Preoperative Bone Loss Predicts Decreased Survival Associated with Microvascular Invasion after Resection of Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Diagnosis of Osteopenia
2.3. Definition of Sarcopenia and Myosteatosis
2.4. Determination of Prognostic Nutrition Index
2.5. Pathological Diagnosis
2.6. Statistical Analysis
3. Results
Patient Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Wen, Z.Y.; Liu, X.Y.; Ma, Z.H.; Liu, Y.E.; Cao, X.Y.; Hou, L.; Xie, H. Current status and prospect of treatments for recurrent hepatocellular carcinoma. World J. Hepatol. 2023, 15, 129–150. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Toyoda, H.; Kobayashi, M.; Koiwa, Y.; Fujii, H.; Fujita, K.; Maeda, A.; Kaneoka, Y.; Hazama, S.; Nagano, H.; et al. Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning. Mod. Pathol. 2021, 34, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.Y.; Han, H.S.; Choi, Y.; Yoon, Y.S.; Kim, S.; Choi, J.K.; Jang, J.S.; Kwon, S.U.; Kim, H. Association of Remnant Liver Ischemia With Early Recurrence and Poor Survival After Liver Resection in Patients With Hepatocellular Carcinoma. JAMA Surg. 2017, 152, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Gao, J. Modified Child-Pugh grade. World J. Gastroenterol. 2020, 26, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Miki, A.; Sakuma, Y.; Shimodaira, K.; Aoki, Y.; Meguro, Y.; Morishima, K.; Endo, K.; Sasanuma, H.; Lefor, A.K.; et al. Preoperative Osteopenia Is Associated with Significantly Shorter Survival in Patients with Perihilar Cholangiocarcinoma. Cancers 2022, 14, 2213. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, Y.; Kaido, T.; Yao, S.; Shirai, H.; Kobayashi, A.; Hamaguchi, Y.; Kamo, N.; Yagi, S.; Uemoto, S. Bone Mineral Density as a Risk Factor for Patients Undergoing Surgery for Hepatocellular Carcinoma. World J. Surg. 2019, 43, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Meister, F.A.; Verhoeven, S.; Mantas, A.; Liu, W.J.; Jiang, D.; Heij, L.; Heise, D.; Bruners, P.; Lang, S.A.; Ulmer, T.F.; et al. Osteopenia is associated with inferior survival in patients undergoing partial hepatectomy for hepatocellular carcinoma. Sci. Rep. 2022, 12, 18316. [Google Scholar] [CrossRef] [PubMed]
- Pickhardt, P.J.; Pooler, B.D.; Lauder, T.; del Rio, A.M.; Bruce, R.J.; Binkley, N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann. Intern. Med. 2013, 158, 588–595. [Google Scholar] [CrossRef]
- Sharma, P.; Parikh, N.D.; Yu, J.; Barman, P.; Derstine, B.A.; Sonnenday, C.J.; Wang, S.C.; Su, G.L. Bone mineral density predicts posttransplant survival among hepatocellular carcinoma liver transplant recipients. Liver Transplant. 2016, 22, 1092–1098. [Google Scholar] [CrossRef]
