Prostate-Specific Membrane Antigen-Positron Emission Tomography-Guided Radiomics and Machine Learning in Prostate Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodological Studies
3. Primary Prostate Carcinoma Discrimination and Characterization
3.1. 68Ga-PSMA-11
3.2. 18F-PSMA-1007
3.3. 18F-DCFPyl
4. Predicting Biochemical Recurrence
68Ga-PSMA-11
5. Machine Learning for Hotspot Classification
6. Predicting Treatment Response and Overall Survival
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mayerhoefer, M.; Materka, A.; Langs, G.; Häggström, I.; Sczypinski, P.; Gibbs, P.; Cook, G. Introduction to radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.; Deist, T.; Peerlings, J.; de Jong, E.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.; Jichems, A.; et al. Trustworthy Artifical Intelligence in medical imaging. PET Clin. 2022, 17, 1–12. [Google Scholar]
- Yousefiriz, F.; Deazes, P.; Amyar, A.; Ruan, S.; Saboury, B.; Rahmin, A. AI-based detection, classification and prediction/prognosis in medical imaging towards radiophenomics. PET Clin. 2022, 17, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.; Nir, G.; Salcudean, S. A new era: Artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 2019, 16, 391–403. [Google Scholar] [CrossRef]
- Hatt, M.; Chez Le Rest, C.; Tixier, F.; Badic, B.; Schick, U.; Visvikis, D. Radiomics: Data are also images. J. Nucl. Med. 2019, 60, 38S–44S. [Google Scholar] [CrossRef]
- Koçak, B.; Durmaz, E.; Ates, E.; Kliçkesmez, O. Radiomics with artificial intelligence: A practical guide for beginners. Diagn. Interv. Radiol. 2019, 25, 485–495. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statitistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Alberts, I.; Seifert, R.; Werner, R.; Rowe, S.; Afshar-Oromieh, A. Prostate-specific membrane antigen: Diagnostics. PET Clin. 2024, 19, 351–362. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, T.; Zhang, J.; Gao, F.; Yang, L.; Tao, W. The application of radiolabeled targeted molecular probes for the diagnosis and treatment of prostate cancer. Korean J. Radiol. 2023, 24, 574–589. [Google Scholar] [CrossRef]
- Kocak, B.; Baessler, B.; Bakas, S.; Cuoccolo, R.; Fedorov, A.; Maier-Hein, L.; Mercaldo, N.; Müller, H.; Orlac, F.; Pinto Dos Santos, N.; et al. Checklist for Evaluation of Radiomics Research (CLEAR): A step-by-step reporting procedure guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 2023, 14, 75. [Google Scholar] [CrossRef]
- Kocak, B.; D’Antonoli, T.; Mercaldo, N.; Baessler, B.; Ambrosini, I.; Andreychenko, A.; Bakas, S.; Beets-Tan, R.; Bressem, K.; Buvat, I.; et al. Methodological Radiomics Score (METRICS): A quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging 2024, 15, 8. [Google Scholar] [CrossRef]
- Fooladi, M.; Soleymani, Y.; Rahmin, A.; Farzafenar, S.; Aghahosseini, F.; Seyyedi, N.; Zadeh, P. Impact of different reconstruction algorithms and setting parameters on radiomic features of PSMA PET images: A preliminary study. Eur. J. Radiol. 2024, 172, 111349. [Google Scholar] [CrossRef]
- Pasini, G.; Russo, G.; Mantarro, C.; Bini, F.; Richiusa, S.; Morgante, L.; Comelli, A.; Russo, G.I.; Sabini, M.; Cosentino, S.; et al. A critical analysis of the robustness of radiomics to variations in segmentation methods in 18F-PSMA-1007 PET images of patients affected by prostate cancer. Diagnostics 2023, 13, 3640. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Chan, J.; Haworth, A.; Dubowitz, D.; Kneebone, A.; Reynolds, H. Robustness of magnetic resonance imaging and positron emission tomography radiomic features in prostate cancer: Impact on recurrence prediction after radiation therapy. Phys. Imaging Radiat. Oncol. 2024, 29, 100530. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, J.; Francis, R.; Hassan, G.; Rowshanfarzad, P.; Ong, J.; Jeraj, R.; Barry, N.; Hagan, T.; Ebert, M. Prospective inter- and intra-tracer repeatability analysis of radiomics features in (68Ga)Ga-PSMA-11 and (18F)F-PSMA-1007 PET scans in metastatic prostate cancer. Br. J. Radiol. 2023, 96, 20221178. [Google Scholar] [CrossRef]
