What Have We Learned from Molecularly Informed Clinical Trials on Thymomas and Thymic Carcinomas—Current Status and Future Directions?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Somatostatin Receptor Targeting Therapies
3. EGFR and c-KIT
4. Epigenetic Alterations and Associated Therapies
5. Anti-Angiogenesis
6. IGFR-PI3K-AKT-mTOR Pathway
7. Cell Cycle Regulation/STAT 3 Pathway
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lemonick, M.D.; Park, A. New hope for cancer. Time 2001, 157, 62–69. [Google Scholar] [PubMed]
- Min, H.Y.; Lee, H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, A.; Younis, T. Trastuzumab for HER2-Positive Metastatic Breast Cancer: Clinical and Economic Considerations. Clin. Med. Insights Oncol. 2012, 6, 179–187. [Google Scholar] [CrossRef]
- Singhal, S.; Hellyer, J.; Ouseph, M.M.; Wakelee, H.A.; Padda, S.K. Autoimmune Disease in Patients with Advanced Thymic Epithelial Tumors. JTO Clin. Res. Rep. 2022, 3, 100323. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.W.; Okumura, M.; Detterbeck, F.C.; Marom, E.M. Approaching the patient with an anterior mediastinal mass: A guide for radiologists. J. Thorac. Oncol. 2014, 9 (Suppl. S2), S110–S118. [Google Scholar] [CrossRef]
- Radovich, M.; Pickering, C.R.; Felau, I.; Ha, G.; Zhang, H.; Jo, H.; Hoadley, K.A.; Anur, P.; Zhang, J.; McLellan, M.; et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018, 33, 244–258.e10. [Google Scholar] [CrossRef] [PubMed]
- Padda, S.K.; Gökmen-Polar, Y.; Hellyer, J.A.; Badve, S.S.; Singh, N.K.; Vasista, S.M.; Basu, K.; Kumar, A.; Wakelee, H.A. Genomic clustering analysis identifies molecular subtypes of thymic epithelial tumors independent of World Health Organization histologic type. Oncotarget 2021, 12, 1178–1186. [Google Scholar] [CrossRef]
- Girard, N.; Basse, C.; Schrock, A.; Ramkissoon, S.; Killian, K.; Ross, J.S. Comprehensive Genomic Profiling of 274 Thymic Epithelial Tumors Unveils Oncogenic Pathways and Predictive Biomarkers. Oncologist 2022, 27, 919–929. [Google Scholar] [CrossRef]
- Ardeshir-Larijani, F.; Schneider, B.P.; Althouse, S.K.; Radovich, M.; Masood, A.; Perna, F.; Salman, H.; Loehrer, P.J. Clinicogenomic Landscape of Metastatic Thymic Epithelial Tumors. JCO Precis. Oncol. 2023, 7, e2200465. [Google Scholar] [CrossRef]
- Palmieri, G.; Montella, L.; Martignetti, A.; Muto, P.; Di Vizio, D.; De Chiara, A.; Lastoria, S. Somatostatin analogs and prednisone in advanced refractory thymic tumors. Cancer 2002, 94, 1414–1420. [Google Scholar] [CrossRef]
- Loehrer, P.J., Sr.; Wang, W.; Johnson, D.H.; Aisner, S.C.; Ettinger, D.S.; Eastern Cooperative Oncology Group Phase, I.I.T. Octreotide alone or with prednisone in patients with advanced thymoma and thymic carcinoma: An Eastern Cooperative Oncology Group Phase II Trial. J. Clin. Oncol. 2004, 22, 293–299. [Google Scholar] [CrossRef]
- Grupo Espanol de Tumores Neuroendocrinos. Efficacy and Safety of Radiotherapy Compared to Everolimus in Somatostatin Receptor Positive Neuroendocrine Tumors of the Lung and Thymus. 2028. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05918302 (accessed on 1 November 2023).
- Vastra Gotaland Region; Advanced Accelerator Applications. 177Lu-DOTA-TATE and Olaparib in Somatostatin Receptor Positive Tumours. 2024. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04375267 (accessed on 1 November 2023).
- Kurup, A.; Burns, M.; Dropcho, S.; Pao, W.; Loehrer, P.J. Phase II study of gefitinib treatment in advanced thymic malignancies. J. Clin. Oncol. 2005, 23 (Suppl. S16), 7068. [Google Scholar] [CrossRef]
- Bedano, P.M.; Perkins, S.; Burns, M.; Kessler, K.; Nelson, R.; Schneider, B.P.; Risley, L.; Dropcho, S.; Loehrer, P.J. A phase II trial of erlotinib plus bevacizumab in patients with recurrent thymoma or thymic carcinoma. J. Clin. Oncol. 2008, 26 (Suppl. S15), 19087. [Google Scholar] [CrossRef]
- Memorial Sloan Kettering Cancer Center; Eli Lilly and Company; M.D. Anderson Cancer Center; City of Hope National Medical Center. Chemotherapy Plus Cetuximab Followed by Surgical Resection in Patients with Locally Advanced or Recurrent Thymoma or Thymic Carcinoma. 2024. Available online: https://clinicaltrials.gov/study/NCT01025089 (accessed on 15 November 2023).
