study of Oral Selpercatinib (LOXO-292) in Patients with Advanced Solid Tumors, Including RET Fusion-Positive Solid Tumors, Medullary Thyroid Cancer, and Other Tumors with RET Activation (LIBRETTO-001). Full clinical study report LOXO-RET-17001 (J2G-OX-JZJA; LIBRETTO-001).
- Wirth, L.J.; Subbiah, V.; Worden, F.P.; Solomon, B.J.; Robinson, B.; Hadoux, J.; Tomasini, P.; Weiler, D.; Deschler-Baier, B.; Tan, D.S.W.; et al. Updated safety and efficacy of selpercatinib in patients (pts) with RET-activated thyroid cancer: Data from LIBRETTO-001. Ann. Oncol. 2023, 34 (Suppl. S2), S1145–S1151. [Google Scholar] [CrossRef]
- Zhou, C.; Solomon, B.; Loong, H.H.; Park, K.; Pérol, M.; Arriola, E.; Novello, S.; Han, B.; Zhou, J.; Ardizzoni, A.; et al. LIBRETTO-431 Trial Investigators. First-Line Selpercatinib or Chemotherapy and Pembrolizumab in RET Fusion-Positive NSCLC. N. Engl. J. Med. 2023, 389, 1839–1850. [Google Scholar] [CrossRef]
- Hadoux, J.; Elisei, R.; Brose, M.S.; Hoff, A.O.; Robinson, B.G.; Gao, M.; Jarzab, B.; Isaev, P.; Kopeckova, K.; Wadsley, J.; et al. LIBRETTO-531 Trial Investigators. Phase 3 Trial of Selpercatinib in Advanced RET-Mutant Medullary Thyroid Cancer. N. Engl. J. Med. 2023, 389, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Garassino, M.C.; Gadgeel, S.; Esteban, E.; Felip, E.; Speranza, G.; Domine, M.; Hochmair, M.J.; Powell, S.; Cheng, S.Y.; Bischoff, H.G.; et al. Patient-reported outcomes following pembrolizumab or placebo plus pemetrexed and platinum in patients with previously untreated, metastatic, non-squamous non-small-cell lung cancer (KEYNOTE-189): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. KEYNOTE-189 Investigators. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Huang, D.; Zhou, J.; Zhou, C.; Sun, Y.; Wu, L.; Guo, Y.; Jingxin, S.; Zhang, W.; Lu, S. Intracranial Activity of Selpercatinib in Chinese Patients with Advanced RET Fusion-Positive Non-Small-Cell Lung Cancer in the Phase II LIBRETTO-321 Trial. JCO Precis. Oncol. 2023, 7, e2200708. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Hess, L.M.; Jen, M.H.; Peterson, P.; Li, X.; Liu, H.; Lai, Y.; Sugihara, T.; Kiiskinen, U.; Vickers, A.; et al. External control cohorts for the single-arm LIBRETTO-001 trial of selpercatinib in RET+ non-small-cell lung cancer. ESMO Open 2022, 7, 100551. [Google Scholar] [CrossRef]
- Ishak, K.J.; Proskorovsky, I.; Benedict, A. Simulation and matching-based approaches for indirect comparison of treatments. Pharmacoeconomics 2015, 33, 537–549. [Google Scholar] [CrossRef]
- Heinz, P.; Wendel-Garcia, P.D.; Held, U. Impact of the matching algorithm on the treatment effect estimate: A neutral comparison study. Biom. J. 2022. [Google Scholar] [CrossRef]
- Radice, R.; Ramsahai, R.; Grieve, R.; Kreif, N.; Sadique, Z.; Sekhon, J.S. Evaluating treatment effectiveness in patient subgroups: A comparison of propensity score methods with an automated matching approach. Int. J. Biostat. 2012, 8, 25. [Google Scholar] [CrossRef]
