Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Materials and Methods
1.2. How Much Weight Must a Person Lose to Reduce Cancer Risk?
1.3. Is There Evidence That Non-Traditional Caloric Restriction Diets Impact Cancer Oucomes?
2. Strategies to Optimize the Benefits of Lifestyle and Caloric Restriction Diets
2.1. Weight Management (Weight Loss and Prevention of Weight Regain) Medications
2.2. MBS Evidence for Weight Loss and Weight Maintenance
2.3. Evidence That GLP-1 RAs Influence Cancer Risk
2.4. Mechanisms behind the Impact of GLP-1 and GIP-1RAs on Cancer
2.5. Clinical Cancer Biomarker Findings
2.6. Epidemiologic Studies: Multiple Cancers Evaluated
2.7. Epidemiologic Studies: Single Cancer Evaluated
3. Discussion
Does Short-Term Diet Adherence Predict Longer-Term Metabolic Benefit?
4. NIH Solicits Studies to Evaluate Weight Loss Pharmacotherapy and Cancer
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Authors’ Disclaimer
References
- Greco, F.; Piccolo, C.L.; D’Andrea, V.; Scardapane, A.; Beomonte Zobel, B.; Mallio, C.A. Fat Matters: Exploring Cancer Risk through the Lens of Computed Tomography and Visceral Adiposity. J. Clin. Med. 2024, 13, 453. [Google Scholar] [CrossRef]
- Luo, J.; Hendryx, M.; Manson, J.E.; Figueiredo, J.C.; LeBlanc, E.S.; Barrington, W.; Rohan, T.E.; Howard, B.V.; Reding, K.; Ho, G.Y.; et al. Intentional Weight Loss and Obesity-Related Cancer Risk. JNCI Cancer Spectr. 2019, 3, pkz054. [Google Scholar] [CrossRef]
- O’Connor, S.G.; Boyd, P.; Bailey, C.P.; Shams-White, M.M.; Agurs-Collins, T.; Hall, K.; Reedy, J.; Sauter, E.R.; Czajkowski, S.M. Perspective: Time-Restricted Eating Compared with Caloric Restriction: Potential Facilitators and Barriers of Long-Term Weight Loss Maintenance. Adv. Nutr. 2021, 12, 325–333. [Google Scholar] [CrossRef]
- Parker, E.D.; Folsom, A.R. Intentional weight loss and incidence of obesity-related cancers: The Iowa Women’s Health Study. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 1447–1452. [Google Scholar] [CrossRef]
- Look, A.R.G.; Yeh, H.C.; Bantle, J.P.; Cassidy-Begay, M.; Blackburn, G.; Bray, G.A.; Byers, T.; Clark, J.M.; Coday, M.; Egan, C.; et al. Intensive Weight Loss Intervention and Cancer Risk in Adults with Type 2 Diabetes: Analysis of the Look AHEAD Randomized Clinical Trial. Obesity 2020, 28, 1678–1686. [Google Scholar]
- Chlebowski, R.T.; Aragaki, A.K.; Anderson, G.L.; Pan, K.; Neuhouser, M.L.; Manson, J.E.; Thomson, C.A.; Mossavar-Rahmani, Y.; Lane, D.S.; Johnson, K.C.; et al. Dietary Modification and Breast Cancer Mortality: Long-Term Follow-Up of the Women’s Health Initiative Randomized Trial. J. Clin. Oncol. 2020, 38, 1419–1428. [Google Scholar] [CrossRef]
- Shi, D.; Fang, G.; Chen, Q.; Li, J.; Ruan, X.; Lian, X. Six-hour time-restricted feeding inhibits lung cancer progression and reshapes circadian metabolism. BMC Med. 2023, 21, 417. [Google Scholar] [CrossRef]
- Marinac, C.R.; Nelson, S.H.; Breen, C.I.; Hartman, S.J.; Natarajan, L.; Pierce, J.P.; Flatt, S.W.; Sears, D.D.; Patterson, R.E. Prolonged Nightly Fasting and Breast Cancer Prognosis. JAMA Oncol. 2016, 2, 1049–1055. [Google Scholar] [CrossRef]
- Horvath, L.; Mraz, M.; Jude, E.B.; Haluzik, M. Pharmacotherapy as an augmentation to bariatric surgery for obesity. Drugs 2024, 84, 933–952. [Google Scholar] [CrossRef]
- Shaefer, C.F., Jr.; Kushner, P.; Aguilar, R. User’s guide to mechanism of action and clinical use of GLP-1 receptor agonists. Postgrad. Med. 2015, 127, 818–826. [Google Scholar] [CrossRef]
- FDA. Orlistat (Marketed as Alli and Xenical) Information; FDA: Silver Spring, MD, USA, 2015. Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/orlistat-marketed-alli-and-xenical-information (accessed on 24 September 2024).