- Salter, J.T.; Lewis, D.; Yiannoutsos, C.; Loehrer, P.J.; Risley, L.; Chiorean, E.G. Imatinib for the treatment of thymic carcinoma. J. Clin. Oncol. 2008, 26 (Suppl. S15), 8116. [Google Scholar] [CrossRef]
- Giaccone, G.; Rajan, A.; Ruijter, R.; Smit, E.; van Groeningen, C.; Hogendoorn, P.C. Imatinib mesylate in patients with WHO B3 thymomas and thymic carcinomas. J. Thorac. Oncol. 2009, 4, 1270–1273. [Google Scholar] [CrossRef]
- Giaccone, G.; Rajan, A.; Berman, A.; Kelly, R.J.; Szabo, E.; Lopez-Chavez, A.; Trepel, J.; Lee, M.J.; Cao, L.; Espinoza-Delgado, I.; et al. Phase II study of belinostat in patients with recurrent or refractory advanced thymic epithelial tumors. J. Clin. Oncol. 2011, 29, 2052–2059. [Google Scholar] [CrossRef]
- Thomas, A.; Rajan, A.; Szabo, E.; Tomita, Y.; Carter, C.A.; Scepura, B.; Lopez-Chavez, A.; Lee, M.J.; Redon, C.E.; Frosch, A.; et al. A phase I/II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: A clinical and translational study. Clin. Cancer Res. 2014, 20, 5392–5402. [Google Scholar] [CrossRef]
- Thomas, A.; Rajan, A.; Berman, A.; Tomita, Y.; Brzezniak, C.; Lee, M.J.; Lee, S.; Ling, A.; Spittler, A.J.; Carter, C.A.; et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: An open-label phase 2 trial. Lancet Oncol. 2015, 16, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Satouchi, M.; Itoh, S.; Okuma, Y.; Niho, S.; Mizugaki, H.; Murakami, H.; Fujisaka, Y.; Kozuki, T.; Nakamura, K.; et al. Lenvatinib in patients with advanced or metastatic thymic carcinoma (REMORA): A multicentre, phase 2 trial. Lancet Oncol. 2020, 21, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Perrino, M.; De Pas, T.; Bozzarelli, S.; Giordano, L.; De Vincenzo, F.; Conforti, F.; Digiacomo, N.; Cordua, N.; D’Antonio, F.; Borea, F.; et al. Resound Trial: A phase 2 study of regorafenib in patients with thymoma (type B2-B3) and thymic carcinoma previously treated with chemotherapy. Cancer 2022, 128, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Zucali, P.A.; Pala, L.; Catania, C.; Bagnardi, V.; Sala, I.; Della Vigna, P.; Perrino, M.; Zagami, P.; Corti, C.; et al. Avelumab plus axitinib in unresectable or metastatic type B3 thymomas and thymic carcinomas (CAVEATT): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Girard, N.; Novello, S.; de Castro, J.; Bigay-Game, L.; Bernabe, R.; Greillier, L.; Mosquera, J.; Cousin, S.; Juan, O.; et al. PECATI: A Multicentric, Open-Label, Single-Arm Phase II Study to Evaluate the Efficacy and Safety of Pembrolizumab and Lenvatinib in Pretreated B3-Thymoma and Thymic Carcinoma Patients. Clin. Lung Cancer 2022, 23, e243–e246. [Google Scholar] [CrossRef] [PubMed]
- Dwight, O.; National Cancer Institute; Ohio State University Comprehensive Cancer Center. Pembrolizumab and Sunitinib Malate in Treating Participants with Refractory Metastatic or Unresectable Thymic Cancer. 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03463460 (accessed on 15 November 2023).
- Phase I/II Eval Safety & Prelim Activity Nivolumab Comb W/Vorolanib Pts W/Refractory Thoracic Tumors. 2023. Available online: https://clinicaltrials.gov/study/NCT03583086 (accessed on 15 November 2023).
- Carboplatin and Paclitaxel with or Without Ramucirumab in Treating Patients with Locally Advanced, Recurrent, or Metastatic Thymic Cancer That Cannot Be Removed by Surgery. 2024. Available online: https://clinicaltrials.gov/study/NCT03694002 (accessed on 15 November 2023).
