Predictive Factors for Early Immune Recovery in NHL Patients after Autologous Transplantation: A Multicenter Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patients and Methods
2.2. Mobilization and Collection of Blood Grafts
2.3. The Graft Cellular Analysis
2.4. High-Dose Therapy and Posttransplant Course
2.5. Statistical Analysis
2.6. Ethics
3. Results
3.1. CD34+ Cell Mobilization and Graft Cellular Analysis
3.2. Predictive Factors for ALC-15
3.3. Survival Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordan, L.N.; Sugrue, M.W.; Lynch, J.W.; Williams, K.D.; Khan, S.A.; Moreb, J.S. Correlation of early lymphocyte recovery and progression-free survival after autologous stem-cell transplant in patients with Hodgkin’s and non-Hodgkin’s Lymphoma. Bone Marrow Transplant. 2003, 31, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Gertz, M.A.; Inwards, D.J.; Litzow, M.R.; Lacy, M.Q.; Tefferi, A.; Gastineau, D.A.; Dispenzieri, A.; Ansell, S.M.; Micallef, I.N.; et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood 2001, 98, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Inwards, D.J.; Ansell, S.M.; Micallef, I.N.; Johnston, P.B.; Gastineau, D.A.; Litzow, M.R.; Winters, J.L.; Markovic, S.N. Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: A prospective study. Biol. Blood Marrow Transplant. 2008, 14, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Markovic, S.N. Autograft mediated adoptive immunotherapy of cancer in the context of autologous stem cell transplantation. World J. Clin. Oncol. 2010, 1, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F. Autograft immune effector cells and survival in autologous peripheral blood hematopoietic stem cell transplantation. J. Clin. Apher. 2018, 33, 324–330. [Google Scholar] [CrossRef]
- Porrata, L.F. The Impact of infused autograft absolute numbers of immune effector cells on survival post-autologous stem cell transplantation. Cells 2022, 11, 2197. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Gastineau, D.A.; Padley, D.; Bundy, K.; Markovic, S.N. Re-infused autologous graft natural killer cells correlate with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk. Lymphoma 2003, 44, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Atta, E.H.; de Azevedo, A.M.; Maiolino, A.; Coelho, C.J.; Sarcinelli, S.M.; de Alvarenga Máximo, C.; Marra, V.L. High CD8+ lymphocyte dose in the autograft predicts early absolute lymphocyte count recovery after peripheral hematopoietic stem cell transplantation. Am. J. Hematol. 2009, 84, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Holtan, S.G.; Porrata, L.F.; Micallef, I.N.; Padley, D.J.; Inwards, D.J.; Ansell, S.A.; Johnston, P.B.; Gastineau, D.A.; Markovic, S.N. AMD3100 affects autograft lymphocyte collection and progression-free survival after autologous stem cell transplantation in non-Hodgkin lymphoma. Clin. Lymphoma Myeloma 2007, 7, 315–318. [Google Scholar] [CrossRef]
- Varmavuo, V.; Mäntymaa, P.; Nousiainen, T.; Valonen, P.; Kuittinen, T.; Jantunen, E. Blood graft composition after plerixafor injection in patients with NHL. Eur. J. Haematol. 2012, 89, 128–135. [Google Scholar] [CrossRef]
- Jantunen, E.; Turunen, A.; Varmavuo, V.; Partanen, A. Impact of plerixafor use in the mobilization of blood grafts for autologous hematopoietic cell transplantation. Transfusion 2024, 64, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Turunen, A.; Valtola, J.; Partanen, A.; Ropponen, A.; Kuittinen, O.; Kuitunen, H.; Vasala, K.; Ågren, L.; Penttilä, K.; Keskinen, L.; et al. Autograft cellular composition and outcome in NHL patients: Results of the prospective multicenter GOA study. Leuk. Lymphoma 2020, 61, 2082–2092. [Google Scholar] [CrossRef] [PubMed]