- Abe, K.; Furukawa, K.; Okamoto, T.; Matsumoto, M.; Futagawa, Y.; Haruki, K.; Shirai, Y.; Ikegami, T. Impact of osteopenia on surgical and oncological outcomes in patients with pancreatic cancer. Int. J. Clin. Oncol. 2021, 26, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Motomura, T.; Uchiyama, H.; Iguchi, T.; Ninomiya, M.; Yoshida, R.; Honboh, T.; Sadanaga, N.; Akashi, T.; Matsuura, H. Impact of Osteopenia on Oncologic Outcomes After Curative Resection for Pancreatic Cancer. In Vivo 2020, 34, 3551–3557. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Kaido, T.; Okumura, S.; Iwamura, S.; Miyachi, Y.; Shirai, H.; Kobayashi, A.; Hamaguchi, Y.; Kamo, N.; Uozumi, R.; et al. Bone mineral density correlates with survival after resection of extrahepatic biliary malignancies. Clin. Nutr. 2019, 38, 2770–2777. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.F.; Tian, M.X.; Qiu, J.T.; Guo, Y.C.; Tao, C.Y.; Liu, W.R.; Tang, Z.; Qian, K.; Wang, Z.X.; Li, X.Y.; et al. Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep learning. Front. Oncol. 2022, 12, 968202. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.Y. The Brisbane 2000 terminology of liver anatomy and resections. HPB 2000, 2, 333–339, Erratum in HPB (Oxford) 2002, 4, 99; author reply 99–100. [Google Scholar] [CrossRef] [PubMed]
- Miki, A.; Sakuma, Y.; Ohzawa, H.; Saito, A.; Meguro, Y.; Watanabe, J.; Morishima, K.; Endo, K.; Sasanuma, H.; Shimizu, A.; et al. Clearance of the liver remnant predicts short-term outcome in patients undergoing resection of hepatocellular carcinoma. World J. Gastroenterol. 2022, 28, 5614–5625. [Google Scholar]
- Pickhardt, P.J.; Lee, L.J.; del Rio, A.M.; Lauder, T.; Bruce, R.J.; Summers, R.M.; Pooler, B.D.; Binkley, N. Simultaneous screening for osteoporosis at CT colonography: Bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J. Bone Miner. Res. 2011, 26, 2194–2203. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Hammad, A.; Tamai, Y.; Inagaki, N.; Uemoto, S. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition 2016, 32, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- WHO. Chapter 8, Tumours of the liver and intrahepatic bile ducts. In WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2019. [Google Scholar]
- Kang, I.; Jang, M.; Lee, J.G.; Han, D.H.; Joo, D.J.; Kim, K.S.; Kim, M.S.; Choi, J.S.; Kim, S.I.; Park, Y.N.; et al. Subclassification of Microscopic Vascular Invasion in Hepatocellular Carcinoma. Ann. Surg. 2021, 274, e1170–e1178. [Google Scholar] [CrossRef]
- Yoon, J.K.; Yoon, J.H.; Park, V.Y.; Lee, M.; Kwak, J.Y. Sarcopenia increases the risk of major organ or vessel invasion in patients with papillary thyroid cancer. Sci. Rep. 2022, 12, 4233. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, Y.; Zhong, J.; Wang, Q.; Wang, X.; Wei, H.; Li, J.; Xiu, P. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma. Sci. Rep. 2021, 11, 2415. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Ding, S.M.; Zhou, L.; Xie, H.Y.; Chen, K.J.; Zhang, W.; Xing, C.Y.; Guo, H.J.; Zheng, S.S. FOXC1 contributes to microvascular invasion in primary hepatocellular carcinoma via regulating epithelial-mesenchymal transition. Int. J. Biol. Sci. 2012, 8, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Song, F.N.; Duan, M.; Liu, L.Z.; Wang, Z.C.; Shi, J.Y.; Yang, L.X.; Zhou, J.; Fan, J.; Gao, Q.; Wang, X.Y. RANKL promotes migration and invasion of hepatocellular carcinoma cells via NF-κB-mediated epithelial-mesenchymal transition. PLoS ONE 2014, 9, e108507. [Google Scholar] [CrossRef] [PubMed]