- Johnson, D.B.; Quick, J. Topiramate and Phentermine; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sherman, M.M.; Ungureanu, S.; Rey, J.A. Naltrexone/bupriprion ER (Contrave). Pharm. Ther. 2016, 41, 166–168. [Google Scholar]
- Caffrey, M.K. Liraglutide approved under different name to treat obesity. AJMC 2015, 21. [Google Scholar]
- FDA. FDA Approves New Drug Treatment for Chronic Weight Management, First Since 2014; FDA: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-chronic-weight-management-first-2014 (accessed on 24 September 2024).
- Abbasi, J. FDA Green-Lights Tirzepatide, Marketed as Zepbound, for Chronic Weight Management. JAMA 2023, 330, 2143–2144. [Google Scholar] [CrossRef]
- FDA. FDA Approves Treatment for Weight Management in Patients with Bardet-Biedl Syndrome Aged 6 or Older; FDA: Silver Spring, MD, USA, 2020. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-weight-management-patients-bardet-biedl-syndrome-aged-6-or-older (accessed on 24 September 2024).
- Bays, H.E.; Kozlovski, P.; Shao, Q.; Proot, P.; Keefe, D. Licogliflozin, a Novel SGLT1 and 2 Inhibitor: Body Weight Effects in a Randomized Trial in Adults with Overweight or Obesity. Obesity 2020, 28, 870–881. [Google Scholar] [CrossRef]
- FDA. Treatment of Prader-Willi Syndrome; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Heymsfield, S.B.; Coleman, L.A.; Miller, R.; Rooks, D.S.; Laurent, D.; Petricoul, O.; Praestgaard, J.; Swan, T.; Wade, T.; Perry, R.G.; et al. Effect of Bimagrumab vs. Placebo on Body Fat Mass Among Adults with Type 2 Diabetes and Obesity: A Phase 2 Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e2033457. [Google Scholar] [CrossRef]
- Klonoff, D.C.; Buse, J.B.; Nielsen, L.L.; Guan, X.; Bowlus, C.L.; Holcombe, J.H.; Wintle, M.E.; Maggs, D.G. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr. Med. Res. Opin. 2008, 24, 275–286. [Google Scholar] [CrossRef]
- McAdam-Marx, C.; Nguyen, H.; Schauerhamer, M.B.; Singhal, M.; Unni, S.; Ye, X.; Cobden, D. Glycemic Control and Weight Outcomes for Exenatide Once Weekly Versus Liraglutide in Patients with Type 2 Diabetes: A 1-Year Retrospective Cohort Analysis. Clin. Ther. 2016, 38, 2642–2651. [Google Scholar] [CrossRef]
- Lee, J.; Kim, R.; Kim, M.H.; Lee, S.H.; Cho, J.H.; Lee, J.M.; Jang, S.A.; Kim, H.S. Weight loss and side-effects of liraglutide and lixisenatide in obesity and type 2 diabetes mellitus. Prim. Care Diabetes 2023, 17, 460–465. [Google Scholar] [CrossRef]
- Bonora, E.; Frias, J.P.; Tinahones, F.J.; Van, J.; Malik, R.E.; Yu, Z.; Mody, R.; Bethel, A.; Kwan, A.Y.M.; Cox, D.A. Effect of dulaglutide 3.0 and 4.5 mg on weight in patients with type 2 diabetes: Exploratory analyses of AWARD-11. Diabetes Obes. Metab. 2021, 23, 2242–2250. [Google Scholar] [CrossRef]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’Neil, P.M.; Rosenstock, J.; Sorrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T. STEP 8 Investigators. Effect of weekly subcutaneous semaglutide vs. daily liraglutide on body weight in adults with overweight or obesity without diabetes. The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef]