- Forsythe, A.; Chandiwana, D.; Barth, J.; Thabane, M.; Baeck, J.; Tremblay, G. Progression-free survival/time to progression as a potential surrogate for overall survival in HR+, HER2− metastatic breast cancer. Breast Cancer Targets Ther. 2018, 10, 69–78. [Google Scholar] [CrossRef]
- Bazhenova, L.; Kish, J.; Cai, B.; Caro, N.; Feinberg, B. Real-world observational study of current treatment patterns and outcomes in recurrent or locally advanced/metastatic non-small cell lung cancer. Cancer Treat Res. Commun. 2022, 33, 100637. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Patel, M.; Gridelli, C.; de Marinis, F.; Waterkamp, D.; McCusker, M.E. Real-world treatment patterns for patients receiving second-line and third-line treatment for advanced non-small cell lung cancer: A systematic review of recently published studies. PLoS ONE 2017, 12, e0175679. [Google Scholar] [CrossRef] [PubMed]
- Hess, L.M.; Han, Y.; Zhu, Y.E.; Bhandari, N.R.; Sireci, A. Characteristics and outcomes of patients with RET-fusion positive non-small lung cancer in real-world practice in the United States. BMC Cancer 2021, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.Y.; Huang, S.; Jing, Z.T.; Duan, M.C. The efficacy and safety of selective RET inhibitors in RET fusion-positive non-small cell lung cancer: A meta-analysis. Investig. New Drugs 2023, 41, 768–776. [Google Scholar] [CrossRef]
- Illini, O.; Hochmair, M.J.; Fabikan, H.; Weinlinger, C.; Tufman, A.; Swalduz, A.; Lamberg, K.; Hashemi, S.M.S.; Huemer, F.; Vikström, A.; et al. Selpercatinib in RET fusion-positive non-small-cell lung cancer (SIREN): A retrospective analysis of patients treated through an access program. Ther. Adv. Med. Oncol. 2021, 13, 17588359211019675. [Google Scholar] [CrossRef]
- Lu, S.; Cheng, Y.; Huang, D.; Sun, Y.; Wu, L.; Zhou, C.; Guo, Y.; Shao, J.; Zhang, W.; Zhou, J. Efficacy and safety of selpercatinib in Chinese patients with advanced RET fusion-positive non-small-cell lung cancer: A phase II clinical trial (LIBRETTO-321). Ther. Adv. Med. Oncol. 2022, 14, 17588359221105020. [Google Scholar] [CrossRef]
- Jen, M.H.; Kiiskinen, U.; Khanal, M.; Han, Y.; Hess, L.; Tian, W.; Vickers, A. Matching Adjusted Indirect Comparison (MAIC) of Selpercatinib vs Cabozantinib in RET Mutation-Positive Advanced Medullary Thyroid Cancer (MTC); Poster Presented at the ISPOR Europe 2023; ISPOR: Copenhagen, Denmark, 2023. [Google Scholar]
(n {%}) Unless Specified | Pre-Matched | Genetic Matching | ||||
---|---|---|---|---|---|---|
Selpercatinib Arm (n = 69) | Comparator Arm (n = 246) | p-Value | Selpercatinib Arm (n = 68) | Comparator Arm (n = 68) | p-Value | |
Age at index date, year | ||||||
Mean (SD) | 62.1 (13.0) | 56.9 (11.4) | 0.0014 | 62.2 (13.1) | 61.0 (10.8) | 0.5836 |
Sex | ||||||
Female | 43 (62.3) | 140 (56.7) | 0.4016 | 43 (63.2) | 43 (63.2) | 1.0000 |
Male | 26 (37.7) | 107 (43.3) | 25 (36.8) | 25 (36.8) | ||
