Integrating Imaging and Circulating Tumor DNA Features for Predicting Patient Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. ctDNA Detection Platforms and Biomarkers
2.3. Imaging Platforms and Quantitative Biomarkers
2.4. Response and Survival Endpoint
3. Results
3.1. Combined Imaging and ctDNA Biomarkers for Predicting Survival
3.2. Integrating Imaging and ctDNA Biomarkers in Predictive and Prognostic Models
3.3. Machine Learning Approaches to Discover Predictive and Prognostic Imaging and ctDNA Biomarkers
4. Limitations
5. Conclusions
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
18F | fluorine isotope 18 |
AR | androgen receptor |
BCA | breast cancer |
cfDNA | cell-free DNA |
CR | complete response |
CT | computed tomography |
ctDNA | circulating tumor DNA |
DCE | denaturing capillary electrophoresis |
ddPCR | digital droplet polymerase chain reaction |
DRFS | distant recurrence-free survival |
EGFR | epidermal growth factor receptor |
ER | estrogen receptor |
FCH | fluorocholine |
FDG | fluorodeoxyglucose |
FTV | functional tumor volume |
HGSOC | high-grade serous ovarian cancer |
IC | iodine concentration |
IU | iodine uptake |
LDH | lactate dehydrogenase |
MAF | mutant allele frequency |
mPCR | massively parallel polymerase chain reaction |
MRI | magnetic resonance imaging |
MTM | mean tumor molecules |
MTV | metabolic tumor volume |
NAC | neoadjuvant chemotherapy |
NGS | next-generation sequencing |
NSCLC | non-small cell lung cancer |
OS | overall survival |
pathCR | pathologic complete response |
PCR | polymerase chain reaction |
PD | progressive disease |
PET | positron emission tomography |
PET/CT | positron emission tomography/computed tomography |
PFS | progression-free survival |
PR | partial response |
ptDNA | plasma tumor DNA |
RECIST | Response Evaluation Criteria in Solid Tumors |
ROI | region of interest |
SD | stable disease |
SUV | standardized uptake value |
TLG | total lesion glycolysis |
VAF | variant allele frequency |
References
- Ballman, K.V. Biomarker: Predictive or Prognostic? J. Clin. Oncol. 2015, 33, 3968–3971. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Bathe, O.F. Response biomarkers: Re-envisioning the approach to tailoring drug therapy for cancer. BMC Cancer 2016, 16, 850. [Google Scholar] [CrossRef] [PubMed]
- Kerr, D.J.; Yang, L. Personalising cancer medicine with prognostic markers. EBioMedicine 2021, 72, 103577. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, P.J.; Gray, R.J.; Flaherty, K.T.; Chen, A.P.; Li, S.; Wang, V.; McShane, L.M.; Patton, D.R.; Tricoli, J.V.; Williams, P.M.; et al. The NCI-MATCH trial: Lessons for precision oncology. Nat. Med. 2023, 29, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Secerov Ermenc, A.; Segedin, B. The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers-Review of the Literature. Cancers 2023, 15, 2967. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.C.; Yeh, L.R.; Kuo, Y.T.; Chen, J.H. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark. Res. 2021, 9, 52. [Google Scholar] [CrossRef]
- Newitt, D.C.; Aliu, S.O.; Witcomb, N.; Sela, G.; Kornak, J.; Esserman, L.; Hylton, N.M. Real-Time Measurement of Functional Tumor Volume by MRI to Assess Treatment Response in Breast Cancer Neoadjuvant Clinical Trials: Validation of the Aegis SER Software Platform. Transl. Oncol. 2014, 7, 94–100. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.P.; Aboagye, E.O.; Adams, J.E.; Aerts, H.J.; Barrington, S.F.; Beer, A.J.; Boellaard, R.; Bohndiek, S.E.; Brady, M.; Brown, G.; et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 2017, 14, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Hylton, N.M.; Blume, J.D.; Bernreuter, W.K.; Pisano, E.D.; Rosen, M.A.; Morris, E.A.; Weatherall, P.T.; Lehman, C.D.; Newstead, G.M.; Polin, S.; et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy–results from ACRIN 6657/I-SPY TRIAL. Radiology 2012, 263, 663–672. [Google Scholar] [CrossRef]