- Werner, R.; Habacha, B.; Lütje, S.; Bundshuh, L.; Kosmala, A.; Essler, M.; Derlin, T.; Higuchi, T.; Lapa, C.; Buck, A.; et al. Lack of repeatability of radiomic features derived from PET scans: Results from a 18F-DCFPyL test-retest cohort. Prostate 2023, 83, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Bosaily, E.; Brown, L.; Gabe, R.; Kaplan, R.; Parmar, M.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef]
- Le, J.; Tan, N.; Shkolyar, E.; Lu, D.; Kwan, L.; Marks, L.; Huang, J.; Margolis, D.; Raman, S.; Reiter, R. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: Correlation with whole-mount histopathology. Eur. Urol. 2015, 6, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Mouraviev, V.; Villers, A.; Bostwick, D.; Wheeler, T.; Montironi, R.; Polascik, T. Understanding the pathologic features of focality, grade and tumor volume of early-stage prostate cancer as a foundation for parenchyma-sparing prostate cancer therapies: Active surveillance and focal targeted therapy. BJU Int. 2011, 108, 1074–1085. [Google Scholar] [CrossRef] [PubMed]
- Zamboglou, C.; Carles, M.; Fechter, T.; Kiefer, S.; Reichel, K.; Fassbender, T.; Bronsert, P.; Koeber, G.; Schiling, O.; Ruf, J.; et al. Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer- a comparison study with histology reference. Theranostics 2019, 9, 2595–2605. [Google Scholar] [CrossRef]
- Zamboglou, C.; Bettermann, A.; Gratzke, C.; Mix, M.; Ruf, J.; Kiefer, S.; Jilg, C.; Benndorf, M.; Spohn, S.; Fassbender, T.; et al. Uncovering the invisible- prevalence, characteristics, and radiomics feature-based detection of visually undetectable intraprostatic tumor lesions in 68Ga-PSMA-11 PET images of patients with primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Hu, S.; Lin, X.; Zou, Q.; Zou, M.; Zhang, Z.; Xu, L.; Jiang, N.; Zhang, Y. Machine learning-based prediction of invisible intraprostatic cancer lesions on 68Ga-PSMA-11 PET/CT in patients with primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1523–1534. [Google Scholar] [CrossRef]
- Ghezzo, S.; Mapelli, P.; Bezzi, C.; Gajate, A.; Brembilla, G.; Gotuzzo, I.; Russo, T.; Preza, E.; Cucchiara, V.; Ahled, N.; et al. Role of (68Ga)Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2548–2560. [Google Scholar] [CrossRef]
- Solari, E.; Gafita, A.; Schahoff, S.; Bogdanovic, B.; Asiares, A.; Amiel, T.; Hui, W.; Rauscher, I.; Visvikis, D.; Maurer, T.; et al. The added value of PSMA PET/MR radiomics for prostate cancer staging. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Bian, S.; Zhu, D.; Yuan, Y.; Pan, K.; Pan, Z.; Feng, X.; Tang, K.; Yang, Y. Machine learning-based radiomics for multiple primary prostate cancer biological characteristic prediction with 18F-PSMA-1007 PET: Comparison among different volume segmentation thresholds. La Radiol. Medica 2020, 127, 1170–1178. [Google Scholar] [CrossRef]
- Basso Dias, A.; Mirshahvalad, S.; Ortega, C.; Perlis, N.; Berlin, A.; van der Kwast, T.; Ghai, S.; Jhaveri, K.; Metser, U.; Haider, M.; et al. The role of (18F)-DCFPyL PET/MRI radiomics for pathological grade group prediction in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2167–2176. [Google Scholar] [CrossRef]