- Rajan, A.; Carter, C.A.; Berman, A.; Cao, L.; Kelly, R.J.; Thomas, A.; Khozin, S.; Chavez, A.L.; Bergagnini, I.; Scepura, B.; et al. Cixutumumab for patients with recurrent or refractory advanced thymic epithelial tumours: A multicentre, open-label, phase 2 trial. Lancet Oncol. 2014, 15, 191–200. [Google Scholar] [CrossRef]
- Zucali, P.A.; De Pas, T.; Palmieri, G.; Favaretto, A.; Chella, A.; Tiseo, M.; Caruso, M.; Simonelli, M.; Perrino, M.; De Vincenzo, F.; et al. Phase II Study of Everolimus in Patients with Thymoma and Thymic Carcinoma Previously Treated with Cisplatin-Based Chemotherapy. J. Clin. Oncol. 2018, 36, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Abu Zaid, M.I.; Radovich, M.; Althouse, S.; Liu, H.; Spittler, A.J.; Solzak, J.; Badve, S.; Loehrer, P.J. A phase II study of buparlisib in relapsed or refractory thymomas. Front. Oncol. 2022, 12, 891383. [Google Scholar] [CrossRef]
- Besse, B.; Garassino, M.C.; Rajan, A.; Novello, S.; Mazieres, J.; Weiss, G.J.; Kocs, D.M.; Barnett, J.M.; Davite, C.; Crivori, P.; et al. Efficacy of milciclib (PHA-848125AC), a pan-cyclin d-dependent kinase inhibitor, in two phase II studies with thymic carcinoma (TC) and B3 thymoma (B3T) patients. J. Clin. Oncol. 2018, 36 (Suppl. S15), 8519. [Google Scholar] [CrossRef]
- Kalra, M.; Cote, G.M.; Heist, R.S.; Spittler, A.J.; Yu, S.; Hitron, M.; Loehrer, P.J. A phase 1b study of napabucasin (NAPA) + weekly paclitaxel (PTX) in patients (pts) with advanced thymoma and thymic carcinoma. J. Clin. Oncol. 2018, 36 (Suppl. S15), e20578. [Google Scholar] [CrossRef]
- Jung, H.A.; Kim, M.; Kim, H.S.; Kim, J.H.; Choi, Y.H.; Cho, J.; Park, J.H.; Park, K.U.; Ku, B.M.; Park, S.; et al. A Phase 2 Study of Palbociclib for Recurrent or Refractory Advanced Thymic Epithelial Tumors (KCSG LU17-21). J. Thorac. Oncol. 2023, 18, 223–231. [Google Scholar] [CrossRef]
- VM Oncology, LLC. Selective TrkA Inhibitor VMD-928 to Treat TrkA Overexpression Driven Solid Tumors or Lymphoma. 2024. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03556228 (accessed on 15 November 2023).
- Priyadarshini, S.; Allison, D.B.; Chauhan, A. Comprehensive Assessment of Somatostatin Receptors in Various Neoplasms: A Systematic Review. Pharmaceutics 2022, 14, 1394. [Google Scholar] [CrossRef]
- Ferone, D.; van Hagen, M.P.; Kwekkeboom, D.J.; van Koetsveld, P.M.; Mooy, D.M.; Lichtenauer-Kaligis, E.; Schonbrunn, A.; Colao, A.; Lamberts, S.W.; Hofland, L.J. Somatostatin receptor subtypes in human thymoma and inhibition of cell proliferation by octreotide in vitro. J. Clin. Endocrinol. Metab. 2000, 85, 1719–1726. [Google Scholar] [CrossRef]
- Lastoria, S.; Vergara, E.; Palmieri, G.; Acampa, W.; Varrella, P.; Caracò, C.; Bianco, R.A.; Muto, P.; Salvatore, M. In vivo detection of malignant thymic masses by indium-111-DTPA-D-Phe1-octreotide scintigraphy. J. Nucl. Med. 1998, 39, 634–639. [Google Scholar] [PubMed]
- Palmieri, G.; Lastoria, S.; Colao, A.; Vergara, E.; Varrella, P.; Biondi, E.; Selleri, C.; Catalano, L.; Lombardi, G.; Bianco, A.R.; et al. Successful treatment of a patient with a thymoma and pure red-cell aplasia with octreotide and prednisone. N. Engl. J. Med. 1997, 336, 263–265. [Google Scholar] [CrossRef]
- Kirzinger, L.; Boy, S.; Marienhagen, J.; Schuierer, G.; Neu, R.; Ried, M.; Hofmann, H.S.; Wiebe, K.; Strobel, P.; May, C.; et al. Octreotide LAR and Prednisone as Neoadjuvant Treatment in Patients with Primary or Locally Recurrent Unresectable Thymic Tumors: A Phase II Study. PLoS ONE 2016, 11, e0168215. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Makis, W.; McCann, K.; McEwan, A.J. Thymoma treated with 177Lu DOTATATE induction and maintenance PRRT. Clin. Nucl. Med. 2015, 40, e278–e281. [Google Scholar] [CrossRef]
- Ottaviano, M.; Damiano, V.; Tortora, M.; Capuano, M.; Perrone, P.; Forino, C.; Matano, E.; Palmieri, G. P1.17-015 Long Acting Octreotide plus Prednisone in Advanced Thymic Epithelial Tumors: A Real Life Clinical Experience. J. Thorac. Oncol. 2017, 12, S2066. [Google Scholar] [CrossRef]