- Knop, F.K.; Aroda, V.R.; do Vale, R.D.; Holst-Hansen, T.; Laursen, P.N.; Rosenstock, J.; Rubino, D.M.; Garvey, W.T.; Investigators, O. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 402, 705–719. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Sjoholm, K.; Carlsson, L.M.S.; Svensson, P.A.; Andersson-Assarsson, J.C.; Kristensson, F.; Jacobson, P.; Peltonen, M.; Taube, M. Association of Bariatric Surgery with Cancer Incidence in Patients with Obesity and Diabetes: Long-term Results from the Swedish Obese Subjects Study. Diabetes Care 2022, 45, 444–450. [Google Scholar] [CrossRef]
- Aronne, L.J.; Sattar, N.; Horn, D.B.; Bays, H.E.; Wharton, S.; Lin, W.Y.; Ahmad, N.N.; Zhang, S.; Liao, R.; Bunck, M.C.; et al. Continued Treatment with Tirzepatide for Maintenance of Weight Reduction in Adults with Obesity: The SURMOUNT-4 Randomized Clinical Trial. JAMA 2024, 331, 38–48. [Google Scholar] [CrossRef]
- Hood, M.M.; Corsica, J.; Bradley, L.; Wilson, R.; Chirinos, D.A.; Vivo, A. Managing severe obesity: Understanding and improving treatment adherence in bariatric surgery. J. Behav. Med. 2016, 39, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Sarwer, D.B.; Wadden, T.A.; Moore, R.H.; Baker, A.W.; Gibbons, L.M.; Raper, S.E.; Williams, N.N. Pre-operative eating behavior, post-operative dietary adherence, and weight loss afer gastric bypass surgery. Surg. Obes. Relat. Dis. 2008, 4, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Verma, S.; Vaidya, S.; Kalia, K.; Tiwari, V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed. Pharmacother. 2018, 108, 952–962. [Google Scholar]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef]
- Alharbi, S.H. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Ther. Adv. Endocrinol. Metabol. 2024, 15, 20420188231222367. [Google Scholar] [CrossRef]
- Kim, S.J.; Nian, C.; Karunakaran, S.; Clee, S.M.; Isales, C.M.; McIntosh, C.H. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS ONE 2012, 7, e40156. [Google Scholar] [CrossRef]
- Chronic Inflammation. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/chronic-inflammation (accessed on 23 May 2024).
- Wang, F.; Cai, H.; Gu, K.; Shi, L.; Yu, D.; Zhang, M.; Zheng, W.; Zheng, Y.; Bao, P.; Shu, X.O. Adherence to Dietary Recommendations among Long-Term Breast Cancer Survivors and Cancer Outcome Associations. Cancer Epidemiol. Biomark. Prev. 2020, 29, 386–395. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Calanna, S.; Kushner, R.F. Once-Weekly Semaglutide in Adults with Overweight or Obesity. Reply. N. Engl. J. Med. 2021, 385, e4. [Google Scholar]
- Wang, J.; Kim, C.H. Differential Risk of Cancer Associated with Glucagon-like Peptide-1 Receptor Agonists: Analysis of Real-world Databases. Endocr. Res. 2022, 47, 18–25. [Google Scholar] [CrossRef]
- Wang, L.; Xu, R.; Kaelber, D.C.; Berger, N.A. Glucagon-Like Peptide 1 Receptor Agonists and 13 Obesity-Associated Cancers in Patients with Type 2 Diabetes. JAMA Netw. Open 2024, 7, e2421305. [Google Scholar] [CrossRef]
- Bezin, J.; Gouverneur, A.; Penichon, M.; Mathieu, C.; Garrel, R.; Hillaire-Buys, D.; Pariente, A.; Faillie, J.L. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care 2022, 46, 384–390. [Google Scholar] [CrossRef]
- Nagendra, L.; Bg, H.; Sharma, M.; Dutta, D. Semaglutide and cancer: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2023, 17, 102834. [Google Scholar] [CrossRef]
- Cui, H.; Wang, Y.; Yang, S.; He, G.; Jiang, Z.; Gang, X.; Wang, G. Antidiabetic medications and the risk of prostate cancer in patients with diabetes mellitus: A systematic review and meta-analysis. Pharmacol. Res. 2022, 177, 106094. [Google Scholar] [CrossRef]