- Hylton, N.M.; Gatsonis, C.A.; Rosen, M.A.; Lehman, C.D.; Newitt, D.C.; Partridge, S.C.; Bernreuter, W.K.; Pisano, E.D.; Morris, E.A.; Weatherall, P.T.; et al. Neoadjuvant Chemotherapy for Breast Cancer: Functional Tumor Volume by MR Imaging Predicts Recurrence-free Survival-Results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology 2016, 279, 44–55. [Google Scholar] [CrossRef]
- Santini, D.; Danti, G.; Bicci, E.; Galluzzo, A.; Bettarini, S.; Busoni, S.; Innocenti, T.; Galli, A.; Miele, V. Radiomic Features Are Predictive of Response in Rectal Cancer Undergoing Therapy. Diagnostics 2023, 13, 2573. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, P.; Goodarzi, H.; Srovnal, J.; Hajduch, M.; van ’t Veer, L.J.; Magbanua, M.J.M. Circulating tumor nucleic acids: Biology, release mechanisms, and clinical relevance. Mol. Cancer 2023, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, L.S.; Heringer, M.; Ferrer, V.P. ctDNA as a cancer biomarker: A broad overview. Crit. Rev. Oncol. Hematol. 2020, 155, 103109. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.A.; Huang, H.J.; Piha-Paul, S.A.; Call, S.G.; Karp, D.D.; Fu, S.; Naing, A.; Subbiah, V.; Pant, S.; Dustin, D.J.; et al. Longitudinal Monitoring of Circulating Tumor DNA to Predict Treatment Outcomes in Advanced Cancers. JCO Precis. Oncol. 2022, 6, e2100512. [Google Scholar] [CrossRef] [PubMed]
- Filis, P.; Kyrochristos, I.; Korakaki, E.; Baltagiannis, E.G.; Thanos, D.; Roukos, D.H. Longitudinal ctDNA profiling in precision oncology and immunomicron-oncology. Drug Discov. Today 2023, 28, 103540. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Le, N.N.; Onishi, N.; Newitt, D.C.; Wilmes, L.J.; Gibbs, J.E.; Carmona-Bozo, J.; Liang, J.; Partridge, S.C.; Price, E.R.; et al. Diffusion-Weighted MRI for Predicting Pathologic Complete Response in Neoadjuvant Immunotherapy. Cancers 2022, 14, 4436. [Google Scholar] [CrossRef] [PubMed]
- Krebs, M.G.; Malapelle, U.; Andre, F.; Paz-Ares, L.; Schuler, M.; Thomas, D.M.; Vainer, G.; Yoshino, T.; Rolfo, C. Practical Considerations for the Use of Circulating Tumor DNA in the Treatment of Patients with Cancer: A Narrative Review. JAMA Oncol. 2022, 8, 1830–1839. [Google Scholar] [CrossRef] [PubMed]
- Magbanua, M.J.M.; Gumusay, O.; Kurzrock, R.; van ’t Veer, L.J.; Rugo, H.S. Immunotherapy in Breast Cancer and the Potential Role of Liquid Biopsy. Front. Oncol. 2022, 12, 802579. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, L.S.; Zhong, J.; Venkatesulu, B.; Kaur, H.; Bhide, S.; Minsky, B.; Chu, W.; Intven, M.; van der Heide, U.A.; van Triest, B.; et al. Imaging predictors of treatment outcomes in rectal cancer: An overview. Crit. Rev. Oncol. Hematol. 2018, 129, 153–162. [Google Scholar] [CrossRef]
- Cecil, K.; Huppert, L.; Mukhtar, R.; Dibble, E.H.; O’Brien, S.R.; Ulaner, G.A.; Lawhn-Heath, C. Metabolic Positron Emission Tomography in Breast Cancer. PET Clin. 2023, 18, 473–485. [Google Scholar] [CrossRef]