- Gratama, J.W.; Kraan, J.; Keeney, M.; Sutherland, D.R.; Granger, V.; Barnett, D. Validation of the single-platform ISHAGE method for CD34(+) hematopoietic stem and progenitor cell enumeration in an international multicenter study. Cytotherapy 2003, 5, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Jantunen, E.; Varmavuo, V.; Pelkonen, J.; Valtola, J. Importance of early immune recovery after autologous hematopoietic cell transplantation in lymphoma patients. Leuk. Lymphoma 2019, 60, 2115–2121. [Google Scholar] [CrossRef] [PubMed]
- Steingrimsdottir, H.; Gruber, A.; Björkholm, M.; Svensson, A.; Hansson, M. Immune reconstitution after autologous hematopoietic stem cell transplantation in relation to underlying disease, type of high-dose therapy and infectious complications. Haematologica 2000, 85, 832–838. [Google Scholar] [PubMed]
- Dean, H.F.; Cazaly, A.; Hurlock, C.; Borras, J.; Williams, A.P.; Johnson, P.W.; Davies, A.J. Defects in lymphocyte subsets and serological memory persist a median of 10 years after high-dose therapy and autologous progenitor cell rescue for malignant lymphoma. Bone Marrow Transplant. 2012, 47, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Litzow, M.R.; Inwards, D.J.; Gastineau, D.A.; Moore, S.B.; Pineda, A.A.; Bundy, K.L.; Padley, D.J.; Persky, D.; Ansell, S.M.; et al. Infused peripheral blood autograft absolute lymphocyte count correlates with day 15 absolute lymphocyte count and clinical outcome after autologous peripheral hematopoietic stem cell transplantation in non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2004, 33, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.H.; Sohn, B.S.; Jang, G.; Kim, E.K.; Kang, B.W.; Kim, C.; Kim, J.E.; Kim, S.; Lee, D.H.; Lee, J.S.; et al. Higher infused CD34+ hematopoietic stem cell dose correlates with earlier lymphocyte recovery and better clinical outcome after autologous stem cell transplantation in non-Hodgkin’s lymphoma. Transfusion 2009, 49, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Joao, C.; Porrata, L.F.; Inwards, D.J.; Ansell, S.M.; Micallef, I.N.; Johnston, P.B.; Gastineau, D.A.; Markovic, S.N. Early lymphocyte recovery after autologous stem cell transplantation predicts superior survival in mantle-cell lymphoma. Bone Marrow Transplant. 2006, 37, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Inwards, D.J.; Ansell, S.M.; Micallef, I.N.; Johnston, P.B.; Hogan, W.J.; Markovic, S.N. Infused autograft lymphocyte-to-monocyte ratio and survival in T-cell lymphoma post-autologous peripheral blood hematopoietic stem cell transplantation. J. Hematol. Oncol. 2015, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Burgstaler, E.A.; Winters, J.L.; Jacob, E.K.; Gastineau, D.A.; Suman, V.J.; Inwards, D.J.; Ansell, S.M.; Micallef, I.N.; Johnston, P.B.; et al. Immunologic autograft engineering and survival in non-Hodgkin lymphoma. Biol. Blood Marrow Transplant. 2016, 22, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, D.; Gao, F.; Hidalgo, J.; Adkins, D.R.; Vij, R.; DiPersio, J.F.; Khoury, H.J. Prognostic significance of early lymphocyte recovery after post-autografting administration of GM-CSF in non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2007, 40, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Stover, D.G.; Reddy, V.K.; Shyr, Y.; Savani, B.N.; Reddy, N. Long-term impact of prior rituximab therapy and early lymphocyte recovery on auto-SCT outcome for diffuse large B-cell lymphoma. Bone Marrow Transplant. 