- Mima, K.; Imai, K.; Kaida, T.; Matsumoto, T.; Nakagawa, S.; Sawayama, H.; Hayashi, H.; Yamashita, Y.I.; Baba, H. Impairment of perioperative activities of daily living is associated with poor prognosis following hepatectomy for hepatocellular carcinoma. J. Surg. Oncol. 2022, 126, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.C.; Shia, J.; Liau, K.H.; Gonen, M.; Ruo, L.; Jarnagin, W.R.; Fong, Y.; D’Angelica, M.I.; Blumgart, L.H.; Dematteo, R.P. Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma. Ann. Surg. 2009, 249, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Horiuchi, T.; Uchinami, M.; Tabo, T.; Kimura, N.; Yokomachi, J.; Yoshida, M.; Tanaka, K. Hepatic ischemia-reperfusion promotes liver metastasis of colon cancer. J. Surg. Res. 2002, 105, 243–247. [Google Scholar] [CrossRef] [PubMed]
- van der Bilt, J.D.; Kranenburg, O.; Nijkamp, M.W.; Smakman, N.; Veenendaal, L.M.; Te Velde, E.A.; Voest, E.E.; van Diest, P.J.; Borel Rinkes, I.H. Ischemia/reperfusion accelerates the outgrowth of hepatic micrometastases in a highly standardized murine model. Hepatology 2005, 42, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Kumada, T.; Tsuji, K.; Takaguchi, K.; Itobayashi, E.; Kariyama, K.; Ochi, H.; Tajiri, K.; Hirooka, M.; Shimada, N.; et al. Validation of Modified ALBI Grade for More Detailed Assessment of Hepatic Function in Hepatocellular Carcinoma Patients: A Multicenter Analysis. Liver Cancer 2019, 8, 121–129. [Google Scholar] [CrossRef]
- Ke, X.; Jin, B.; You, W.; Chen, Y.; Xu, H.; Zhao, H.; Lu, X.; Sang, X.; Zhong, S.; Yang, H.; et al. Comprehensive analysis of coagulation indices for predicting survival in patients with biliary tract cancer. BMC Cancer 2021, 21, 953. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, H.F.; Mo, M.; Wu, C.J.; Hua, Y.Q.; Chen, Z.; Meng, Z.Q.; Liu, L.M.; Chen, H. A novel scoring system based on hemostatic parameters predicts the prognosis of patients with advanced pancreatic cancer. Pancreatology 2019, 19, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Tas, F.; Kilic, L.; Serilmez, M.; Keskin, S.; Sen, F.; Duranyildiz, D. Clinical and prognostic significance of coagulation assays in lung cancer. Respir. Med. 2013, 107, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.S.; Chok, K.S.H.; Lo, C.M. Role of hepatic trisectionectomy in advanced hepatocellular carcinoma. Surg. Oncol. 2017, 26, 310–317. [Google Scholar] [CrossRef] [PubMed]
Variables | Non-Osteopenia (n = 75) | Osteopenia (n = 134) | p-Value |
---|---|---|---|