Race | ||||||
White | 48 (69.6) | 108 (43.7) | 0.0005 | 47 (69.1) | 48 (70.6) | |
Black/African American | 4 (5.8) | 12 (4.9) | 4 (5.9) | 4 (5.9) | 0.9847 | |
Asian | 13 (18.8) | 118 (47.8) | 13 (19.1) | 13 (19.1) | ||
Other | 4 (5.8) | 7 (2.8) | 4 (5.9) | 3 (4.4) | ||
Time from initial diagnosis to 1L start | ||||||
Q1 | 1 (1.5) | 81 (32.8) | 1 (1.5) | 1 (1.5) | ||
Q2 | 6 (8.7) | 70 (28.3) | <0.0001 | 6 (8.8) | 6 (8.8) | 0.9870 |
Q3 | 23 (33.3) | 53 (21.5) | 23 (33.8) | 25 (36.8) | ||
Q4 | 39 (56.5) | 42 (17.0) | 38 (55.9) | 36 (52.9) | ||
Stage at initial diagnosis | ||||||
Stage I-IIIA | 3 (4.4) | 12 (4.9) | 3 (4.4) | 3 (4.4) | 1.000 | |
Stage IIIB-IV | 65 (94.2) | 235 (95.1) | 0.1641 | 65 (95.6) | 65 (95.6) | |
Unknown | 1 (1.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
ECOG Performance Status | ||||||
0/1 | 65 (94.2) | 240 (97.2) | 0.2352 | 64 (94.1) | 64 (94.1) | 1.000 |
2 | 4 (5.8) | 7 (2.8) | 4 (5.9) | 4 (5.9) | ||
Smoking Status, no | 48 (69.6) | 165 (66.8) | 0.6650 | 47 (69.1) | 45 (66.2) | 0.7139 |
Brain metastases, yes | 16 (23.2) | 77 (31.2) | 0.1981 | 16 (23.5) | 16 (23.5) | 1.0000 |
(n {%}) Unless Specified | Pre-Matched | Genetic Matching | ||||
---|---|---|---|---|---|---|
Selpercatinib Arm (n = 143) | Comparator Arm (n = 136) | p-Value | Selpercatinib Arm (n = 138) | Comparator Arm (n = 138) | p-Value | |
Age at index date, year | ||||||
Mean (SD) | 55.7 (15.2) | 53.8 (15.8) | 0.3091 | 55.5 (15.4) | 55.2 (13.1) | 0.8554 |
Sex | ||||||
Female | 60 (42.0) | 48 (35.3) | 0.2534 | 58 (42.0) | 54 (39.1) | 0.6239 |
Male | 83 (58.0) | 88 (64.7) | 80 (58.0) | 84 (60.9) | ||
Race | ||||||
White | 124 (86.7) | 123 (90.4) | 0.2886 | 120 (87.0) | 121 (87.7) | |
Black/African American | 2 (1.4) | 1 (0.7) | 2 (1.5) | 2 (1.5) | 0.9951 | |
Asian | 8 (5.6) | 2 (1.5) | 8 (5.8) | 7 (5.1) | ||
Other | 9 (6.3) | 10 (7.4) | 8 (5.8) | 8 (5.8) | ||
Time from initial diagnosis to 1L start | ||||||
Q1 | 27 (18.9) | 42 (30.9) | 26 (18.8) | 25 (18.1) | ||
Q2 | 32 (22.4) | 39 (28.7) | 0.0062 | 31 (22.5) | 32 (23.2) | 0.9961 |
Q3 | 37 (25.9) | 32 (23.5) | 36 (26.1) | 35 (25.4) | ||
Q4 | 47 (32.9) | 23 (16.9) | 45 (32.6) | 46 (33.3) | ||
Stage at initial diagnosis | ||||||
Stage I-IIIA | 5 (3.5) | 7 (5.2) | 5 (3.6) | 5 (3.6) | 1.000 | |
Stage IIIB-IV | 134 (93.7) | 126 (92.7) | 0.7607 | 133 (96.4) | 133 (96.4) | |
Unknown | 4 (2.8) | 3 (2.2) | ||||
ECOG performance status | ||||||
0/1 | 137 (95.8) | 126 (92.7) | 0.2569 | 132 (95.7) | 131 (94.9) | 0.7763 |
2 | 6 (4.2) | 10 (7.4) | 6 (4.4) | 7 (5.1) | ||
Smoking Status, no | 81 (56.6) | 86 (63.2) | 0.2053 | 78 (56.5) | 80 (58.0) | 0.8077 |
Brain metastases, yes | 3 (2.1) | 10 (7.4) | 0.0374 | 3 (2.2) | 2 (1.5) | 0.6518 |
(n {%}) Unless Specified | Pre-Matched | Genetic Matching | ||||
---|---|---|---|---|---|---|
Selpercatinib Arm (n = 24) | Comparator Arm (n = 41) | p-Value | Selpercatinib Arm (n = 22) | Comparator Arm (n = 22) | p-Value | |
Age at index date, year | ||||||
