Safety and Efficacy of High-Dose Chemotherapy with TreoMel 200 vs. TreoMel 140 in Acute Myeloid Leukemia Patients Undergoing Autologous Stem Cell Transplantation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Clinical Procedures
2.3. Study Endpoints and Data Collection
2.4. Statistical Analyses
3. Results
3.1. Patient Basal Characteristics
3.2. Adverse Events during Hospitalization Post HDCT
3.3. Hematologic Recovery and Clinical Outcomes
3.4. Progression-Free and Overall Survival
3.5. Univariate and Multivariate Cox Proportional-Hazard Models for Relapse and Mortality
3.6. Treosulfan Plasma Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acute Myeloid Leukemia—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 12 October 2023).
- Stubbins, R.J.; Francis, A.; Kuchenbauer, F.; Sanford, D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 6245–6259. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; Di Nardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, T.; Ganzel, C.; Tallman, M.S.; Rowe, J.M. How I Treat Hematologic Emergencies in Adults with Acute Leukemia. Blood 2012, 120, 1993–2002. [Google Scholar] [CrossRef] [PubMed]
- Vakiti, A.; Mewawalla, P. Acute Myeloid Leukemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kayser, S.; Levis, M.J. The Clinical Impact of the Molecular Landscape of Acute Myeloid Leukemia. Haematologica 2023, 108, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Liersch, R.; Müller-Tidow, C.; Berdel, W.E.; Krug, U. Prognostic Factors for Acute Myeloid Leukaemia in Adults—Biological Significance and Clinical Use. Br. J. Haematol. 2014, 165, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Blaise, D. Hematopoietic Stem Cell Transplantation for Patients with AML in First Complete Remission. Blood 2016, 127, 62–70. [Google Scholar] [CrossRef]
- De Benito, A.D.S.; Jeker, B.; Gfeller, E.; Porret, N.; Banz, Y.; Novak, U.; Bacher, U.; Pabst, T. Molecular Minimal Residual Disease Negativity and Decreased Stem Cell Mobilization Potential Predict Excellent Outcome after Autologous Transplant in NPM1 Mutant Acute Myeloid Leukemia. Haematologica 2020, 105, e9–e12. [Google Scholar] [CrossRef]
- Zittoun, R.A.; Mandelli, F.; Willemze, R.; de Witte, T.; Labar, B.; Resegotti, L.; Leoni, F.; Damasio, E.; Visani, G.; Papa, G. Autologous or Allogeneic Bone Marrow Transplantation Compared with Intensive Chemotherapy in Acute Myelogenous Leukemia. N. Engl. J. Med. 1995, 332, 217–223. [Google Scholar] [CrossRef]
- Vellenga, E.; van Putten, W.; Ossenkoppele, G.J.; Verdonck, L.F.; Theobald, M.; Cornelissen, J.J.; Huijgens, P.C.; Maertens, J.; Gratwohl, A.; Schaafsma, R.; et al. Autologous Peripheral Blood Stem Cell Transplantation for Acute Myeloid Leukemia. Blood 2011, 118, 6037–6042. [Google Scholar] [CrossRef] [PubMed]
