Real-World Clinical Utility of Targeted RNA Sequencing in Leukemia Diagnosis and Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Conventional Genetic Assays
2.3. Targeted RNA Sequencing
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Gene Rearrangement Results
3.3. Comparison with Other Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Annala, M.J.; Parker, B.C.; Zhang, W.; Nykter, M. Fusion genes and their discovery using high throughput sequencing. Cancer Lett. 2013, 340, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, F.; Zhang, Y.; Ma, X.; Cao, P.; Yuan, L.; Wang, L.; Chen, J.; Zhou, X.; Wu, Q.; et al. Fusion gene map of acute leukemia revealed by transcriptome sequencing of a consecutive cohort of 1000 cases in a single center. Blood Cancer J. 2021, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Tebbi, C.K. Etiology of Acute Leukemia: A Review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, I.; Torkildsen, S.; Gorunova, L.; Tierens, A.; Tjønnfjord, G.E.; Heim, S. Comparison between karyotyping-FISH-reverse transcription PCR and RNA-sequencing-fusion gene identification programs in the detection of KAT6A-CREBBP in acute myeloid leukemia. PLoS ONE 2014, 9, e96570. [Google Scholar] [CrossRef]
- Ikbal Atli, E.; Gurkan, H.; Onur Kirkizlar, H.; Atli, E.; Demir, S.; Yalcintepe, S.; Kalkan, R.; Demir, A.M. Pros and Cons for Fluorescent in Situ Hybridization, Karyotyping and Next Generation Sequencing for Diagnosis and Follow-up of Multiple Myeloma. Balk. J. Med. Genet. 2020, 23, 59–64. [Google Scholar] [CrossRef]
- Bridge, J.A. Advantages and limitations of cytogenetic, molecular cytogenetic, and molecular diagnostic testing in mesenchymal neoplasms. J. Orthop. Sci. 2008, 13, 273–282. [Google Scholar] [CrossRef]
- Kim, B.; Kim, E.; Lee, S.T.; Cheong, J.W.; Lyu, C.J.; Min, Y.H.; Choi, J.R. Detection of recurrent, rare, and novel gene fusions in patients with acute leukemia using next-generation sequencing approaches. Hematol. Oncol. 2020, 38, 82–88. [Google Scholar] [CrossRef]
- Zheng, Z.; Liebers, M.; Zhelyazkova, B.; Cao, Y.; Panditi, D.; Lynch, K.D.; Chen, J.; Robinson, H.E.; Shim, H.S.; Chmielecki, J.; et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat. Med. 2014, 20, 1479–1484. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H.; Shin, S.; Lee, S.T.; Choi, J.R. Clinical Evaluation of Massively Parallel RNA Sequencing for Detecting Recurrent Gene Fusions in Hematologic Malignancies. J. Mol. Diagn. 2019, 21, 163–170. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.; Yeh, J.; Wu, Y.; Oehler, V.G.; Naresh, K.N.; Liu, Y.J. Clinical Validation of FusionPlex RNA Sequencing and Its Utility in the Diagnosis and Classification of Hematologic Neoplasms. J. Mol. Diagn. 2023, 25, 932–944. [Google Scholar] [CrossRef]