- Sorejs, O.; Pesek, M.; Finek, J.; Fiala, O. Octreotide in the treatment of malignant thymoma–Case report. Rep. Pract. Oncol. Radiother. 2020, 25, 882–885. [Google Scholar] [CrossRef]
- Halperin, R.; Urban, D.; Tirosh, A. A Case of Metastatic Thymoma Responsive to Treatment with 177 Lu-DOTATATE. Clin. Nucl. Med. 2023, 48, e190–e192. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, B.; Sun, Z. Spectrum of EGFR aberrations and potential clinical implications: Insights from integrative pan-cancer analysis. Cancer Commun. 2020, 40, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Kalyankrishna, S.; Grandis, J.R. Epidermal Growth Factor Receptor Biology in Head and Neck Cancer. J. Clin. Oncol. 2006, 24, 2666–2672. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Shi, W.; Zhang, Y.; Sun, M.; Liang, X.; Zheng, S. Epidermal growth factor receptor and B7-H3 expression in esophageal squamous tissues correlate to patient prognosis. Onco Targets Ther. 2016, 9, 6257–6263. [Google Scholar] [CrossRef] [PubMed]
- Viale, G.; Rotmensz, N.; Maisonneuve, P.; Bottiglieri, L.; Montagna, E.; Luini, A.; Veronesi, P.; Intra, M.; Torrisi, R.; Cardillo, A.; et al. Invasive ductal carcinoma of the breast with the “triple-negative” phenotype: Prognostic implications of EGFR immunoreactivity. Breast Cancer Res. Treat. 2009, 116, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Gilhus, N.E.; Jones, M.; Turley, H.; Gatter, K.C.; Nagvekar, N.; Newsom-Davis, J.; Willcox, N. Oncogene proteins and proliferation antigens in thymomas: Increased expression of epidermal growth factor receptor and Ki67 antigen. J. Clin. Pathol. 1995, 48, 447–455. [Google Scholar] [CrossRef]
- Hayashi, Y.; Ishii, N.; Obayashi, C.; Jinnai, K.; Hanioka, K.; Imai, Y.; Itoh, H. Thymoma: Tumour type related to expression of epidermal growth factor (EGF), EGF-receptor, p53, v-erb B and ras p21. Virchows Arch. 1995, 426, 43–50. [Google Scholar] [CrossRef]
- Pescarmona, E.; Pisacane, A.; Pignatelli, E.; Baroni, C.D. Expression of epidermal and nerve growth factor receptors in human thymus and thymomas. Histopathology 1993, 23, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Henley, J.D.; Koukoulis, G.K.; Loehrer, P.J., Sr. Epidermal growth factor receptor expression in invasive thymoma. J. Cancer Res. Clin. Oncol. 2002, 128, 167–170. [Google Scholar] [CrossRef]
- Shah, R.; Lester, J.F. Tyrosine Kinase Inhibitors for the Treatment of EGFR Mutation-Positive Non-Small-Cell Lung Cancer: A Clash of the Generations. Clin. Lung Cancer 2020, 21, e216–e228. [Google Scholar] [CrossRef]
- Ionescu, D.N.; Sasatomi, E.; Cieply, K.; Nola, M.; Dacic, S. Protein expression and gene amplification of epidermal growth factor receptor in thymomas. Cancer 2005, 103, 630–636. [Google Scholar] [CrossRef]
- Palmieri, G.; Marino, M.; Salvatore, M.; Budillon, A.; Meo, G.; Caraglia, M.; Montella, L. Cetuximab is an active treatment of metastatic and chemorefractory thymoma (391 views). Front. Biosci. 2007, 12, 757–761. [Google Scholar] [CrossRef]
- Farina, G.; Garassino, M.C.; Gambacorta, M.; La Verde, N.; Gherardi, G.; Scanni, A. Response of thymoma to cetuximab. Lancet Oncol. 2007, 8, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Godesi, S.; Lee, J.; Nada, H.; Quan, G.; Elkamhawy, A.; Choi, Y.; Lee, K. Small Molecule c-KIT Inhibitors for the Treatment of Gastrointestinal Stromal Tumors: A Review on Synthesis, Design Strategies, and Structure—Activity Relationship (SAR). Int. J. Mol. Sci. 2023, 24, 9450. [Google Scholar] [CrossRef]
- Miettinen, M.; Lasota, J. Gastrointestinal stromal tumors: Pathology and prognosis at different sites. Semin. Diagn. Pathol. 2006, 23, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Coffey, J.; Linger, R.; Pugh, J.; Dudakia, D.; Sokal, M.; Easton, D.F.; Timothy Bishop, D.; Stratton, M.; Huddart, R.; Rapley, E.A. Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: Report of 220 tumors and review of literature. Genes. Chromosomes Cancer 2008, 47, 34–42. [Google Scholar] [CrossRef]