- Kwon, H.W.; Becker, A.K.; Goo, J.M.; Cheon, G.J. FDG Whole-Body PET/MRI in Oncology: A Systematic Review. Nucl. Med. Mol. Imaging 2017, 51, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Kinahan, P.E.; Perlman, E.S.; Sunderland, J.J.; Subramaniam, R.; Wollenweber, S.D.; Turkington, T.G.; Lodge, M.A.; Boellaard, R.; Obuchowski, N.A.; Wahl, R.L. The QIBA Profile for FDG PET/CT as an Imaging Biomarker Measuring Response to Cancer Therapy. Radiology 2020, 294, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Hatt, M.; Cheze Le Rest, C.; Albarghach, N.; Pradier, O.; Visvikis, D. PET functional volume delineation: A robustness and repeatability study. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Lodge, M.A. Repeatability of SUV in Oncologic (18)F-FDG PET. J. Nucl. Med. 2017, 58, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, I.; Sarikaya, A. Assessing PET Parameters in Oncologic (18)F-FDG Studies. J. Nucl. Med. Technol. 2020, 48, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Prowell, T.M.; Pazdur, R. Pathological complete response and accelerated drug approval in early breast cancer. N. Engl. J. Med. 2012, 366, 2438–2441. [Google Scholar] [CrossRef] [PubMed]
- Consortium, I.S.T.; Yee, D.; DeMichele, A.M.; Yau, C.; Isaacs, C.; Symmans, W.F.; Albain, K.S.; Chen, Y.Y.; Krings, G.; Wei, S.; et al. Association of Event-Free and Distant Recurrence-Free Survival with Individual-Level Pathologic Complete Response in Neoadjuvant Treatment of Stages 2 and 3 Breast Cancer: Three-Year Follow-up Analysis for the I-SPY2 Adaptively Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.; Reynolds, K.L.; Smith, B.L.; Alexander, B.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef] [PubMed]
- Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 2000, 92, 205–216. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Aykan, N.F.; Ozatli, T. Objective response rate assessment in oncology: Current situation and future expectations. World J. Clin. Oncol. 2020, 11, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Cheema, P.K.; Burkes, R.L. Overall survival should be the primary endpoint in clinical trials for advanced non-small-cell lung cancer. Curr. Oncol. 2013, 20, e150–e160. [Google Scholar] [CrossRef] [PubMed]
- Kovic, B.; Jin, X.; Kennedy, S.A.; Hylands, M.; Pedziwiatr, M.; Kuriyama, A.; Gomaa, H.; Lee, Y.; Katsura, M.; Tada, M.; et al. Evaluating Progression-Free Survival as a Surrogate Outcome for Health-Related Quality of Life in Oncology: A Systematic Review and Quantitative Analysis. JAMA Intern. Med. 2018, 178, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Crispin-Ortuzar, M.; Woitek, R.; Reinius, M.A.V.; Moore, E.; Beer, L.; Bura, V.; Rundo, L.; McCague, C.; Ursprung, S.; Escudero Sanchez, L.; et al. Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer. Nat. Commun. 2023, 14, 6756. [Google Scholar] [CrossRef] [PubMed]
- Magbanua, M.J.M.; Li, W.; Wolf, D.M.; Yau, C.; Hirst, G.L.; Swigart, L.B.; Newitt, D.C.; Gibbs, J.; Delson, A.L.; Kalashnikova, E.; et al. Circulating tumor DNA and magnetic resonance imaging to predict neoadjuvant chemotherapy response and recurrence risk. NPJ Breast Cancer 2021, 7, 32. [Google Scholar] [CrossRef]
- Yousefi, B.; LaRiviere, M.J.; Cohen, E.A.; Buckingham, T.H.; Yee, S.S.; Black, T.A.; Chien, A.L.; Noel, P.; Hwang, W.T.; Katz, S.I.; et al. Combining radiomic phenotypes of non-small cell lung cancer with liquid biopsy data may improve prediction of response to EGFR inhibitors. Sci. Rep. 2021, 11, 9984. [Google Scholar] [CrossRef] [PubMed]