- Lu, S.; Yin, H.; Yu, O.H.Y.; Azoulay, L. Incretin-Based Drugs and the Incidence of Prostate Cancer Among Patients with Type 2 Diabetes. Epidemiology 2022, 33, 563–571. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Piccoli, G.F.; Mesquita, L.A.; Stein, C.; Aziz, M.; Zoldan, M.; Degobi, N.A.H.; Spiazzi, B.F.; Lopes, G.L., Jr.; Colpani, V.; Gerchman, F. Do GLP-1 receptor agonists increase the risk of breast cancer? A systematic review and meta-analysis. J. Clin. Endocrinol. Metabol. 2021, 106, 912–921. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, J.; Ping, F.; Yang, N.; Huang, J.; Li, Y.; Xu, L.; Li, W.; Zhang, H. Association of Glucagon-Like Peptide-1 Receptor Agonist Use with Risk of Gallbladder and Biliary Diseases: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern. Med. 2022, 182, 513–519. [Google Scholar] [CrossRef]
- Ueda, P.; Wintzell, V.; Melbye, M.; Eliasson, B.; Svensson, A.M.; Franzen, S.; Gudbjornsdottir, S.; Hveem, K.; Jonasson, C.; Svanstrom, H.; et al. Use of incretin-based drugs and risk of cholangiocarcinoma: Scandinavian cohort study. Diabetologia 2021, 64, 2204–2214. [Google Scholar] [CrossRef]
- Arvanitakis, K.; Koufakis, T.; Kosta, K.; Germanidis, G. How far beyond diabetes can the benefits of glucagon-like peptide-1 agonists go? A review of the evidence on their effects on hepatocellular carcinoma. Cancers 2022, 14, 4651. [Google Scholar] [CrossRef] [PubMed]
- Giorgino, F.; Penfornis, A.; Pechtner, V.; Gentilella, R.; Corcos, A. Adherence to antihyperglycemic medications and glucagon-like peptide 1-receptor agonists in type 2 diabetes: Clinical consequences and strategies for improvement. Patient Prefer. Adherence 2018, 12, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Feldman, R.; Callaway Kim, K.; Rothenberger, S.; Korytkowski, M.; Hernandez, I.; Gellad, W.F. Evaluation of Out-of-Pocket Costs and Treatment Intensification with an SGLT2 Inhibitor or GLP-1 RA in Patients with Type 2 Diabetes and Cardiovascular Disease. JAMA Netw. Open 2023, 6, e2317886. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, Y.; Krumholz, H.M. Racial and Ethnic Disparities in Financial Barriers Among Overweight and Obese Adults Eligible for Semaglutide in the United States. J. Am. Heart Assoc. 2022, 11, e025545. [Google Scholar] [CrossRef]
- Karagiannis, T.; Bekiari, E.; Tsapas, A. Socioeconomic aspects of incretin-based therapy. Diabetologia 2023, 66, 1859–1868. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Luo, J.; Anderson, G.L.; Barrington, W.; Reding, K.; Simon, M.S.; Manson, J.E.; Rohan, T.E.; Wactawski-Wende, J.; Lane, D.; et al. Weight loss and breast cancer incidence in postmenopausal women. Cancer 2019, 125, 205–212. [Google Scholar] [CrossRef]
- Williamson, D.A.; Anton, S.D.; Han, H.; Champagne, C.M.; Allen, R.; Leblanc, E.; Ryan, D.H.; Rood, J.; McManus, K.; Laranjo, N.; et al. Early behavioral adherence predicts short and long-term weight loss in the POUNDS LOST study. J. Behav. Med. 2010, 33, 305–314. [Google Scholar] [CrossRef]
- Unick, J.L.; Neiberg, R.H.; Hogan, P.E.; Cheskin, L.J.; Dutton, G.R.; Jeffery, R.; Nelson, J.A.; Pi-Sunyer, X.; West, D.S.; Wing, R.R.; et al. Weight change in the first 2 months of a lifestyle intervention predicts weight changes 8 years later. Obesity 2015, 23, 1353–1356. [Google Scholar] [CrossRef]