- Passweg, J.R.; Labopin, M.; Christopeit, M.; Cornelissen, J.; Pabst, T.; Socié, G.; Russel, N.; Yakoub-Agha, I.; Blaise, D.; Gedde-Dahl, T.; et al. Postremission Consolidation by Autologous Hematopoietic Cell Transplantation (HCT) for Acute Myeloid Leukemia in First Complete Remission (CR) and Negative Implications for Subsequent Allogeneic HCT in Second CR: A Study by the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Biol. Blood Marrow Transplant. 2020, 26, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, E.; Hayoz, M.; Aebi, Y.; Largiadèr, C.R.; Mansouri Taleghani, B.; Bacher, U.; Pabst, T. Comparison of Melphalan Combined with Treosulfan or Busulfan as High-Dose Chemotherapy before Autologous Stem Cell Transplantation in AML. Cancers 2022, 14, 1024. [Google Scholar] [CrossRef] [PubMed]
- Scheulen, M.E.; Hilger, R.A.; Oberhoff, C.; Casper, J.; Freund, M.; Josten, K.M.; Bornhäuser, M.; Ehninger, G.; Berdel, W.E.; Baumgart, J.; et al. Clinical Phase I Dose Escalation and Pharmacokinetic Study of High-Dose Chemotherapy with Treosulfan and Autologous Peripheral Blood Stem Cell Transplantation in Patients with Advanced Malignancies1. Clin. Cancer Res. 2000, 6, 4209–4216. [Google Scholar] [PubMed]
- Betticher, C.; Bacher, U.; Legros, M.; Zimmerli, S.; Banz, Y.; Mansouri Taleghani, B.; Pabst, T. Prophylactic Corticosteroid Use Prevents Engraftment Syndrome in Patients after Autologous Stem Cell Transplantation. Hematol. Oncol. 2021, 39, 97–104. [Google Scholar] [CrossRef]
- van der Stoep, M.Y.E.C.; Bertaina, A.; Ten Brink, M.H.; Bredius, R.G.; Smiers, F.J.; Wanders, D.C.M.; Moes, D.J.A.R.; Locatelli, F.; Guchelaar, H.-J.; Zwaveling, J.; et al. High Interpatient Variability of Treosulfan Exposure Is Associated with Early Toxicity in Paediatric HSCT: A Prospective Multicentre Study. Br. J. Haematol. 2017, 179, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Romański, M.; Główka, F. Clinical Bioanalysis of Treosulfan and Its Epoxides: The Importance of Collected Blood Processing for Valid Pharmacokinetic Results. J. Pharm. Biomed. Anal. 2018, 153, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Sula, M.; Bacher, U.; Oppliger Leibundgut, E.; Mansouri Taleghani, B.; Novak, U.; Pabst, T. Excellent Outcome after Consolidation with Autologous Transplantation in Patients with Core Binding Factor Acute Myeloid Leukemia. Bone Marrow Transplant. 2020, 55, 1690–1693. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, S.; Miyawaki, S.; Yamaguchi, T.; Kanamori, H.; Sakura, T.; Moriuchi, Y.; Sano, F.; Kobayashi, T.; Yasumoto, A.; Hatanaka, K.; et al. Prognosis of Patients with Core Binding Factor Acute Myeloid Leukemia after First Relapse. Haematologica 2013, 98, 1525–1531. [Google Scholar] [CrossRef]
- Rees, M.J.; Spencer, A.; Browett, P.; Alvaro, F.; Purtill, D.; Crawford, J.; Milliken, S.; Lai, H.; Pullon, H.; Grigg, A. High Rate of Durable Remissions Post Autologous Stem Cell Transplantation for Core-Binding Factor Acute Myeloid Leukaemia in Second Complete Remission. Bone Marrow Transplant. 2020, 55, 2207–2210. [Google Scholar] [CrossRef]