- Garrido, M.C.; Bastian, B.C. KIT as a Therapeutic Target in Melanoma. J. Investig. Dermatol. 2010, 130, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; von Mehren, M.; Blanke, C.D.; Van den Abbeele, A.D.; Eisenberg, B.; Roberts, P.J.; Heinrich, M.C.; Tuveson, D.A.; Singer, S.; Janicek, M.; et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 2002, 347, 472–480. [Google Scholar] [CrossRef]
- Pan, C.C.; Chen, P.C.; Chiang, H. KIT (CD117) is frequently overexpressed in thymic carcinomas but is absent in thymomas. J. Pathol. 2004, 202, 375–381. [Google Scholar] [CrossRef]
- Nakagawa, K.; Matsuno, Y.; Kunitoh, H.; Maeshima, A.; Asamura, H.; Tsuchiya, R. Immunohistochemical KIT (CD117) expression in thymic epithelial tumors. Chest 2005, 128, 140–144. [Google Scholar] [CrossRef]
- Petrini, I.; Zucali, P.A.; Lee, H.S.; Pineda, M.A.; Meltzer, P.S.; Walter-Rodriguez, B.; Roncalli, M.; Santoro, A.; Wang, Y.; Giaccone, G. Expression and mutational status of c-kit in thymic epithelial tumors. J. Thorac. Oncol. 2010, 5, 1447–1453. [Google Scholar] [CrossRef]
- Yoh, K.; Nishiwaki, Y.; Ishii, G.; Goto, K.; Kubota, K.; Ohmatsu, H.; Niho, S.; Nagai, K.; Saijo, N. Mutational status of EGFR and KIT in thymoma and thymic carcinoma. Lung Cancer 2008, 62, 316–320. [Google Scholar] [CrossRef]
- Strobel, P.; Hartmann, M.; Jakob, A.; Mikesch, K.; Brink, I.; Dirnhofer, S.; Marx, A. Thymic carcinoma with overexpression of mutated KIT and the response to imatinib. N. Engl. J. Med. 2004, 350, 2625–2626. [Google Scholar] [CrossRef]
- Tsuchida, M.; Umezu, H.; Hashimoto, T.; Shinohara, H.; Koike, T.; Hosaka, Y.; Eimoto, T.; Hayashi, J.I. Absence of gene mutations in KIT-positive thymic epithelial tumors. Lung Cancer 2008, 62, 321–325. [Google Scholar] [CrossRef]
- Waddington, C.H. The epigenotype. Endeavour 1942, 1, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Psilopatis, I.; Pergaris, A.; Vrettou, K.; Theocharis, S.; Troungos, C. Thymic Epithelial Neoplasms: Focusing on the Epigenetic Alterations. Int. J. Mol. Sci. 2022, 23, 4045. [Google Scholar] [CrossRef] [PubMed]
- Prays, J.; Ortiz-Villalón, C. Molecular landscape of thymic epithelial tumors. Semin. Diagn. Pathol. 2022, 39, 131–136. [Google Scholar] [CrossRef]
- Wang, Y.; Thomas, A.; Lau, C.; Rajan, A.; Zhu, Y.; Killian, J.K.; Petrini, I.; Pham, T.; Morrow, B.; Zhong, X.; et al. Mutations of epigenetic regulatory genes are common in thymic carcinomas. Sci. Rep. 2014, 4, 7336. [Google Scholar] [CrossRef] [PubMed]
- Sawas, A.; Radeski, D.; O’Connor, O.A. Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: A perspective review. Ther. Adv. Hematol. 2015, 6, 202–208. [Google Scholar] [CrossRef]
- Kim, M.S.; Blake, M.; Baek, J.H.; Kohlhagen, G.; Pommier, Y.; Carrier, F. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 2003, 63, 7291–7300. [Google Scholar]
- Ganci, F.; Vico, C.; Korita, E.; Sacconi, A.; Gallo, E.; Mori, F.; Cambria, A.; Russo, E.; Anile, M.; Vitolo, D.; et al. MicroRNA expression profiling of thymic epithelial tumors. Lung Cancer 2014, 85, 197–204. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Xu, S.; Yang, Y.; Wei, D.; Wang, W.; Huang, X. Aberrant decrease of microRNA19b regulates TSLP expression and contributes to Th17 cells development in myasthenia gravis related thymomas. J. Neuroimmunol. 2015, 288, 34–39. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Chen, Y.; Wei, D. T Helper Type 17 Cells Expand in Patients with Myasthenia-Associated Thymoma. Scand. J. Immunol. 2012, 76, 54–61. [Google Scholar] [CrossRef]
- Cebi, M.; Cakar, A.; Erdogdu, E.; Durmus-Tekce, H.; Yegen, G.; Ozkan, B.; Parman, Y.; Saruhan-Direskeneli, G. Thymoma patients with or without myasthenia gravis have increased Th17 cells, IL-17 production and ICOS expression. J. Neuroimmunol. 2023, 381, 578129. [Google Scholar] [CrossRef] [PubMed]