- Xu, K.; Gupta, S.; Kaffo, E.; Baker, R.; Nacheva, E.; O’Nions, J.; Wilson, A.J.; Gupta, R. The use of targeted ribonucleic acid (RNA)–sequencing assay in the diagnostic evaluation of acute myeloid leukaemia (AML). J. Hematop. 2024. [Google Scholar] [CrossRef]
- Engvall, M.; Cahill, N.; Jonsson, B.I.; Höglund, M.; Hallböök, H.; Cavelier, L. Detection of leukemia gene fusions by targeted RNA-sequencing in routine diagnostics. BMC Med. Genom. 2020, 13, 106. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- He, G.Q.; Guo, X.; Jiang, M.Y.; Xu, R.R.; Dai, Y.L.; Luo, L.; Gao, J. Co-occurrence of TCF3-PBX1 gene fusion, and chromosomal aberration in a pediatric pre-B cell acute lymphoblastic leukemia with clitoris swelling: A case report and literature review. Medicine 2021, 100, e24802. [Google Scholar] [CrossRef] [PubMed]
- Paulraj, P.; Diamond, S.; Razzaqi, F.; Ozeran, J.D.; Longhurst, M.; Andersen, E.F.; Toydemir, R.M.; Hong, B. Pediatric acute myeloid leukemia with t(7;21)(p22;q22). Genes Chromosomes Cancer 2019, 58, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.S.; Richkind, K.; Ross, M.; Seirra, R. Translocation (X;20)(q13;q13.3): A nonrandom abnormality in four patients with myeloid disorders. Cancer Genet. Cytogenet. 2005, 157, 70–73. [Google Scholar] [CrossRef]
- Yoshihara, K.; Wang, Q.; Torres-Garcia, W.; Zheng, S.; Vegesna, R.; Kim, H.; Verhaak, R.G. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 2015, 34, 4845–4854. [Google Scholar] [CrossRef]
- Fournier, B.; Balducci, E.; Duployez, N.; Clappier, E.; Cuccuini, W.; Arfeuille, C.; Caye-Eude, A.; Delabesse, E.; Bottollier-Lemallaz Colomb, E.; Nebral, K.; et al. B-ALL With t(5;14)(q31;q32); IGH-IL3 Rearrangement and Eosinophilia: A Comprehensive Analysis of a Peculiar IGH-Rearranged B-ALL. Front. Oncol. 2019, 9, 1374. [Google Scholar] [CrossRef]
- Inaba, H.; Greaves, M.; Mullighan, C.G. Acute lymphoblastic leukaemia. Lancet 2013, 381, 1943–1955. [Google Scholar] [CrossRef]
- Ferrara, F.; Schiffer, C.A. Acute myeloid leukaemia in adults. Lancet 2013, 381, 484–495. [Google Scholar] [CrossRef]
- de Boer, E.N.; Johansson, L.F.; de Lange, K.; Bosga-Brouwer, A.G.; van den Berg, E.; Sikkema-Raddatz, B.; van Diemen, C.C. Detection of Fusion Genes to Determine Minimal Residual Disease in Leukemia Using Next-Generation Sequencing. Clin. Chem. 2020, 66, 1084–1092. [Google Scholar] [CrossRef]
- Della Starza, I.; De Novi, L.A.; Elia, L.; Bellomarino, V.; Beldinanzi, M.; Soscia, R.; Cardinali, D.; Chiaretti, S.; Guarini, A.; Foà, R. Optimizing Molecular Minimal Residual Disease Analysis in Adult Acute Lymphoblastic Leukemia. Cancers 2023, 15, 374. [Google Scholar] [CrossRef]
- Haas, B.J.; Dobin, A.; Li, B.; Stransky, N.; Pochet, N.; Regev, A. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019, 20, 213. [Google Scholar] [CrossRef]