- von Grünigen, I.; Raschle, J.; Rüsges-Wolter, I.; Taleghani, B.M.; Mueller, B.U.; Pabst, T. The Relapse Risk of AML Patients Undergoing Autologous Transplantation Correlates with the Stem Cell Mobilizing Potential. Leuk. Res. 2012, 36, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Carral, A.; de la Rubia, J.; Martín, G.; Mollá, S.; Martínez, J.; Sanz, G.F.; Soler, M.A.; Jarque, I.; Jiménez, C.; Sanz, M.A. Factors Influencing the Collection of Peripheral Blood Stem Cells in Patients with Acute Myeloblastic Leukemia and Non-Myeloid Malignancies. Leuk. Res. 2003, 27, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Gillich, C.; Akhoundova, D.; Hayoz, M.; Aebi, Y.; Largiadèr, C.R.; Seipel, K.; Daskalakis, M.; Bacher, U.; Pabst, T. Efficacy and Safety of High-Dose Chemotherapy with Treosulfan and Melphalan in Multiple Myeloma. Cancers 2023, 15, 2699. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, E.; Panetta, J.C.; Lakshmi, K.M.; Edison, E.S.; Korula, A.; Na, F.; Abraham, A.; Viswabandya, A.; George, B.; Mathews, V.; et al. Pharmacokinetics and Pharmacodynamics of Treosulfan in Patients with Thalassemia Major Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Pharmacol. Ther. 2018, 104, 575–583. [Google Scholar] [CrossRef]
- Romański, M.; Teżyk, A.; Żaba, C.; Główka, F.K. Rapid and Sensitive Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of Protein-Free pro-Drug Treosulfan and Its Biologically Active Monoepoxy-Transformer in Plasma and Brain Tissue. Talanta 2014, 127, 123–132. [Google Scholar] [CrossRef]
- Kharfan-Dabaja, M.A.; Labopin, M.; Bazarbachi, A.; Socie, G.; Kroeger, N.; Blaise, D.; Veelken, H.; Bermudez, A.; Or, R.; Lioure, B.; et al. Higher Busulfan Dose Intensity Appears to Improve Leukemia-Free and Overall Survival in AML Allografted in CR2: An Analysis from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Leuk. Res. 2015, 39, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Gorin, N.-C.; Labopin, M.; Czerw, T.; Pabst, T.; Blaise, D.; Dumas, P.-Y.; Nemet, D.; Arcese, W.; Trisolini, S.M.; Wu, D.; et al. Autologous Stem Cell Transplantation for Adult Acute Myelocytic Leukemia in First Remission—Better Outcomes after Busulfan and Melphalan Compared with Busulfan and Cyclophosphamide: A Retrospective Study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Cancer 2017, 123, 824–831. [Google Scholar] [CrossRef]
- Gorin, N.C.; Labopin, M.; Blaise, D.; Dumas, P.-Y.; Pabst, T.; Trisolini, S.M.; Arcese, W.; Houhou, M.; Mohty, M.; Nagler, A. Optimizing the Pretransplant Regimen for Autologous Stem Cell Transplantation in Acute Myelogenous Leukemia: Better Outcomes with Busulfan and Melphalan Compared with Busulfan and Cyclophosphamide in High Risk Patients Autografted in First Complete Remission: A Study from the Acute Leukemia Working Party of the EBMT. Am. J. Hematol. 2018, 93, 859–866. [Google Scholar] [CrossRef]