2012, 47, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Inwards, D.J.; Ansell, S.M.; Micallef, I.N.; Johnston, P.B.; Villasboas, J.C.; Paludo, J.; Markovic, S.N. Impact of autograft-absolute lymphocyte count on survival in double/triple hit lymphomas post-autologous stem cell transplantation. Leuk. Lymphoma 2022, 63, 2436–2443. [Google Scholar] [CrossRef] [PubMed]
- Porrata, L.F.; Inwards, D.J.; Ansell, S.M.; Micallef, I.N.; Johnston, P.B.; Villasboas, J.C.; Paludo, J.; Markovic, S.N. Long-term outcome of immunologic autograft engineering. EJHaem 2022, 3, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Holtan, S.G.; Porrata, L.F.; Inwards, D.J.; Ansell, S.M.; Micallef, I.N.; Johnston, P.B.; Litzow, M.R.; Gastineau, D.A.; Markovic, S.N. Timing of autologous stem cell transplantation from last chemotherapy affects lymphocyte collection and survival in non-Hodgkin lymphoma. Br. J. Haematol. 2006, 133, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Boulassel, M.R.; Herr, A.L.; Deb Edwardes, M.D.; Galal, A.; Lachance, S.; Laneuville, P.; Routy, J.P. Early lymphocyte recovery following autologous peripheral stem cell transplantation is associated with better survival in younger patients with lymphoproliferative disorders. Hematology 2006, 11, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Jantunen, E.; Fruehauf, S. Importance of blood graft characteristics in auto-SCT: Implications for optimizing mobilization regimens. Bone Marrow Transplant. 2011, 46, 627–635. [Google Scholar] [CrossRef]
Variable | n (%) |
---|---|
Age, years (median, range) | 61 (19–73) |
Gender | |
Female | 73 (41) |
Male | 105 (59) |
Histology | |
DLBCL | 93 (52) |
MCL | 45 (25) |
PTCL | 27 (15) |
FL | 13 (8) |
BM infiltration at diagnosis | 63 (36) |
BM infiltration at mobilization of blood grafts | 3 (2) |
Treatment before mobilization 1 | |
CHOP/CHOEP/CEOP | 93 (52) |
Nordic MCL protocol | 44 (24) |
DHAP/MINE | 15 (8) |
BBBD | 14 (8) |
Other | 16 (8) |
Mobilization chemotherapy | |
HD-AraC | 82 (46) |
DHAP | 49 (28) |
ICE | 14 (8) |
BBBD | 12 (7) |
CHOP | 6 (3) |
Other | 15 (8) |
G-CSF used in mobilization | |
FIL | 49 (27) |
PEG | 85 (47) |
LIPEG | 42 (23) |
PLER use 2 | 62 (35) |
Disease status pre-AHCT 3 | |
CR I | 93 (53) |
PR I | 39 (22) |
CR II | 21 (12) |
PR II | 14 (8) |
Other | 10 (5) |
High-dose therapy | |
BEAM | 152 (85) |
BEAC | 7 (4) |
Carmustine-thiotepa | 19 (11) |
Variable | Median (Range) |
---|---|
WBC at the time of first apheresis × 109/L | 11.8 (0.9–116) |
Blood CD34+ cells × 106/L at the time of first apheresis | 30 (5–538) |
Peak blood CD34+ cell count × 106/L | 38 (6–538) |
CD34+ cell yield × 106/kg with first apheresis | 2.3 (0.1–25.5) |
Total yield of CD34+ cells × 106/kg collected | 3.6 (1.6–25.5) |
Number of aphereses, n (%) † 1 2 3 4 | 88 (50) 61 (34) 22 (12) 7 (4) |
Variable | AUC | p-Value | Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|---|
Number of CD34+ cells w/a 7-AAD (×106/kg) | 0.561 | 0.273 | 4.25 | 0.367 | 0.776 |
Number of CD34+ cells w 7-AAD (×106/kg) | 0.548 | 0.384 | 3.25 | 0.417 | 0.775 |
Number of CD34+CD133+CD38− cells (×106/kg) | 0.623 | 0.022 | 0.09 | 0.265 | 0.735 |
Number of CD3+ cells (×106/kg) | 0.706 | <0.001 | 42.8 | 0.900 | 0.469 |