- Kim, N.; Kim, H.; Saeam, S. First Korean Case of Pediatric Acute Megakaryoblastic Leukemia with CBFA2T3::GLIS2 Fusion. Lab. Med. Online 2023, 13, 5. [Google Scholar] [CrossRef]
- Meyer, C.; Lopes, B.A.; Caye-Eude, A.; Cavé, H.; Arfeuille, C.; Cuccuini, W.; Sutton, R.; Venn, N.C.; Oh, S.H.; Tsaur, G.; et al. Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions. Leukemia 2019, 33, 2306–2340. [Google Scholar] [CrossRef] [PubMed]
- Gough, S.M.; Slape, C.I.; Aplan, P.D. NUP98 gene fusions and hematopoietic malignancies: Common themes and new biologic insights. Blood 2011, 118, 6247–6257. [Google Scholar] [CrossRef] [PubMed]
- Kobzev, Y.N.; Martinez-Climent, J.; Lee, S.; Chen, J.; Rowley, J.D. Analysis of translocations that involve the NUP98 gene in patients with 11p15 chromosomal rearrangements. Genes Chromosomes Cancer 2004, 41, 339–352. [Google Scholar] [CrossRef]
- Osumi, K.; Fukui, T.; Kiyoi, H.; Kasai, M.; Kodera, Y.; Kudo, K.; Kato, K.; Matsuyama, T.; Naito, K.; Tanimoto, M.; et al. Rapid screening of leukemia fusion transcripts in acute leukemia by real-time PCR. Leuk. Lymphoma 2002, 43, 2291–2299. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.Q.; Zhao, Z.J.; Liu, B.; Bao, A.Y.; Zheng, H.Y.; Gu, J.; Xia, Y.; McGrath, M.; Dovat, S.; Song, C.H.; et al. New rapid method to detect BCR-ABL fusion genes with multiplex RT-qPCR in one-tube at a time. Leuk. Res. 2018, 69, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Chien, N.; Petrasich, M.; Chan, G.; Theakston, E.; Ruskova, A.; Eaddy, N.; Hawkins, T.; Berkahn, L.; Doocey, R.; Browett, P.J.; et al. Early treatment of acute promyelocytic leukaemia is accurately guided by the PML protein localisation pattern: Real-life experience from a tertiary New Zealand centre. Pathology 2019, 51, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.A.; Melo, J.B.; Carreira, I.M.; Rincic, M.; Glaser, A.; Grygalewicz, B.; Gruhn, B.; Wilhelm, K.; Rittscher, K.; Meyer, B.; et al. High rates of submicroscopic aberrations in karyotypically normal acute lymphoblastic leukemia. Mol. Cytogenet. 2015, 8, 45. [Google Scholar] [CrossRef]
- Sahajpal, N.S.; Mondal, A.K.; Singh, H.; Vashisht, A.; Ananth, S.; Saul, D.; Hastie, A.R.; Hilton, B.; DuPont, B.R.; Savage, N.M.; et al. Clinical Utility of Optical Genome Mapping and 523-Gene Next Generation Sequencing Panel for Comprehensive Evaluation of Myeloid Cancers. Cancers 2023, 15, 3214. [Google Scholar] [CrossRef]
AML (n = 188) | B-ALL (n = 69) | T-ALL (n = 4) | MPAL (n = 3) | |
---|---|---|---|---|
Male sex | 96 (51.1) | 36 (52.2) | 3 (75.0%) | 1 (33.3) |
Age | 52.3 (22.4) | 12.7 (16.5) | 15.0 (10.6) | 6.7 (4.6) |
Leukemic fusion | 87 (46.3) | 36 (52.2) | 2 (50.0) | 2 (66.7) |
Percentage of blasts | 55.7 (24.5) | 77.7 (22.3) | 71.3 (34.8) | 87.0 (20.0) |
AML | B-ALL | T-ALL | MPAL | Total | |
---|---|---|---|---|---|
BCR::ABL1 | 2 | 6 | 8 | ||