- Jani, P.; Lee, D.J.; Tayshetye, P.; Berteotti, G.; Shah, S.; Tang, A.; Koget, A.; Mewawalla, P.; Sadashiv, S.; Khan, C.; et al. Fludarabine, Busulfan and TBI Based Conditioning for Autologous and Allogeneic HCT for T-Cell Malignancy. Biol. Blood Marrow Transplant. 2018, 24, S177–S178. [Google Scholar] [CrossRef]
- Visani, G.; Malagola, M.; Guiducci, B.; Lucesole, M.; Loscocco, F.; Gabucci, E.; Paolini, S.; Piccaluga, P.P.; Isidori, A. Conditioning Regimens in Acute Myeloid Leukemia. Expert. Rev. Hematol. 2014, 7, 465–479. [Google Scholar] [CrossRef]
- Frietsch, J.J.; Miethke, J.; Linke, P.; Crodel, C.C.; Schnetzke, U.; Scholl, S.; Hochhaus, A.; Hilgendorf, I. Treosulfan plus Fludarabine versus TEAM as Conditioning Treatment before Autologous Stem Cell Transplantation for B-Cell Non-Hodgkin Lymphoma. Bone Marrow Transplant. 2022, 57, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Romański, M.; Kasprzyk, A.; Teżyk, A.; Widerowska, A.; Żaba, C.; Główka, F. Determination of Prodrug Treosulfan and Its Biologically Active Monoepoxide in Rat Plasma, Liver, Lungs, Kidneys, Muscle, and Brain by HPLC-ESI-MS/MS Method. J. Pharm. Biomed. Anal. 2017, 140, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Romański, M.; Kasprzyk, A.; Karbownik, A.; Szałek, E.; Główka, F.K. Formation Rate–Limited Pharmacokinetics of Biologically Active Epoxy Transformers of Prodrug Treosulfan. J. Pharm. Sci. 2016, 105, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Romański, M.; Kasprzyk, A.; Walczak, M.; Ziółkowska, A.; Główka, F. Disposition of Treosulfan and Its Active Monoepoxide in a Bone Marrow, Liver, Lungs, Brain, and Muscle: Studies in a Rat Model with Clinical Relevance. Eur. J. Pharm. Sci. 2017, 109, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Romański, M.; Wachowiak, J.; Główka, F.K. Treosulfan Pharmacokinetics and Its Variability in Pediatric and Adult Patients Undergoing Conditioning Prior to Hematopoietic Stem Cell Transplantation: Current State of the Art, In-Depth Analysis, and Perspectives. Clin. Pharmacokinet. 2018, 57, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Saraceni, F.; Labopin, M.; Raiola, A.M.; Blaise, D.; Reményi, P.; Sorà, F.; Pavlu, J.; Bramanti, S.; Busca, A.; Berceanu, A.; et al. Thiotepa-Busulfan-Fludarabine Compared to Treosulfan-Based Conditioning for Haploidentical Transplant With Posttransplant Cyclophosphamide in Patients with Acute Myeloid Leukemia in Remission: A Study From the Acute Leukemia Working Party of the EBMT. Hemasphere 2023, 7, e952. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, G.; Dayyani, F.; Jahrsdörfer, B.; Baumgart, J.; Emmerich, B.; Schmidmaier, R. Treosulfan Is an Effective Inducer of Cell Death in Myeloma Cell Lines and Primary Myeloma Cells from Patients. Br. J. Haematol. 2003, 122, 892–899. [Google Scholar] [CrossRef]