Age (years), mean ± SD | 65.2 ± 10.8 | 70.8 ± 7.6 | 0.0001 |
Gender, male vs. female | 59 vs. 16 | 100 vs. 34 | 0.5089 |
Platelet count, 106/L mean ± SD | 1.65 ± 0.62 | 1.69 ± 0.75 | 0.6994 |
PT-INR, mean ± SD | 1.09 ± 0.07 | 1.13 ± 0.23 | 0.1224 |
Total bilirubin, mean ± SD | 0.85 ± 0.32 | 0.87 ± 0.39 | 0.6793 |
AST, IU/L mean ± SD | 44.1 ± 57.1 | 43.1 ± 27.3 | 0.8553 |
ALT, IU/L mean ± SD | 43.6 ± 3.9 | 38.7 ± 2.9 | 0.3143 |
PNI, mean ± SD | 49.6 ± 5.9 | 48.2 ± 6.1 | 0.1175 |
γ-Glutamyl transpeptidase, IU/L mean ± SD | 71.5 ± 76.8 | 79.6 ± 91.7 | 0.5208 |
AFP, IU/L mean ± SD | 3171 ± 13,303 | 3831 ± 22,303 | 0.8151 |
PIVKA II, IU/L mean ± SD | 1182 ± 4021 | 1261 ± 3830 | 0.8898 |
ALBI score, mean ± SD | −2.82 ± 0.41 | −2.72± 0.39 | 0.1024 |
LHL15, mean ± SD | 0.93 ± 0.004 | 0.92 ± 0.003 | 0.4301 |
Operation method, limited vs. anatomic resection | 48 vs. 27 | 96 vs. 42 | 0.6485 |
Intraoperative blood loss, mL, mean ± SD | 954 ± 1095 | 885 ± 1024 | 0.6485 |
Operation time, min mean ± SD | 314 ± 116 | 305 ± 111 | 0.5925 |
Variables | 5-Year OS | p-Value | 5-Year RFS | p-Value | |
---|---|---|---|---|---|
Total | Osteopenia | 62.3% | 0.0013 | 37.7% | 0.0066 |
Non-osteopenia | 81.4% | 54.6% | |||
Male | Osteopenia | 62.7% | 0.0013 | 42.3% | 0.0080 |
Non-osteopenia | 78.4% | 54.8% | |||
Female | Osteopenia | 53.9% | 0.0485 | 24.8% | 0.0473 |
Non-osteopenia | 91.7% | 57.7% |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | p-Value | 95%CI | HR | p-Value | 95%CI |
Age, >70 years | 1.29 | 0.3429 | 0.76–2.15 | |||
Gender, male vs. female | 1.07 | 0.8268 | 0.60–2.03 | |||
Platelet count, >106/L | 0.98 | 0.9495 | 0.48–2.26 | |||
PT-INR, >1.2 | 2.44 | 0.0121 | 1.23–4.46 | 2.04 | 0.0569 | 0.98–3.99 |
Total bilirubin, >1.5 mg/dL | 1.34 | 0.6365 | 0.33–3.66 | |||
AST, >37 IU/L | 1.67 | 0.0489 | 1.00–2.78 | 1.47 | 0.1772 | 0.84–2.59 |
ALT, >44 IU/L | 1.09 | 0.7485 | 0.63–1.85 | |||
PNI, >40 | 0.65 | 0.1164 | 0.38–1.12 | |||
γ-Glutamyl transpeptidase, >88 IU/L | 1.85 | 0.0265 | 1.08–3.12 | 1.24 | 0.4766 | 0.68–2.18 |
AFP, >10 IU/L | 1.55 | 0.0945 | 0.93–2.59 | |||
PIVKA II, >40 IU/L | 1.19 | 0.5120 | 0.71–2.03 | |||
ALBI score, >−2.60 | 1.24 | 0.4252 | 0.72–2.10 | |||
LHL15, >0.91 | 1.14 | 0.6552 | 0.65–2.09 | |||
Operation method, limited resection | 0.51 | 0.0109 | 0.31–0.86 | 1.47 | 0.2260 | 0.79–2.74 |
Intraoperative blood loss, >1000 mL | 2.15 | 0.0041 | 1.28–3.58 | 1.57 | 0.1513 | 0.85–2.91 |
Operation time, >300 min | 1.44 | 0.1608 | 0.87–2.44 | |||
Sarcopenia, yes | 0.92 | 0.9059 | 0.22–3.78 | |||
Myosteatosis, yes | 1.62 | 0.1840 | 0.80–3,29 | |||
Osteopenia, yes | 2.73 | 0.0008 | 1.49–5.40 | 2.52 | 0.0043 | 1.32–5.24 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | p-Value | 95%CI | HR | p-Value | 95%CI |
Age, > 70 years | 1.27 | 0.2319 | 0.86–1.88 | |||
Gender, male vs. female | 1.00 | 0.9833 | 0.65–1.58 | |||
Platelet count, >106/L | 0.75 | 0.3208 | 0.45–1.35 | |||
PT-INR, >1.2 | 1.81 | 0.0441 | 1.02–3.02 | 1.50 | 0.1530 | 0.86–2.63 |