BCR::ABL1, PAX5::ZCCHC7 | 1 | 1 | |||
CBFA2T3::GLIS2 * | 1 | 1 | |||
CBFB::MYH11 | 10 | 10 | |||
DEK::NUP214 | 3 | 3 | |||
EBF1::PDGFRB | 1 | 1 | |||
EP300::ZNF384 * | 1 | 1 | |||
ETV6::RUNX1 | 15 | 1 | 16 | ||
FNDC3B::MECOM | 1 | 1 | |||
FUS::ERG * | 1 | 1 | |||
KMT2A::AFDN | 1 | 1 | |||
KMT2A::AFF1 | 1 | 1 | |||
KMT2A::AKAP13 * | 1 | 1 | |||
KMT2A::CBL | 1 | 1 | |||
KMT2A::EL L * | 3 | 1 | 4 | ||
KMT2A::EP300 * | 1 | 1 | |||
KMT2A::MLLT10 * | 1 | 1 | 2 | ||
KMT2A::MLLT3 * | 3 | 1 | 4 | ||
NUP214::ABL1 | 1 | 1 | |||
NUP98::HOXA9 * | 2 | 2 | |||
NUP98::HOXC13 * | 1 | 1 | |||
NUP98::NSD1 * | 6 | 6 | |||
NUP98::TOP1 * | 1 | 1 | |||
P2RY8::CRLF2 | 1 | 1 | 2 | ||
PAX5::C20orf112, P2RY8::CRLF2 | 1 | 1 | |||
PICALM::MLLT10 * | 1 | 1 | |||
PML::RARA | 18 | 18 | |||
RUNX1::DOPEY2 | 1 | 1 | |||
RUNX1::MACROD2 | 1 | 1 | |||
RUNX1::MECOM | 1 | 1 | |||
RUNX1::RUNX1T1 | 20 | 1 | 21 | ||
RUNX1::USP42 | 1 | 1 | |||
SET::NUP214 | 1 | 1 | |||
TCF3::HLF | 1 | 1 | |||
TCF3::PBX1 | 3 | 3 | |||
ZCCHC7::LRP1B | 1 | 1 | |||
Total | 82 | 36 | 2 | 2 | 122 |
RT-PCR | |||||
---|---|---|---|---|---|
BCR::ABL1 | PML::RARA | ||||
Negative | Positive | Negative | Positive | ||
RNA seq | Not detected | 55 | 0 | 26 | 0 |
Detected | 0 | 7 | 0 | 17 |
Karyotyping | Cohen’s Kappa | ||||
---|---|---|---|---|---|
RNA Seq | Known Abnormality | No Known Abnormality | Not Applicable | ||
Total | Matched | 78 | 29 | 8 | 0.655 |
Not matched | 7 | 0 | 0 | ||
Not detected | 5 | 127 | 10 | ||
AML | Matched | 64 | 13 | 2 | 0.760 |
Not matched | 3 | 0 | 0 | ||
Not detected | 5 | 95 | 6 | ||
B-ALL | Matched | 12 | 14 | 6 | 0.355 |
Not matched | 4 | 0 | 0 | ||
Not detected | 0 | 29 | 4 | ||
T-ALL | Matched | 1 | 1 | 0 | 0.500 |
Not matched | 0 | 0 | 0 | ||
Not detected | 0 | 2 | 0 | ||
MPAL | Matched | 1 | 1 | 0 | 0.400 |
Not matched | 0 | 0 | 0 | ||
Not detected | 0 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.W.; Kim, N.; Choi, Y.J.; Lee, S.-T.; Choi, J.R.; Shin, S. Real-World Clinical Utility of Targeted RNA Sequencing in Leukemia Diagnosis and Management. Cancers 2024, 16, 2467. https://doi.org/10.3390/cancers16132467
Kim SW, Kim N, Choi YJ, Lee S-T, Choi JR, Shin S. Real-World Clinical Utility of Targeted RNA Sequencing in Leukemia Diagnosis and Management. Cancers. 2024; 16(13):2467. https://doi.org/10.3390/cancers16132467
Chicago/Turabian StyleKim, Seo Wan, Namsoo Kim, Yu Jeong Choi, Seung-Tae Lee, Jong Rak Choi, and Saeam Shin. 2024. "Real-World Clinical Utility of Targeted RNA Sequencing in Leukemia Diagnosis and Management" Cancers 16, no. 13: 2467. https://doi.org/10.3390/cancers16132467
APA StyleKim, S. W., Kim, N., Choi, Y. J., Lee, S. -T., Choi, J. R., & Shin, S. (2024). Real-World Clinical Utility of Targeted RNA Sequencing in Leukemia Diagnosis and Management. Cancers, 16(13), 2467. https://doi.org/10.3390/cancers16132467