- Galaup, A.; Paci, A. Pharmacology of Dimethanesulfonate Alkylating Agents: Busulfan and Treosulfan. Expert. Opin. Drug Metab. Toxicol. 2013, 9, 333–347. [Google Scholar] [CrossRef]
Characteristics | TreoMel 200 (n = 20) | TreoMel 140 (n = 31) | All Patients (n = 51) | p-Value |
---|---|---|---|---|
Mean age at diagnosis, years (range) | 51.25 (17–74) | 55.95 (33–73) | 54.10 (17–74) | 0.226 |
Males/females (ratio) | 8/12 (0.67) | 22/9 (2.44) | 30/21 (1.43) | 0.042 |
ELN risk classification favorable, n (%) | 11 (55) | 10 (32) | 21 (41) | 0.187 |
ELN risk classification intermediate, n (%) | 9 (45) | 12 (39) | 21 (41) | 0.877 |
ELN risk classification adverse, n (%) | 0 (0) | 9 (29) | 9 (18) | 0.008 |
Most common molecular genetic abnormalities * | ||||
NPM1mut, n (%) | 13 (65) | 15 (48) | 28 (55) | 0.381 |
FLT3-ITD/TKD, n (%) | 4 (20) | 12 (39) | 16 (31) | 0.221 |
IDH1mut, n (%) | 1 (5) | 4 (13) | 5 (10) | 0.636 |
IDH2mut, n (%) | 4 (20) | 9 (29) | 13 (25) | 0.529 |
RUNX1-RUNX1T1, n (%) | 1 (5) | 2 (6) | 3 (6) | >0.9999 |
CBFB-MYH11, n (%) | 1 (5) | 2 (6) | 3 (6) | >0.9999 |
Mean Peripheral Blood Parameters | ||||
WBC, G/L (±SD) | 42.67 (±45.45) | 43.64 (±71.31) | 43.26 (±61.94) | 0.321 |
Platelets, G/L (±SD) | 75.90 (±44.59) | 86.49 (±56.34) | 82.34 (±51.84) | 0.482 |
Hemoglobin, g/L (±SD) | 87.85 (±21.23) | 92.58 (±21.16) | 90.73 (±21.10) | 0.440 |
Peripheral blasts, % (±SD) | 42.29 (±36.54) | 43.82 (±29.81) | 43.76 (±32.26) | 0.875 |
BM blasts, % (±SD) | 74.25 (±20.66) | 73.95 (±24.31) | 74.07 (±22.74) | 0.768 |
LDH, U/L (±SD) | 646.35 (±519.36) | 940.48 (±936.15) | 825.14 (±805.83) | 0.276 |
Toxicity, n (%) | TreoMel 200 (n = 20) | TreoMel 140 (n = 31) | All Patients (n = 51) | p-Value |
---|---|---|---|---|
Febrile episode | 20 (100.0) | 30 (96.8) | 50 (98.0) | >0.9999 |
Infection | 14 (73.7) | 25 (83.3) | 39 (79.6) | 0.502 |
Diarrhea | 20 (100.0) | 28 (90.3) | 48 (94.1) | 0.271 |
Grade 1 | 8 (40.0) | 18 (64.3) | 26 (51.0) | 0.258 |
Grade 2 | 5 (25.0) | 6 (21.4) | 11 (21.6) | 0.733 |
Grade 3 | 7 (35.0) | 3 (10.7) | 10 (19.6) | 0.036 |
Grade 4 | 0 (0.0) | 1 (3.6) | 1 (2.0) | >0.9999 |
Grade 5 | 0 (0.0) | 0 (0.0) | 0 (0.0) | >0.9999 |
Nausea | 18 (90.0) | 25 (80.7) | 43 (84.3) | 0.456 |
Mucositis | 12 (60.0) | 14 (45.2) | 26 (51.0) | 0.393 |
Headache | 5 (25.0) | 7 (22.6) | 12 (23.5) | >0.9999 |
Thrush | 4 (20.0) | 4 (12.9) | 8 (15.7) | 0.696 |
Epileptic seizure | 0 (0.0) | 0 (0.0) | 0 (0.0) | >0.9999 |
Fatigue | 20 (100.0) | 28 (90.3) | 48 (94.1) | 0.271 |
Parameters | TreoMel 200 (n = 20) | TreoMel 140 (n = 31) | All Patients (n = 51) | p-Value |
---|---|---|---|---|
Median follow up, months (range) | 8.90 (1–19) | 23.27 (0.5–45) | 17.64 (0.5–45) | <0.0001 |
Median time from diagnosis to ASCT, days (range) | 122.60 (84–223) | 123.19 (87–205) | 122.96 (84–223) | 0.550 |
Median CD34+ cells at ASCT, n × 106 /kg b.w. (range) | 4.23 (2.18–11.04) | 3.81 (0.96–10.84) | 3.98 (0.96–11.04) | 0.867 |