- Fiala, O.; Baxa, J.; Svaton, M.; Benesova, L.; Ptackova, R.; Halkova, T.; Minarik, M.; Hosek, P.; Buresova, M.; Finek, J.; et al. Combination of Circulating Tumour DNA and (18)F-FDG PET/CT for Precision Monitoring of Therapy Response in Patients with Advanced Non-small Cell Lung Cancer: A Prospective Study. Cancer Genom. Proteom. 2022, 19, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Gombos, A.; Venet, D.; Ameye, L.; Vuylsteke, P.; Neven, P.; Richard, V.; Duhoux, F.P.; Laes, J.F.; Rothe, F.; Sotiriou, C.; et al. FDG positron emission tomography imaging and ctDNA detection as an early dynamic biomarker of everolimus efficacy in advanced luminal breast cancer. NPJ Breast Cancer 2021, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- Ottestad, A.L.; Johansen, H.; Halvorsen, T.O.; Dai, H.Y.; Wahl, S.G.F.; Emdal, E.F.; Gronberg, B.H. Associations between detectable circulating tumor DNA and tumor glucose uptake measured by (18)F-FDG PET/CT in early-stage non-small cell lung cancer. BMC Cancer 2023, 23, 646. [Google Scholar] [CrossRef]
- Conteduca, V.; Scarpi, E.; Caroli, P.; Lolli, C.; Gurioli, G.; Brighi, N.; Poti, G.; Farolfi, A.; Altavilla, A.; Schepisi, G.; et al. Combining liquid biopsy and functional imaging analysis in metastatic castration-resistant prostate cancer helps predict treatment outcome. Mol. Oncol. 2022, 16, 538–548. [Google Scholar] [CrossRef]
- Ottestad, A.L.; Dai, H.Y.; Halvorsen, T.O.; Emdal, E.F.; Wahl, S.G.F.; Gronberg, B.H. Associations between tumor mutations in cfDNA and survival in non-small cell lung cancer. Cancer Treat. Res. Commun. 2021, 29, 100471. [Google Scholar] [CrossRef] [PubMed]
- Ottestad, A.L.; Wahl, S.G.F.; Gronberg, B.H.; Skorpen, F.; Dai, H.Y. The relevance of tumor mutation profiling in interpretation of NGS data from cell-free DNA in non-small cell lung cancer patients. Exp. Mol. Pathol. 2020, 112, 104347. [Google Scholar] [CrossRef] [PubMed]
- Wahl, S.G.F.; Dai, H.Y.; Emdal, E.F.; Ottestad, A.L.; Dale, V.G.; Richardsen, E.; Halvorsen, T.O.; Gronberg, B.H. Prognostic value of absolute quantification of mutated KRAS in circulating tumour DNA in lung adenocarcinoma patients prior to therapy. J. Pathol. Clin. Res. 2021, 7, 209–219. [Google Scholar] [CrossRef]
- Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef]
- Peng, Y.; Mei, W.; Ma, K.; Zeng, C. Circulating Tumor DNA and Minimal Residual Disease (MRD) in Solid Tumors: Current Horizons and Future Perspectives. Front. Oncol. 2021, 11, 763790. [Google Scholar] [CrossRef] [PubMed]
- Magbanua, M.J.M.; Brown Swigart, L.; Ahmed, Z.; Sayaman, R.W.; Renner, D.; Kalashnikova, E.; Hirst, G.L.; Yau, C.; Wolf, D.M.; Li, W.; et al. Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy. Cancer Cell 2023, 41, 1091–1102.e4. [Google Scholar] [CrossRef] [PubMed]
- Magbanua, M.J.M.; Swigart, L.B.; Wu, H.T.; Hirst, G.L.; Yau, C.; Wolf, D.M.; Tin, A.; Salari, R.; Shchegrova, S.; Pawar, H.; et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann. Oncol. 2021, 32, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Gydush, G.; Nguyen, E.; Bae, J.H.; Blewett, T.; Rhoades, J.; Reed, S.C.; Shea, D.; Xiong, K.; Liu, R.; Yu, F.; et al. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nat. Biomed. Eng. 2022, 6, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.M.; Yau, C.; Wulfkuhle, J.; Brown-Swigart, L.; Gallagher, R.I.; Lee, P.R.E.; Zhu, Z.; Magbanua, M.J.; Sayaman, R.; O’Grady, N.; et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell 2022, 40, 609–623.e6. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.I.; Wulfkuhle, J.; Wolf, D.M.; Brown-Swigart, L.; Yau, C.; O’Grady, N.; Basu, A.; Lu, R.; Campbell, M.J.; Magbanua, M.J.; et al. Protein signaling and drug target activation signatures to guide therapy prioritization: Therapeutic resistance and sensitivity in the I-SPY 2 Trial. Cell Rep. Med. 2023, 4, 101312. [Google Scholar] [CrossRef]