- Tomita, M.; Matsuzaki, Y.; Edagawa, M.; Maeda, M.; Shimizu, T.; Hara, M.; Onitsuka, T. Correlation between tumor angiogenesis and invasiveness in thymic epithelial tumors. J. Thorac. Cardiovasc. Surg. 2002, 124, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Kaira, K.; Takahashi, T.; Abe, M.; Akamatsu, H.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Murakami, H.; Tsuya, A.; Nakamura, Y.; et al. CD98 expression is associated with the grade of malignancy in thymic epithelial tumors. Oncol. Rep. 2010, 24, 861–867. [Google Scholar] [CrossRef]
- Cimpean, A.M.; Raica, M.; Encica, S.; Cornea, R.; Bocan, V. Immunohistochemical expression of vascular endothelial growth factor A (VEGF), and its receptors (VEGFR1, 2) in normal and pathologic conditions of the human thymus. Ann. Anat. 2008, 190, 238–245. [Google Scholar] [CrossRef]
- Lattanzio, R.; La Sorda, R.; Facciolo, F.; Sioletic, S.; Lauriola, L.; Martucci, R.; Gallo, E.; Palmieri, G.; Evoli, A.; Alessandrini, G.; et al. Thymic epithelial tumors express vascular endothelial growth factors and their receptors as potential targets of antiangiogenic therapy: A tissue micro array-based multicenter study. Lung Cancer 2014, 85, 191–196. [Google Scholar] [CrossRef]
- Raica, M.; Mogoantă, L.; Kondylis, A.; Cîmpean, A.M. Angiogenesis in the human thymoma assessed by subclassification of tumor-associated blood vessels and endothelial cells proliferation. Rom. J. Morphol. Embryol. 2010, 51, 627–631. [Google Scholar]
- Cimpean, A.M.; Ceauşu, R.; Encică, S.; Gaje, P.N.; Ribatti, D.; Raica, M. Platelet-derived growth factor and platelet-derived growth factor receptor-α expression in the normal human thymus and thymoma. Int. J. Exp. Pathol. 2011, 92, 340–344. [Google Scholar] [CrossRef]
- Bisagni, G.; Rossi, G.; Cavazza, A.; Sartori, G.; Gardini, G.; Boni, C. Long Lasting Response to the Multikinase Inhibitor Bay 43-9006 (Sorafenib) in a Heavily Pretreated Metastatic Thymic Carcinoma. J. Thorac. Oncol. 2009, 4, 773–775. [Google Scholar] [CrossRef]
- Ströbel, P.; Bargou, R.; Wolff, A.; Spitzer, D.; Manegold, C.; Dimitrakopoulou-Strauss, A.; Strauss, L.; Sauer, C.; Mayer, F.; Hohenberger, P.; et al. Sunitinib in metastatic thymic carcinomas: Laboratory findings and initial clinical experience. Br. J. Cancer 2010, 103, 196–200. [Google Scholar] [CrossRef]
- Lucidarme, O.; Wagner, M.; Gillard, P.; Kim, S.; Bachet, J.B.; Rousseau, B.; Mazard, T.; Louvet, C.; Chibaudel, B.; Cohen, R.; et al. RECIST and CHOI criteria in the evaluation of tumor response in patients with metastatic colorectal cancer treated with regorafenib, a prospective multicenter study. Cancer Imaging 2019, 19, 85. [Google Scholar] [CrossRef]
- Solis-Hernandez, M.P.; Fernandez Del Valle, A.; Carmona-Bayonas, A.; Garcia-Carbonero, R.; Custodio, A.; Benavent, M.; Alonso Gordoa, T.; Nunez-Valdovino, B.; Sanchez Canovas, M.; Matos, I.; et al. Evaluating radiological response in pancreatic neuroendocrine tumours treated with sunitinib: Comparison of Choi versus RECIST criteria (CRIPNET_ GETNE1504 study). Br. J. Cancer 2019, 121, 537–544. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Verderio, P.; Messina, A.; Morosi, C.; Collini, P.; Llombart-Bosch, A.; Martin, J.; Comandone, A.; Cruz, J.; Ferraro, A.; et al. Tumor response assessment by modified Choi criteria in localized high-risk soft tissue sarcoma treated with chemotherapy. Cancer 2012, 118, 5857–5866. [Google Scholar] [CrossRef]
- Ma, J.; Waxman, D.J. Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol. Cancer Ther. 2008, 7, 3670–3684. [Google Scholar] [CrossRef]
- Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef]
- Ansari, M.J.; Bokov, D.; Markov, A.; Jalil, A.T.; Shalaby, M.N.; Suksatan, W.; Chupradit, S.; Al-Ghamdi, H.S.; Shomali, N.; Zamani, A.; et al. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun. Signal 2022, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J. Clin. Oncol. 2008, 26, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 2006–2012. [Google Scholar] [CrossRef]
- Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; DeVore, R.F., 3rd; Gaudreault, J.; Damico, L.A.; et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 2004, 22, 2184–2191. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Dai, L.; Hu, W.; Chen, X.; Han, J.; Ma, X.; Tian, G.; Han, S.; Long, J.; et al. Efficacy and toxicities of gemcitabine and cisplatin combined with endostar in advanced thymoma and thymic carcinoma. Thorac. Cancer 2019, 10, 17–23. [Google Scholar] [CrossRef]
- Imbimbo, M.; Vitali, M.; Fabbri, A.; Ottaviano, M.; Pasello, G.; Petrini, I.; Palmieri, G.; Berardi, R.; Zucali, P.; Ganzinelli, M.; et al. RELEVENT Trial: Phase II Trial of Ramucirumab, Carboplatin, and Paclitaxel in Previously Untreated Thymic Carcinoma/B3 Thymoma with Area of Carcinoma. Clin. Lung Cancer 2018, 19, e811–e814. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 2017, 9, eaak9679. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Catania, C.; Zucali, P.A.; Della Vigna, P.; Pirola, S.; Stucchi, S.; Pennacchioli, E.; Queirolo, P.; Giaccone, G.; et al. Safety and activity of Combined AVElumab with Axitinib in unresectable or metastatic Thymomas B3 and Thymic carcinomas: The CAVEATT study. J. Clin. Oncol. 2020, 38 (Suppl. S15), e21114. [Google Scholar] [CrossRef]
- Wong, S.K.; Whisenant, J.G.; Bestvina, C.M.; Berry, L.D.; Owonikoko, T.K.; Sanborn, R.E.; Lammers, P.E.; El Osta, B.E.; Ramalingam, S.S.; Carlisle, J.W.; et al. Phase I/II study of nivolumab plus vorolanib in patients with thoracic malignancies: Interim efficacy of the SCLC and primary refractory NSCLC cohorts, and safety data across all cohorts. J. Clin. Oncol. 2021, 39 (Suppl. S15), 2578. [Google Scholar] [CrossRef]
- Iams, W.T.; Lovly, C.M. Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clin. Cancer Res. 2015, 21, 4270–4277. [Google Scholar] [CrossRef] [PubMed]
- Zucali, P.A.; Petrini, I.; Lorenzi, E.; Merino, M.; Cao, L.; Di Tommaso, L.; Lee, H.S.; Incarbone, M.; Walter, B.A.; Simonelli, M.; et al. Insulin-like growth factor-1 receptor and phosphorylated AKT-serine 473 expression in 132 resected thymomas and thymic carcinomas. Cancer 2010, 116, 4686–4695. [Google Scholar] [CrossRef]
- Girard, N.; Teruya-Feldstein, J.; Payabyab, E.C.; Riely, G.J.; Rusch, V.W.; Kris, M.G.; Zakowski, M.F. Insulin-Like Growth Factor-1 Receptor Expression in Thymic Malignancies. J. Thorac. Oncol. 2010, 5, 1439–1446. [Google Scholar] [CrossRef]
- Haluska, P.; Shaw, H.M.; Batzel, G.N.; Yin, D.; Molina, J.R.; Molife, L.R.; Yap, T.A.; Roberts, M.L.; Sharma, A.; Gualberto, A.; et al. Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin. Cancer Res. 2007, 13, 5834–5840. [Google Scholar] [CrossRef]
- McKian, K.P.; Haluska, P. Cixutumumab. Expert. Opin. Investig. Drugs 2009, 18, 1025–1033. [Google Scholar] [CrossRef]
- Radovich, M.; Solzak, J.P.; Hancock, B.A.; Conces, M.L.; Atale, R.; Porter, R.F.; Zhu, J.; Glasscock, J.; Kesler, K.A.; Badve, S.S.; et al. A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas. Br. J. Cancer 2016, 114, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Alberobello, A.T.; Wang, Y.; Beerkens, F.J.; Conforti, F.; McCutcheon, J.N.; Rao, G.; Raffeld, M.; Liu, J.; Rahhal, R.; Zhang, Y.W.; et al. PI3K as a Potential Therapeutic Target in Thymic Epithelial Tumors. J. Thorac. Oncol. 2016, 11, 1345–1356. [Google Scholar] [CrossRef]
- Maury, J.-M.; Merveilleux du Vignaux, C.; Drevet, G.; Zarza, V.; Chalabreysse, L.; Maisse, C.; Gineys, B.; Dolmazon, C.; Tronc, F.; Girard, N.; et al. Activation of the mTOR/ Akt pathway in thymic epithelial cells derived from thymomas. PLoS ONE 2019, 14, e0197655. [Google Scholar] [CrossRef]
- Girard, N.; Ostrovnaya, I.; Lau, C.; Park, B.; Ladanyi, M.; Finley, D.; Deshpande, C.; Rusch, V.; Orlow, I.; Travis, W.D.; et al. Genomic and mutational profiling to assess clonal relationships between multiple non-small cell lung cancers. Clin. Cancer Res. 2009, 15, 5184–5190. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Girard, N.; Marx, A. State of the art of genetic alterations in thymic epithelial tumors. J. Thorac. Oncol. 2014, 9 (Suppl. S2), S131–S136. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Marx, A.; Zettl, A.; Ströbel, P.; Müller-Hermelink, H.K.; Starostik, P. Chromosome 6 suffers frequent and multiple aberrations in thymoma. Am. J. Pathol. 2002, 161, 1507–1513. [Google Scholar] [CrossRef]