Median time to neutrophil recovery, days (range) | 12.45 (9–19) | 15.20 (10–36) | 14.10 (10–36) | 0.084 |
Median time to platelet recovery, days (range) | 15.95 (6–52) | 19.19 (8–66) | 17.92 (6–66) | 0.428 |
Median hospitalization duration, days (range) | 25.55 (19–39) | 23.40 (17–59) | 24.26 (17–59) | 0.130 |
Relapse, n (%) | 6 (30.00) | 14 (45.16) | 20 (39.22) | 0.381 |
Median interval to relapse, months (range) | 6.17 (3–11) | 6.07 (2–19) | 6.10 (2–19) | 0.709 |
Deaths, n (%) | 3 (15.00) | 13 (41.94) | 16 (31.37) | 0.064 |
Median time to death, months (range) | 7.33 (1–14) | 10.88 (0.5–25) | 10.22 (0.5–25) | 0.465 |
Parameters | Univ. HR | 95% Cl | p-Value | Mult. HR * | 95% Cl | p-Value |
---|---|---|---|---|---|---|
Melphalan 200 mg/m2 | 0.93 | [0.35; 2.45] | 0.88 | 0.68 | [0.21; 2.19] | 0.52 |
Age [per year] | 0.99 | [0.96; 1.03] | 0.77 | 1.01 | [0.97; 1.05] | 0.70 |
Male sex | 1.11 | [0.44; 2.78] | 0.83 | 1.55 | [0.46; 5.21] | 0.48 |
Hemoglobin [per g/L] | 0.97 | [0.95; 1.00] | 0.04 | 0.98 | [0.95; 1.01] | 0.14 |
Leucocytes [per G/L] | 1.01 | [1.00; 1.01] | 0.07 | 1.01 | [1.00; 1.01] | 0.22 |
Thrombocytes [per G/L] | 0.99 | [0.98; 1.00] | 0.12 | 0.99 | [0.98; 1.00] | 0.30 |
Blasts in the peripheral blood [per %] | 1.01 | [1.00; 1.03] | 0.09 | 1.00 | [0.98; 1.03] | 0.67 |
Blasts in the bone marrow [per %] | 1.01 | [0.99; 1.04] | 0.21 | 1.01 | [0.97; 1.04] | 0.74 |
LDH [U/L] | 1.00 | [1.00; 1.00] | 0.73 | 1.00 | [1.00; 1.00] | 0.27 |
Induction cycles | 0.73 | [0.36; 1.52] | 0.40 | 0.72 | [0.30; 1.75] | 0.47 |
Amount of stemcells [per 106/kgKG] | 0.96 | [0.79; 1.18] | 0.73 | 0.94 | [0.74; 1.19] | 0.62 |
Parameters | Univ. HR | 95% Cl | p-Value | Mult. HR * | 95% Cl | p-Value |
---|---|---|---|---|---|---|
Melphalan 200 mg/m2 | 0.66 | [0.18; 2.41] | 0.53 | 0.26 | [0.04; 1.60] | 0.15 |
Age [per year] | 1.03 | [0.98; 1.08] | 0.20 | 1.04 | [0.99; 1.10] | 0.14 |
Male sex | 1.06 | [0.36; 3.07] | 0.92 | 0.67 | [0.14; 3.15] | 0.62 |
Hemoglobin [per g/L] | 0.98 | [0.96; 1.01] | 0.14 | 0.98 | [0.94; 1.01] | 0.22 |
Leucocytes [per G/L] | 1.01 | [1.00; 1.01] | 0.15 | 1.01 | [1.00; 1.02] | 0.06 |
Thrombocytes [per G/L] | 0.99 | [0.98; 1.00] | 0.09 | 0.99 | [0.98; 1.00] | 0.15 |
Blasts in the peripheral blood [per %] | 1.01 | [1.00; 1.03] | 0.14 | 1.03 | [0.99; 1.06] | 0.11 |
Blasts in the bone marrow [per %] | 1.00 | [0.98; 1.02] | 0.90 | 0.96 | [0.92; 1.00] | 0.04 |
LDH [U/L] | 1.00 | [1.00; 1.00] | 0.58 | 1.00 | [1.00; 1.00] | 0.23 |
Induction cycles | 1.11 | [0.69; 1.80] | 0.67 | 1.23 | [0.59; 2.55] | 0.58 |
Amount of stemcells [per 106/kgKG] | 1.05 | [0.84; 1.32] | 0.64 | 1.12 | [0.87; 1.45] | 0.38 |
Recurrence | Survival | |||||
---|---|---|---|---|---|---|
Mult. * HR | 95% CI | p-Value | Mult. * HR | 95% CI | p-Value | |
Highdose Melphalan | 0.62 | [0.10; 3.75] | 0.6 | 0.3 | [0.06; 1.49] | 0.14 |
