Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patients and Data Collection
2.2. Ethics
2.3. Cell Culture and Tumorsphere Induction
2.4. Western Blot
2.5. Statistical Analysis
3. Results
3.1. Analysis of Preoperative Serum Levels of Zonulin and Haptoglobin in Glioblastoma Patients
3.2. Clinical–Radiological Differences between Patients with High and Low Expression of Zonulin in the Tumor Sample
3.3. In Vitro Zonulin Expression in Glioblastoma Cell Lines
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Tonn, J.-C.; Brada, M.; Pentheroudakis, G. ESMO Guidelines Working Group High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2010, 21 (Suppl. S5), v190–v193. [Google Scholar] [CrossRef] [PubMed]
- Holland, E.C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci. USA 2000, 97, 6242–6244. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Not, T.; Wang, W.; Uzzau, S.; Berti, I.; Tommasini, A.; Goldblum, S.E. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 2000, 355, 1518–1519. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Lammers, K.M.; Goldblum, S.; Shea-Donohue, T.; Netzel-Arnett, S.; Buzza, M.S.; Antalis, T.M.; Vogel, S.N.; Zhao, A.; Yang, S.; et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc. Natl. Acad. Sci. USA 2009, 106, 16799–16804. [Google Scholar] [CrossRef] [PubMed]
- FASANO, A. Regulation of Intercellular Tight Junctions by Zonula Occludens Toxin and Its Eukaryotic Analogue Zonulin. Ann. N. Y. Acad. Sci. 2000, 915, 214–222. [Google Scholar] [CrossRef]
- Wang, Z. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research. Int. J. Mol. Sci. 2016, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Physiological, Pathological, and Therapeutic Implications of Zonulin-Mediated Intestinal Barrier Modulation. Am. J. Pathol. 2008, 173, 1243–1252. [Google Scholar] [CrossRef]
- Tajik, N.; Frech, M.; Schulz, O.; Schälter, F.; Lucas, S.; Azizov, V.; Dürholz, K.; Steffen, F.; Omata, Y.; Rings, A.; et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 2020, 11, 1995. [Google Scholar] [CrossRef]
- Vanuytsel, T.; Vermeire, S.; Cleynen, I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers 2013, 1, e27321. [Google Scholar] [CrossRef]
- Camara-Lemarroy, C.R.; Silva, C.; Greenfield, J.; Liu, W.-Q.; Metz, L.M.; Yong, V.W. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult. Scler. J. 2020, 26, 1340–1350. [Google Scholar] [CrossRef]
- Rahman, M.T.; Ghosh, C.; Hossain, M.; Linfield, D.; Rezaee, F.; Janigro, D.; Marchi, N.; van Boxel-Dezaire, A.H.H. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem. Biophys. Res. Commun. 2018, 507, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, G.; Gao, Q.; Li, N.; Wang, R. C-type lectin-like receptor 2 and zonulin are associated with mild cognitive impairment and Alzheimer’s disease. Acta Neurol. Scand. 2020, 141, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, L.; Marta, D.; Dănău, A.; Lefter, A.; Tulbă, D.; Cozma, L.; Manole, E.; Gherghiceanu, M.; Ceafalan, L.C.; Popescu, B.O. Serum and Fecal Markers of Intestinal Inflammation and Intestinal Barrier Permeability Are Elevated in Parkinson’s Disease. Front. Neurosci. 2021, 15, 738. [Google Scholar] [CrossRef] [PubMed]
- Naryzhny, S.; Ronzhina, N.; Zorina, E.; Kabachenko, F.; Zavialova, M.; Zgoda, V.; Klopov, N.; Legina, O.; Pantina, R. Evaluation of Haptoglobin and Its Proteoforms as Glioblastoma Markers. Int. J. Mol. Sci. 2021, 22, 6533. [Google Scholar] [CrossRef] [PubMed]