Number of CD3+CD4+ cells (×106/kg) | 0.730 | <0.001 | 31.8 | 0.817 | 0.592 |
Number of CD3+CD8+ cells (×106/kg) | 0.685 | <0.001 | 28.8 | 0.717 | 0.612 |
Number of CD19+ cells (×106/kg) | 0.592 | 0.090 | 0.019 | 0.317 | 0.857 |
Number of NK cells (×106/kg) | 0.626 | 0.020 | 4.4 | 0.733 | 0.510 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | Sig. | OR | 95% CI | Sig. | |
Gender | ||||||
Female | 1 | |||||
Male | 0.950 | 0.477–1.892 | 0.885 | |||
Age (years) | ||||||
<60 | 1 | |||||
>60 | 1.372 | 0.685–2.746 | 0.372 | |||
Histology | ||||||
DLBCL | 1 | |||||
MCL | 0.337 | 0.81–1.403 | 0.135 | |||
FL | 0.729 | 0.320–1.661 | 0.451 | |||
PTCL | 1.237 | 0.434–3.532 | 0.690 | |||
Other | 0.0 | 0 | 0.999 | |||
Mobilization chemotherapy used | ||||||
HD-AraC | 1 | |||||
DHAP | 1.351 | 0.590–3.092 | 0.477 | |||
ICE | 1.618 | 0.459–5.708 | 0.454 | |||
BBBD | 0 | 0 | 0.999 | |||
Other | 2.810 | 0.697–11.320 | 0.146 | |||
G-CSF in mobilization | ||||||
FIL | 1 | |||||
PEG | 1.855 | 0.684–5.028 | 0.225 | |||
LIPEG | 1.315 | 0.421–4.104 | 0.637 | |||
PLER use | ||||||
No | 1 | |||||
Yes | 1.633 | 0.765–3.486 | 0.205 | |||
Disease status pre-AHCT | ||||||
I CR | 1 | |||||
I PR | 0.572 | 0.241–1.354 | 0.204 | |||
II CR | 0.448 | 0.170–1.400 | 0.182 | |||
II PR | 0.381 | 0.112–1.295 | 0.122 | |||
PD | 0.244 | 0.044–1.353 | 0.107 | |||
Collection parameters | ||||||
Total CD34+ cell yield > 4.25 × 106/kg | 2.091 | 0.896–4.880 | 0.088 | 1.160 | 0.242–5.566 | 0.853 |
Peak blood CD34+ number > 45 × 109/L | 1.654 | 0.832–3.287 | 0.151 | 5.157 | 1.301–20.444 | 0.020 |
Number of apheresis | 1.186 | 0.551–2.553 | 0.662 | |||
Graft components (×106/kg) | ||||||
CD34+ cells in the graft with 7-AAD > 3.25 | 2.290 | 1.003–5.229 | 0.049 | 1.101 | 0.260–4.666 | 0.897 |
CD34+CD133+CD38− cells > 0.09 | 2.680 | 1.194–6.017 | 0.017 | 1.615 | 0.566–4.612 | 0.371 |
CD3+cells > 42.8 | 7.962 | 2.891–21.925 | <0.001 | 5.429 | 0.898–32.817 | 0.065 |
CD3+CD4+ cells > 31.8 | 6.459 | 2.713–15.375 | <0.001 | 2.462 | 0.599–10.111 | 0.211 |
CD3+CD8+ cells > 28.8 | 3.994 | 1.788–8.919 | <0.001 | 1.751 | 0.427–7.179 | 0.437 |
NK cells > 4.4 | 2.635 | 1.192–5.824 | 0.017 | 1.203 | 0.384–3.767 | 0.750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partanen, A.; Turunen, A.; Kuittinen, O.; Kuitunen, H.; Mäntymaa, P.; Varmavuo, V.; Jantunen, E. Predictive Factors for Early Immune Recovery in NHL Patients after Autologous Transplantation: A Multicenter Prospective Study. Cancers 2024, 16, 2550. https://doi.org/10.3390/cancers16142550
Partanen A, Turunen A, Kuittinen O, Kuitunen H, Mäntymaa P, Varmavuo V, Jantunen E. Predictive Factors for Early Immune Recovery in NHL Patients after Autologous Transplantation: A Multicenter Prospective Study. Cancers. 2024; 16(14):2550. https://doi.org/10.3390/cancers16142550
Chicago/Turabian StylePartanen, Anu, Antti Turunen, Outi Kuittinen, Hanne Kuitunen, Pentti Mäntymaa, Ville Varmavuo, and Esa Jantunen. 2024. "Predictive Factors for Early Immune Recovery in NHL Patients after Autologous Transplantation: A Multicenter Prospective Study" Cancers 16, no. 14: 2550. https://doi.org/10.3390/cancers16142550
APA StylePartanen, A., Turunen, A., Kuittinen, O., Kuitunen, H., Mäntymaa, P., Varmavuo, V., & Jantunen, E. (2024). Predictive Factors for Early Immune Recovery in NHL Patients after Autologous Transplantation: A Multicenter Prospective Study. Cancers, 16(14), 2550. https://doi.org/10.3390/cancers16142550