Age [per year] | 0.99 | [0.94; 1.05] | 0.79 | 2.06 | [1.57; 2.69] | <0.001 |
Male sex | 2.64 | [0.47; 14.8] | 0.27 | 0.01 | [0.54; 11.97] | 0.006 |
Hemoglobin [per g/L] | 0.97 | [0.93; 1.02] | 0.24 | 1.11 | [1.05; 1.17] | <0.001 |
Leucocytes [per G/L] | 1.01 | [1.00; 1.02] | 0.11 | 0.99 | [0.97; 1.01] | 0.45 |
Thrombocytes [per G/L] | 1 | [0.98; 1.01] | 0.38 | 1.04 | [1.00; 1.08] | 0.04 |
Blasts in the peripheral blood [per %] | 1.01 | [1.00; 1.03] | 0.83 | 1.02 | [0.99; 1.05] | 0.15 |
Blasts in the bone marrow [per %] | 1 | [0.97; 1.04] | 0.89 | 1.07 | [1.02; 1.11] | 0.002 |
LDH [U/L] | 1 | [1.00; 1.00] | 0.23 | 1 | [1.00; 1.00] | 0.98 |
Induction cycles | 0.84 | [0.43; 1.62] | 0.59 | 0 | [0.00; 0.00] | <0.001 |
Amount of stem cells [per 106/kg BW] | 1.05 | [0.79; 1.40] | 0.72 | 0.07 | [0.03; 0.19] | <0.001 |
Treosulfan AUC | 1 | [1.00; 1.00] | 0.43 | 1 | [1.00; 1.00] | 0.087 |
Peak Treosulfan concentration (mg/L) | 1.01 | [1.00; 1.03] | 0.061 | 0.84 | [0.73; 0.96] | 0.009 |
Time after Injection in Minutes | TreoMel 200 (n = 20) | TreoMel 140 (n = 31) | All Patients (n = 51) | p-Value |
---|---|---|---|---|
T0 mg/L | <20 | <20 | <20 | >0.9999 |
T30 mg/L | 328.4 | 340.4 | 335.7 | 0.53 |
T60 mg/L | 259.1 | 261.7 | 260.7 | 0.88 |
T120 mg/L | 175.1 | 181.1 | 178.8 | 0.63 |
T240 mg/L | 89.1 | 97.0 | 93.9 | 0.31 |
T360 mg/L | 47.1 | 51.1 | 49.6 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eggimann, M.; Akhoundova, D.; Nilius, H.; Hoffmann, M.; Hayoz, M.; Aebi, Y.; Largiadèr, C.R.; Daskalakis, M.; Bacher, U.; Pabst, T. Safety and Efficacy of High-Dose Chemotherapy with TreoMel 200 vs. TreoMel 140 in Acute Myeloid Leukemia Patients Undergoing Autologous Stem Cell Transplantation. Cancers 2024, 16, 1887. https://doi.org/10.3390/cancers16101887
Eggimann M, Akhoundova D, Nilius H, Hoffmann M, Hayoz M, Aebi Y, Largiadèr CR, Daskalakis M, Bacher U, Pabst T. Safety and Efficacy of High-Dose Chemotherapy with TreoMel 200 vs. TreoMel 140 in Acute Myeloid Leukemia Patients Undergoing Autologous Stem Cell Transplantation. Cancers. 2024; 16(10):1887. https://doi.org/10.3390/cancers16101887
Chicago/Turabian StyleEggimann, Matthias, Dilara Akhoundova, Henning Nilius, Michèle Hoffmann, Michael Hayoz, Yolanda Aebi, Carlo R. Largiadèr, Michael Daskalakis, Ulrike Bacher, and Thomas Pabst. 2024. "Safety and Efficacy of High-Dose Chemotherapy with TreoMel 200 vs. TreoMel 140 in Acute Myeloid Leukemia Patients Undergoing Autologous Stem Cell Transplantation" Cancers 16, no. 10: 1887. https://doi.org/10.3390/cancers16101887
APA StyleEggimann, M., Akhoundova, D., Nilius, H., Hoffmann, M., Hayoz, M., Aebi, Y., Largiadèr, C. R., Daskalakis, M., Bacher, U., & Pabst, T. (2024). Safety and Efficacy of High-Dose Chemotherapy with TreoMel 200 vs. TreoMel 140 in Acute Myeloid Leukemia Patients Undergoing Autologous Stem Cell Transplantation. Cancers, 16(10), 1887. https://doi.org/10.3390/cancers16101887