- Skardelly, M.; Armbruster, F.P.; Meixensberger, J.; Hilbig, H. Expression of Zonulin, c-kit, and Glial Fibrillary Acidic Protein in Human Gliomas. Transl. Oncol. 2009, 2, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Coránguez, M.; Segovia, J.; López-Ornelas, A.; Puerta-Guardo, H.; Ludert, J.; Chávez, B.; Meraz-Cruz, N.; González-Mariscal, L. Transmigration of Neural Stem Cells across the Blood Brain Barrier Induced by Glioma Cells. PLoS ONE 2013, 8, e60655. [Google Scholar] [CrossRef]
- Iacopino, F.; Angelucci, C.; Piacentini, R.; Biamonte, F.; Mangiola, A.; Maira, G.; Grassi, C.; Sica, G. Isolation of Cancer Stem Cells from Three Human Glioblastoma Cell Lines: Characterization of Two Selected Clones. PLoS ONE 2014, 9, e105166. [Google Scholar] [CrossRef]
- Yu, S.; Ping, Y.; Yi, L.; Zhou, Z.; Chen, J.; Yao, X.; Gao, L.; Wang, J.M.; Bian, X. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett. 2008, 265, 124–134. [Google Scholar] [CrossRef]
- Wong, K. Stresses Caused by too much Wheat and Sugar. Glob. J. Immunol. Allerg. Dis. 2015, 3, 6–10. [Google Scholar] [CrossRef]
- So, S.Y.; Savidge, T.C. Gut feelings: The microbiota-gut-brain axis on steroids. Am. J. Physiol. Liver Physiol. 2022, 322, G1–G20. [Google Scholar] [CrossRef]
- Lyu, Y.; Yang, H.; Chen, L. Metabolic regulation on the immune environment of glioma through gut microbiota. Semin. Cancer Biol. 2022, 86, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Mehrian-Shai, R.; Reichardt, J.K.V.; Harris, C.C.; Toren, A. The Gut–Brain Axis, Paving the Way to Brain Cancer. Trends Cancer 2019, 5, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Suvà, M.L.; Tirosh, I. The Glioma Stem Cell Model in the Era of Single-Cell Genomics. Cancer Cell 2020, 37, 630–636. [Google Scholar] [CrossRef]
- Dey, M.; Ulasov, I.V.; Tyler, M.A.; Sonabend, A.M.; Lesniak, M.S. Cancer Stem Cells: The Final Frontier for Glioma Virotherapy. Stem Cell Rev. Rep. 2011, 7, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shiras, A. Cancer stem cell-vascular endothelial cell interactions in glioblastoma. Biochem. Biophys. Res. Commun. 2016, 473, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Heddleston, J.M.; Hitomi, M.; Venere, M.; Flavahan, W.A.; Yang, K.; Kim, Y.; Minhas, S.; Rich, J.N.; Hjelmeland, A.B. Glioma Stem Cell Maintenance: The Role of the Microenvironment. Curr. Pharm. Des. 2011, 17, 2386–2401. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Xie, J.; Liang, B.; Wu, J. Suppression of Angiotensin-(1–7) on the Disruption of Blood-Brain Barrier in Rat of Brain Glioma. Pathol. Oncol. Res. 2019, 25, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bao, S.; Wu, Q.; Wang, H.; Eyler, C.; Sathornsumetee, S.; Shi, Q.; Cao, Y.; Lathia, J.; McLendon, R.E.; et al. Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell 2009, 15, 501–513. [Google Scholar] [CrossRef]
- Bulnes, S.; Bengoetxea, H.; Ortuzar, N.; Argandoña, E.G.; Garcia-Blanco, Á.; Rico-Barrio, I.; Lafuente, J.V. Angiogenic Signalling Pathways Altered in Gliomas: Selection Mechanisms for More Aggressive Neoplastic Subpopulations with Invasive Phenotype. J. Signal Transduct. 2012, 2012, 597915. [Google Scholar] [CrossRef]