Cancer Type | Cancer Stage | Treatment | No. of Patients | Ref. |
---|---|---|---|---|
NSCLC | Stage IV | EGFR-targeted therapy | 40 | [36] |
NSCLC | Stage I–III | Surgery, curative radiotherapy +/− chemotherapy, palliative therapy | 63 | [39] |
BCA (luminal or ER-positive) | Stage IV | Aromatase and mTOR inhibitors | 47 | [38] |
NSCLC | Stage III–IV | Chemotherapy | 84 | [37] |
BCA | Stage II–III | NAC | 84 | [35] |
PCA | Stage IV (castration-resistant) | AR signaling inhibitors | 68 training set | [40] |
34 test set | ||||
HGSOC | Stage III–IV | NAC | 72 training set | [34] |
20 test set | ||||
42 validation set |
Imaging Modality | Imaging Features | ctDNA Assay | ctDNA Feature | Prediction Target | Statistical Model * | Ref. |
---|---|---|---|---|---|---|
CT | 429 imaging (radiomic) features | NGS | Number of mutations | PFS, OS | Cox regression | [36] |
18F-FDG PET/CT | SUVmax, MTV, TLG | Tumor-informed ddPCR or NGS | ctDNA+/−, VAF | PFS, OS | Cox regression | [39] |
18F-FDG PET/CT | SUVmax | NGS | ctDNA+/− | PFS | Cox regression | [38] |
18F-FDG PET/CT | SUV, MTV, TLG, IU, IC | PCR/DCE heteroduplex method | VAF | PFS, OS | Cox regression | [37] |
MRI | FTV | Tumor-informed mPCR + NGS (Signatera) | ctDNA+/−, MTM/mL | pathCR, DRFS | Logistic regression, Cox regression | [35] |
18F-FCH PET/CT | SUVmax, MTV, TLG | NGS | ctDNA fraction | PFS, OS | Cox regression, Weibull multiple regression | [40] |
CT | Volume, number of lesions, disease distribution, lesion shape, texture, heterogeneity, peripheric context | NGS | TP53 VAF | Tumor volumetric response | Ensemble machine learning | [34] |
Response Endpoint | Predictive Model | Survival Endpoint | Prognostic Model | Findings * | Ref. |
---|---|---|---|---|---|
n.a. | n.a. | PFS, OS | PFS, OS ~ clinical + ctDNA + imaging phenotype | 1 | [36] |
n.a. | n.a. | PFS, OS | PFS, OS ~ ctDNA + MTV PFS, OS ~ ctDNA + TLG | 2 | [39] |
RECIST | n.a. | PFS | PFS ~ ΔSUVmax + ctDNA (day 14) | 3 | [38] |
RECIST | CR + PR < SD < PD ~ ∆SUVmax (%) + Follow-up ctDNA | PFS, OS | PFS ~ ΔSUVmax + follow-up ctDNA | 4 | [37] |
pathCR | pathCR ~ FTV + ctDNA | DRFS | DRFS ~ ctDNA + FTV (+ pathCR + subtype) | 5 | [35] |
RECIST | n.a. | PFS, OS | PFS, OS ~ MTV + ctDNA + visceral metastasis + serum LDH | 6 | [40] |
RECIST | Tumor volume ~ clinical + CA-125 + imaging + ctDNA | n.a. | n.a. | 7 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magbanua, M.J.M.; Li, W.; van ’t Veer, L.J. Integrating Imaging and Circulating Tumor DNA Features for Predicting Patient Outcomes. Cancers 2024, 16, 1879. https://doi.org/10.3390/cancers16101879
Magbanua MJM, Li W, van ’t Veer LJ. Integrating Imaging and Circulating Tumor DNA Features for Predicting Patient Outcomes. Cancers. 2024; 16(10):1879. https://doi.org/10.3390/cancers16101879
Chicago/Turabian StyleMagbanua, Mark Jesus M., Wen Li, and Laura J. van ’t Veer. 2024. "Integrating Imaging and Circulating Tumor DNA Features for Predicting Patient Outcomes" Cancers 16, no. 10: 1879. https://doi.org/10.3390/cancers16101879
APA StyleMagbanua, M. J. M., Li, W., & van ’t Veer, L. J. (2024). Integrating Imaging and Circulating Tumor DNA Features for Predicting Patient Outcomes. Cancers, 16(10), 1879. https://doi.org/10.3390/cancers16101879