- Cysouw, M.; Jansen, B.; van de Brug, T.; Oprea-Lager, D.; Pfaehker, E.; de Vries, B.; van Moorselaar, R.; Hoekstra, A.; Vis, A.; Boellaard, R. Machine learning-based analysis of (18F)DCFPyL PET radiomics for risk stratification in primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 340–349. [Google Scholar] [CrossRef]
- Guerra, A.; Caseiro Alves, F.; Maes, K.; Maio, R.; Villeirs, G.; Mourino, H. Risk biomarkers for biochemical recurrence after radical prostatectomy for prostate cancer using clinical and MRI-derived semantic features. Cancers 2023, 15, 5296. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; Van den Bergh, R.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: A systematic review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Papp, L.; Spielvogel, C.; Grubmüller, B.; Grahovac, M.; Krajnc, D.; Ecsedi, B.; Sareshgi, R.; Mohamad, D.; Hamboeck, M.; Rausch, I.; et al. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with (68Ga)Ga-PSMA-11 PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Moazemi, S.; Khurshid, Z.; Erle, A.; Lütje, S.; Essler, M.; Schultz, T.; Bundshuh, R. Machine learning facilitates hotspot classification in PSMA-PET/CT with Nuclear Medicine Specialist accuracy. Diagnostics 2020, 10, 622. [Google Scholar] [CrossRef]
- Capobianco, N.; Sibille, L.; Chantidasai, M.; Gafita, A.; Langbein, T.; Platsch, G.; Solari, E.; Shah, V.; Spottiswoode, B.; Eiber, M.; et al. Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Lawal, I.; Abubakar, S.; Ndlovu, H.; Mokoala, K.; More, S.; Sathekge, M. Advances in radioligand theranostics in oncology. Mol. Diagn. Ther. 2024, 28, 265–289. [Google Scholar] [CrossRef]
- Khurshid, Z.; Ahmadzadefahr, H.; Gaertner, F.; Papp, L.; Zsoter, N.; Essler, M.; Bundschuh, R. Role of textural heterogeneity parameters for 177Lu-PSMA therapy via response prediction. Oncotarget 2018, 9, 33312–33321. [Google Scholar] [CrossRef]
- Moazemi, S.; Erle, A.; Khurshid, Z.; Lütje, S.; Muders, M.; Essler, M.; Schultz, T.; Bundschuh, R. Decision support for treatment with 177Lu-PSMA: Machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters. Ann. Trans. Med. 2021, 9, 818. [Google Scholar] [CrossRef]
- Roll, W.; Schindler, P.; Masthoff, M.; Seifert, R.; Schlack, K.; Bögemann, M.; Stegger, L.; Weckesser, M.; Rahbar, K. Evaluation of 68Ga-PSMA-11 PET-MRI in patients with advanced prostate cancer receiving 177Lu-PSMA-617 therapy: A radiomics analysis. Cancers 2021, 13, 3489. [Google Scholar] [CrossRef]
- Assadi, M.; Manafi-Farid, R.; Jafari, E.; Keshavarz, A.; Divband, G.; Moradi, M.; Adinepouhr, Z.; Samimi, R.; Dadgar, H.; Jokar, N.; et al. Predictive and prognostic potential of pretreatment 68Ga-PSMA PET tumor heterogeneity index in patients with metastatic castration-resistant prostate cancer treated with 177Lu-PSMA. Front. Oncol. 2022, 12, 1066926. [Google Scholar] [CrossRef] [PubMed]
- Whybra, P.; Parkinson, C.; Foley, K.; Staffurth, J.; Spezi, E. Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging. Sci. Rep. 2019, 9, 9649. [Google Scholar] [CrossRef] [PubMed]
- Van de Wiele, C.; Kruse, V.; Smeets, P.; Sathekge, M.; Maes, A. Predictive and prognostic value of metabolic tumor volume and total lesion glycolysis in solid tumors. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 290–301. [Google Scholar] [CrossRef]
- McNeal, J. Prostate cancer volume. Am. J. Surg. Pathol. 1997, 21, 1392–1393. [Google Scholar] [CrossRef]
- Schned, A.; Wheeler, K.; Hodoroski, C.; Heaney, J.; Enstoff, M.; Amdur, R.; Harris, R. Tissue-Shrinkage correction factor in the calculation of prostate cancer volume. Am. J. Surg. Pathol. 1996, 20, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
Authors | Tracer | Nb of Lesions/Pts | Methodology | Results |
---|---|---|---|---|