- Bendotti, G.; Montefusco, L.; Lunati, M.E.; Usuelli, V.; Pastore, I.; Lazzaroni, E.; Assi, E.; Seelam, A.J.; El Essawy, B.; Jang, J.; et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol. Res. 2022, 182, 106320. [Google Scholar] [CrossRef] [PubMed]
Medication | Mechanism of Action | Treatment Route | Most Common AEs | FDA Approved (Y/N) | If Y, Date | Refs. |
---|---|---|---|---|---|---|
Phentermine * | stimulant | oral daily | tachycardia, dry mouth, and GI | Y | 1959 | [5] |
Orlistat | pancreatic lipase inhibition | oral thrice daily | GI and back pain | Y | 1999 | [11] |
Phentermine */topiramate SR | stimulant and anticonvulsant | oral daily | dizziness, dry mouth, and GI | Y | 2012 | [12] |
Naltrexone/bupropion SR | opioid receptor antagonist/dopamine/noradrenaline reuptake inhibitor | oral bid | GI, headache, flushing, dry mouth, and dizziness | Y | 4/2015 | [13] |
Liraglutide | GLP-1RA | subq daily | GI | Y | 12/2014 | [14] |
Semaglutide | GLP-1RA | subq weekly | GI | Y | 4/2021 | [15] |
Tirzepatide | GLP-1/GIP-1RA | subq weekly | GI and hypoglycemia (when given to those on insulin) | Y | 11/2023 | [16] |
Setmelanotide | melanocortin-4RA | subq daily | ↑ skin pigmentation, GI, and penile erection | Y ** | 11/2020 | [17] |
Licogliflozin | sodium-glucose transporter-1 and -2 inhibitors | oral daily | GI | N | [18] | |
Tesofensine | noradrenaline-, dopamine-, and serotonin-uptake inhibitors | oral daily | GI and insomnia | Y *** | 3/2021 | [19] |
Bimagrumab | activin type IIRA | IV | GI and muscle spasms | N | [20] |
Medication | Mechanism | Administration | FDA Approved (Y/N) | Population | Mean Weight Loss | Refs. | |||
---|---|---|---|---|---|---|---|---|---|
For T2DM | For Obesity | TOS | 1 Year | Study End | |||||
Exenatide | GLP-1RA | 10 mcg sq bid | Y | N | T2DM | 156 wk | na | 5.3 kg | [21] |
Exenatide ER | GLP-1RA | sq weekly (dose not listed) | Y | N | T2DM | 52 wk | 2.2 kg | 2.2 kg | [22] |
Lixisenatide | GLP-1RA | sq daily (dose not listed) | Y | N | T2DM | 36 wk | na | 0.9 kg | [23] |
Dulaglutide | GLP-1RA | 4.5 mg sq weekly | Y | N | T2DM | 36 wk | na | 4.7 kg | [24] |
Liraglutide | GLP-1RA | 3.0 mg sq daily | Y | Y | obese, no DM | 68 w | 7% | 6.40% | [25] |
Semaglutide | GLP-1RA | 2.4 mg sq weekly | Y | Y | obese, no DM | 68 w | 15.80% | 15.80% | [25] |
Semaglutide | GLP-1RA | 50 mg oral daily | Y | N | obese, no DM | 68 w | na | 15.1% | [26] |
Tirzepatide | GLP/GIP-1RA | 15 mg sq weekly | Y | Y | obese, no DM | 72 w | 19.90% | 20.90% | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauter, E.R.; Agurs-Collins, T. Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers 2024, 16, 3275. https://doi.org/10.3390/cancers16193275
Sauter ER, Agurs-Collins T. Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers. 2024; 16(19):3275. https://doi.org/10.3390/cancers16193275
Chicago/Turabian StyleSauter, Edward R., and Tanya Agurs-Collins. 2024. "Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity" Cancers 16, no. 19: 3275. https://doi.org/10.3390/cancers16193275
APA StyleSauter, E. R., & Agurs-Collins, T. (2024). Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers, 16(19), 3275. https://doi.org/10.3390/cancers16193275