Mean (SD) | 57.7 (16.5) | 51.4 (20.2) | 0.1996 | 56.6 (16.6) | 56.1 (23.6) | 0.9331 |
Sex | ||||||
Female | 10 (41.7) | 23 (56.1) | 0.2614 | 9 (40.9) | 10 (45.5) | 0.7609 |
Male | 14 (58.3) | 18 (43.9) | 13 (59.1) | 12 (54.5) | ||
Race | ||||||
White | 18 (75.0) | 24 (58.5) | 0.0196 | 18 (81.8) | 20 (90.9) | |
Black/African American | 0 (0.0) | 3 (7.3) | 0 (0.0) | 0 (0.0) | 0.5754 | |
Asian | 1 (4.2) | 12 (29.3) | 1 (4.6) | 1 (4.6) | ||
Other | 5 (20.8) | 2 (4.9) | 3 (13.6) | 1 (4.6) | ||
Time from initial diagnosis to 1L start | ||||||
Q1 | 1 (4.2) | 15 (36.6) | 1 (4.6) | 1 (4.6) | ||
Q2 | 3 (12.5) | 14 (34.2) | 0.0003 | 3 (13.6) | 3 (13.6) | 0.9904 |
Q3 | 11 (45.8) | 5 (12.2) | 10 (45.5) | 9 (40.9) | ||
Q4 | 9 (37.5) | 7 (17.1) | 8 (36.4) | 9 (40.9) | ||
Stage at initial diagnosis | ||||||
Stage I-IIIA | 0 (0.0) | 3 (7.3) | 0 (0.0) | 0 (0.0) | ||
Stage IIIB-IV | 24 (100.0) | 36 (87.8) | 0.2049 | 22 (100.0) | 22 (100.0) | |
Unknown | 0 (0.0) | 2 (4.9) | 0 (0.0) | 0 (0.0) | ||
ECOG Performance Status | ||||||
0/1 | 23 (95.8) | 38 (92.7) | 0.6100 | 21 (95.4) | 19 (86.4) | 0.2943 |
2 | 1 (4.2) | 3 (7.3) | 1 (4.6) | 3 (13.6) | ||
Smoking Status, no | 13 (54.2) | 28 (68.3) | 0.1873 | 11 (50.0) | 12 (54.5) | 0.7628 |
Brain metastases, yes | 1 (4.2) | 12 (29.3) | 0.0146 | 1 (4.6) | 0 (0.0) | 0.3117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Braud, F.; Deschler-Baier, B.; Morris, J.C., III; Worden, F.; Han, Y.; Kiiskinen, U.; Jen, M.-H.; Barker, S.S.; Szymczak, S.; Gilligan, A.M. Comparative Effectiveness of First-Line Selpercatinib versus Standard Therapies in Patients with RET-Activated Cancers: An Exploratory Interpatient Analysis of LIBRETTO-001. Cancers 2024, 16, 140. https://doi.org/10.3390/cancers16010140
De Braud F, Deschler-Baier B, Morris JC III, Worden F, Han Y, Kiiskinen U, Jen M-H, Barker SS, Szymczak S, Gilligan AM. Comparative Effectiveness of First-Line Selpercatinib versus Standard Therapies in Patients with RET-Activated Cancers: An Exploratory Interpatient Analysis of LIBRETTO-001. Cancers. 2024; 16(1):140. https://doi.org/10.3390/cancers16010140
Chicago/Turabian StyleDe Braud, Filippo, Barbara Deschler-Baier, John C. Morris, III, Francis Worden, Yimei Han, Urpo Kiiskinen, Min-Hua Jen, Scott S. Barker, Sylwia Szymczak, and Adrienne M. Gilligan. 2024. "Comparative Effectiveness of First-Line Selpercatinib versus Standard Therapies in Patients with RET-Activated Cancers: An Exploratory Interpatient Analysis of LIBRETTO-001" Cancers 16, no. 1: 140. https://doi.org/10.3390/cancers16010140
APA StyleDe Braud, F., Deschler-Baier, B., Morris, J. C., III, Worden, F., Han, Y., Kiiskinen, U., Jen, M. -H., Barker, S. S., Szymczak, S., & Gilligan, A. M. (2024). Comparative Effectiveness of First-Line Selpercatinib versus Standard Therapies in Patients with RET-Activated Cancers: An Exploratory Interpatient Analysis of LIBRETTO-001. Cancers, 16(1), 140. https://doi.org/10.3390/cancers16010140