Fooladi et al. [12] | 68Ga-PSMA-11 | 30/8 | Q.Clear vs. OSEM/41%threshold/LIFEx (129 features) | OSEM yields more reproducible results than Q.Clear |
Pasini et al. [13] | 18F-PSMA-1007 | 78/78 (primary) | Manual vs. region growing vs. thresholding, pyradiomics (1781 features) | GLCM features most reproducible, shape features least reproducible |
Dutta et al. [14] | 68Ga-PSMA-11 | 142/142 (primary) | Automated versus manually delineated, pyradiomics (1037 features) | 19% of features proved reproducible |
Kendrick et al. [15] | 68Ga-PSMA-11 and 18F-PSMA-1007 | 18/75 | Intra- 68Ga-PSMA-11 (5 pts), intra-18F-PSMA-1007 (5 pts) and inter-tracer (8 pts), threshold-based, Pyradiomics (107 features) | Most reproducible features on intra-68Ga-PSMA-11—inter-tracer poorly reproducible |
Werner et al. [16] | 18F-DCFPyl | 21/230 | Manual delineation, Interview software (29 features) | Only entropy and homogeneity proved reproducible |
Authors | Tracer/M-Score | Nb of ppc Studied | Methodology and Software Used | Results |
---|---|---|---|---|
Zamboglou et al. [20] | 68Ga-PSMA-11 /moderate | 20/40 pts | 2 × 2 × 2 mm3 voxels, wavelet filtered (ppc (40%), entire prostate (CT), delta both volumes//versus histology (volumetry)/in-house MATLAB software | ppc volume (40%) significantly smaller than histologic volumes/QSZHGE best performing feature |
Zamboglou et al. [21] | 68Ga-PSMA-11 /Good | 20/52 pts | 2 × 2 × 2 mm3 voxels, locally binary filtering (LBP), pyradiomics | Best-performing features were LBP-SZNUN and LBP-SAE |
Yi et al. [22] | 68Ga-PSMA-11 /Good | 64/36 | Prostate manually segmented, 3 × 3 × 3 mm3, pyradiomics 3.1.0 | RF model (10 most perfoming features), AUC = 0.903 |
Ghezzo et al. [23] | 68Ga-PSMA-11 /Moderate | 43 | Prostate manually segmented, 2 × 2 × 2 mm3 voxels, pyradiomics/ISUP prediction | LR, SVM, K-nearest neighbor, best-performing model 87.6% acuracy versus 85.9% for biopsy |
Solari et al. [24] | 68Ga-PSMA-11 /Moderate | 101 | Prostate manually segmented/fuzzy locally adaptive Bayesian based segmentation, voxel-size not mentionned, pyradiomics | SVM, ACC 87% |
Yao et al. [25] | 18F-PSMA-1007 /Moderate | 173 | Region growing 30%/40%/50%/60%, 2 × 2 × 2 cm3, LIFEx software | LR-based models (50%, AUC 0.82) |
Basso Dias et al. [26] | 18F-DCFPyl/Moderate | 89 | 2.3 × 2.3 × 5 mm3 voxels, 40% and 70%, LIFEx software, PET and MRI | LR-based models (AUC 0.85) |
Cysouw et al. [27] | 18F-DCFPyl/Good | 76 | 2 × 2 × 2 mm3 voxels, 50% and 70%, RaCaT software | RF-models, AUC (0.86 (LN involvemnet, 0.86 distant metastases, ECE (0.76) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maes, J.; Gesquière, S.; Maes, A.; Sathekge, M.; Van de Wiele, C. Prostate-Specific Membrane Antigen-Positron Emission Tomography-Guided Radiomics and Machine Learning in Prostate Carcinoma. Cancers 2024, 16, 3369. https://doi.org/10.3390/cancers16193369
Maes J, Gesquière S, Maes A, Sathekge M, Van de Wiele C. Prostate-Specific Membrane Antigen-Positron Emission Tomography-Guided Radiomics and Machine Learning in Prostate Carcinoma. Cancers. 2024; 16(19):3369. https://doi.org/10.3390/cancers16193369
Chicago/Turabian StyleMaes, Justine, Simon Gesquière, Alex Maes, Mike Sathekge, and Christophe Van de Wiele. 2024. "Prostate-Specific Membrane Antigen-Positron Emission Tomography-Guided Radiomics and Machine Learning in Prostate Carcinoma" Cancers 16, no. 19: 3369. https://doi.org/10.3390/cancers16193369
APA StyleMaes, J., Gesquière, S., Maes, A., Sathekge, M., & Van de Wiele, C. (2024). Prostate-Specific Membrane Antigen-Positron Emission Tomography-Guided Radiomics and Machine Learning in Prostate Carcinoma. Cancers, 16(19), 3369. https://doi.org/10.3390/cancers16193369