Total bilirubin, >1.5 mg/dL | 1.99 | 0.0905 | 0.89–3.87 | |||
AST, >37 IU/L | 1.05 | 0.8211 | 0.70–1.54 | |||
ALT, >44 IU/L | 1.10 | 0.6439 | 0.74–1.69 | |||
PNI, >40 | 0.68 | 0.0681 | 0.45–1.03 | |||
γ-Glutamyl transpeptidase, >88 IU/L | 1.47 | 0.0816 | 0.95–2.21 | |||
AFP, >10 IU/L | 1.30 | 0.1935 | 0.87–1.92 | |||
PIVKA II, >40 IU/L | 1.03 | 0.8897 | 0.69–1.52 | |||
ALBI score, >−2.60 | 1.31 | 0.1881 | 0.87–1.94 | |||
LHL15, >0.91 | 0.70 | 0.0878 | 0.47–1.06 | |||
Operation method, limited resection | 0.88 | 0.5511 | 0.74–1.70 | |||
Intraoperative blood loss, >1000 mL | 1.99 | 0.0011 | 1.32–2.96 | 1.57 | 0.0651 | 0.97–2.53 |
Operation time, >300 min | 1.74 | 0.0056 | 1.18–2.62 | 1.35 | 0.2195 | 0.84–2.16 |
Sarcopenia, yes | 0.49 | 0.3182 | 0.12–1.99 | |||
Myosteatosis, yes | 1.74 | 0.0473 | 1.00–3.02 | 1.52 | 0.1383 | 0.87–2.66 |
Osteopenia, yes | 1.79 | 0.0059 | 1.18–2.79 | 1.68 | 0.0232 | 1.07–2.62 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | Odds | p-Value | 95%CI | Odds | p-Value | 95%CI |
Etiology | ||||||
HBV | 1.98 | 0.0853 | 0.90–4.32 | 1.82 | 0.1359 | 0.82–4.01 |
HCV | 0.87 | 0.6439 | 0.49–1.54 | |||
NBNC | 1.35 | 0.3123 | 0.75–2.43 | |||
Number of tumors | ||||||
Solitary vs. multiple | 1.08 | 0.8535 | 0.49–2.34 | |||
Tumor size, >3 cm | 0.78 | 0.3916 | 0.43–1.38 | |||
Microvascular invasion | ||||||
Microvascular hepatic vein invasion | 1.52 | 0.1636 | 0.84–2.76 | |||
Microvascular portal vein invasion | 2.23 | 0.0386 | 1.08–4.59 | 2.12 | 0.0415 | 1.03–4.39 |
Differentiation | ||||||
Poor | 0.88 | 0.7024 | 0.47–1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishida, T.; Miki, A.; Sakuma, Y.; Watanabe, J.; Endo, K.; Sasanuma, H.; Teratani, T.; Kitayama, J.; Sata, N. Preoperative Bone Loss Predicts Decreased Survival Associated with Microvascular Invasion after Resection of Hepatocellular Carcinoma. Cancers 2024, 16, 2087. https://doi.org/10.3390/cancers16112087
Ishida T, Miki A, Sakuma Y, Watanabe J, Endo K, Sasanuma H, Teratani T, Kitayama J, Sata N. Preoperative Bone Loss Predicts Decreased Survival Associated with Microvascular Invasion after Resection of Hepatocellular Carcinoma. Cancers. 2024; 16(11):2087. https://doi.org/10.3390/cancers16112087
Chicago/Turabian StyleIshida, Takashi, Atsushi Miki, Yasunaru Sakuma, Jun Watanabe, Kazuhiro Endo, Hideki Sasanuma, Takumi Teratani, Joji Kitayama, and Naohiro Sata. 2024. "Preoperative Bone Loss Predicts Decreased Survival Associated with Microvascular Invasion after Resection of Hepatocellular Carcinoma" Cancers 16, no. 11: 2087. https://doi.org/10.3390/cancers16112087
APA StyleIshida, T., Miki, A., Sakuma, Y., Watanabe, J., Endo, K., Sasanuma, H., Teratani, T., Kitayama, J., & Sata, N. (2024). Preoperative Bone Loss Predicts Decreased Survival Associated with Microvascular Invasion after Resection of Hepatocellular Carcinoma. Cancers, 16(11), 2087. https://doi.org/10.3390/cancers16112087