- Kumar, D.M.; Thota, B.; Shinde, S.V.; Prasanna, K.V.; Hegde, A.S.; Arivazhagan, A.; Chandramouli, B.A.; Santosh, V.; Somasundaram, K. Proteomic Identification of Haptoglobin α2 as a Glioblastoma Serum Biomarker: Implications in Cancer Cell Migration and Tumor Growth. J. Proteome Res. 2010, 9, 5557–5567. [Google Scholar] [CrossRef]
Variable | Low Zonulin (n = 14) | High Zonulin (n = 13) | p-Value | |
---|---|---|---|---|
Age (years) | 60.36 (SD = 12.68) | 68.1 (SD = 6.37) | 0.046 a | |
Gender (male/female) | 13:1 | 1:12 | 0.000 b | |
Karnofsky < 70 | 1 (7.1%) | 2 (15.4%) | 0.596 b | |
Contrast enhancement | Periferic | 9 (64.3%) | 6 (46.2%) | 0.449 b |
Heterogeneous | 5 (35.7%) | 7 (53.8%) | ||
Contrast enhancement volume (cc) | 24.74 (SD = 18.06) | 20.99 (SD = 14.62) | 0.593 a | |
Edema volume (cc) | 51.15 (SD = 28.36) | 55.37 (SD = 38.13) | 0.923 a | |
Necrosis volume (cc) | 15.63 (SD = 13.94) | 5.37 (SD = 4.31) | 0.099 a | |
Resection | Partial | 2 (14.3%) | 6 (46.2%) | 0.132 c |
Subtotal | 4 (28.6%) | 1 (7.7%) | ||
Total | 8 (57.1%) | 6 (46.2%) | ||
Ki67 (%) | 28.54 (SD = 13.91) | 21.0 (SD = 12.79) | 0.181 a | |
MGMT methylation | 7 (50.0%) | 8 (66.7%) | 0.453 b | |
Progression-free survival (months) | 10.5 [6.6–14.3] | 3.7 [3.3–4.1] | 0.130 d |
Variable | Low Zonulin (n = 11) | High Zonulin (n = 10) | p-Value | |
---|---|---|---|---|
Age (years) | 61.55 (SD = 14.00) | 69.5 (SD = 7.66) | 0.341 a | |
Gender (male/female) | 4:7 | 6:4 | 0.395 b | |
Karnofsky < 70 | 2 (18.2%) | - | 0.476 b | |
Contrast enhancement | Periferic | 6 (54.5%) | 2 (20.0%) | 0.183 b |
Heterogeneous | 5 (45.5%) | 8 (80.0%) | ||
Contrast enhancement volume (cc) | 12.91 (SD = 10.31) | 28.13 (SD = 14.20) | 0.020 a | |
Edema volume (cc) | 42.44 (SD = 19.14) | 79.78 (SD = 43.13) | 0.037 a | |
Necrosis volume (cc) | 6.50 (SD = 9.81) | 10.85 (SD = 9.01) | 0.152 a | |
Resection | Partial | 1 (9.1%) | 1 (10.0%) | 0.990 c |
Subtotal | 2 (18.2%) | 2 (20.0%) | ||
Total | 8 (72.7%) | 7 (70.0%) | ||
Ki67 (%) | 26.2 (SD = 17.62) | 28.6 (SD = 22.17) | 0.880 a | |
MGMT methylation | 6 (54.5%) | 4 (40.0%) | 0.670 b | |
Progression-free survival (months) | 6.6 [2.4–10.9] | 3.3 [0.0–6.5] | 0.024 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repossi, R.; Martín-Ramírez, R.; Gómez-Bernal, F.; Medina, L.; Fariña-Jerónimo, H.; González-Fernández, R.; Martín-Vasallo, P.; Plata-Bello, J. Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma. Cancers 2024, 16, 356. https://doi.org/10.3390/cancers16020356
Repossi R, Martín-Ramírez R, Gómez-Bernal F, Medina L, Fariña-Jerónimo H, González-Fernández R, Martín-Vasallo P, Plata-Bello J. Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma. Cancers. 2024; 16(2):356. https://doi.org/10.3390/cancers16020356
Chicago/Turabian StyleRepossi, Roberta, Rita Martín-Ramírez, Fuensanta Gómez-Bernal, Lilian Medina, Helga Fariña-Jerónimo, Rebeca González-Fernández, Pablo Martín-Vasallo, and Julio Plata-Bello. 2024. "Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma" Cancers 16, no. 2: 356. https://doi.org/10.3390/cancers16020356
APA StyleRepossi, R., Martín-Ramírez, R., Gómez-Bernal, F., Medina, L., Fariña-Jerónimo, H., González-Fernández, R., Martín-Vasallo, P., & Plata-Bello, J. (2024). Evaluation of Zonulin Expression and Its Potential Clinical Significance in Glioblastoma. Cancers, 16(2), 356. https://doi.org/10.3390/cancers16020356