- Girard, N.; Shen, R.; Guo, T.; Zakowski, M.F.; Heguy, A.; Riely, G.J.; Huang, J.; Lau, C.; Lash, A.E.; Ladanyi, M.; et al. Comprehensive genomic analysis reveals clinically relevant molecular distinctions between thymic carcinomas and thymomas. Clin. Cancer Res. 2009, 15, 6790–6799. [Google Scholar] [CrossRef]
- Petrini, I.; Wang, Y.; Zucali, P.A.; Lee, H.S.; Pham, T.; Voeller, D.; Meltzer, P.S.; Giaccone, G. Copy Number Aberrations of Genes Regulating Normal Thymus Development in Thymic Epithelial Tumors. Clin. Cancer Res. 2013, 19, 1960–1971. [Google Scholar] [CrossRef]
- Noviello, C.; Courjal, F.; Theillet, C. Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: Possibly four regions of deletion. Clin. Cancer Res. 1996, 2, 1601–1606. [Google Scholar]
- Theile, M.; Seitz, S.; Arnold, W.; Jandrig, B.; Frege, R.; Schlag, P.M.; Haensch, W.; Guski, H.; Winzer, K.J.; Barrett, J.C.; et al. A defined chromosome 6q fragment (at D6S310) harbors a putative tumor suppressor gene for breast cancer. Oncogene 1996, 13, 677–685. [Google Scholar]
- Bastian, B.C.; LeBoit, P.E.; Hamm, H.; Bröcker, E.B.; Pinkel, D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998, 58, 2170–2175. [Google Scholar] [PubMed]
- Aalto, Y.; Eriksson, L.; Seregard, S.; Larsson, O.; Knuutila, S. Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2001, 42, 313–317. [Google Scholar] [PubMed]
- Hirabayashi, H.; Fujii, Y.; Sakaguchi, M.; Tanaka, H.; Yoon, H.E.; Komoto, Y.; Inoue, M.; Miyoshi, S.; Matsuda, H. p16INK4, pRB, p53 and cyclin D1 expression and hypermethylation of CDKN2 gene in thymoma and thymic carcinoma. Int. J. Cancer 1997, 73, 639–644. [Google Scholar] [CrossRef]
- Petrini, I.; Meltzer, P.S.; Zucali, P.A.; Luo, J.; Lee, C.; Santoro, A.; Lee, H.S.; Killian, K.J.; Wang, Y.; Tsokos, M.; et al. Copy number aberrations of BCL2 and CDKN2A/B identified by array-CGH in thymic epithelial tumors. Cell Death Dis. 2012, 3, e351. [Google Scholar] [CrossRef]
- Aesif, S.W.; Aubry, M.C.; Yi, E.S.; Kloft-Nelson, S.M.; Jenkins, S.M.; Spears, G.M.; Greipp, P.T.; Sukov, W.R.; Roden, A.C. Loss of p16(INK4A) Expression and Homozygous CDKN2A Deletion Are Associated with Worse Outcome and Younger Age in Thymic Carcinomas. J. Thorac. Oncol. 2017, 12, 860–871. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Bencardino, K.; Pizzutilo, E.G.; Tosi, F.; Siena, S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann. Oncol. 2019, 30, viii5–viii15. [Google Scholar] [CrossRef]
- Kim, D.J.; Yang, W.I.; Kim, S.H.; Park, I.K.; Chung, K.Y. Expression of neurotrophin receptors in surgically resected thymic epithelial tumors. Eur. J. Cardiothorac. Surg. 2005, 28, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Ozono, K.; Onishi, H.; Iwamoto, N.; Nakamura, K.; Miyoshi, K.; Nakamura, M.; Oda, Y. Tropomyosin-related Kinase B Is Potentially a Biomarker of Prognosis and Therapeutic Target for Malignant Thymic Epithelial Tumors. Anticancer. Res. 2022, 42, 3779–3787. [Google Scholar] [CrossRef]
- Weiss, G.J.; Hidalgo, M.; Borad, M.J.; Laheru, D.; Tibes, R.; Ramanathan, R.K.; Blaydorn, L.; Jameson, G.; Jimeno, A.; Isaacs, J.D.; et al. Phase I study of the safety, tolerability and pharmacokinetics of PHA-848125AC, a dual tropomyosin receptor kinase A and cyclin-dependent kinase inhibitor, in patients with advanced solid malignancies. Investig. New Drugs 2012, 30, 2334–2343. [Google Scholar] [CrossRef]
- Conforti, F.; Zhang, X.; Rao, G.; De Pas, T.; Yonemori, Y.; Rodriguez, J.A.; McCutcheon, J.N.; Rahhal, R.; Alberobello, A.T.; Wang, Y.; et al. Therapeutic Effects of XPO1 Inhibition in Thymic Epithelial Tumors. Cancer Res. 2017, 77, 5614–5627. [Google Scholar] [CrossRef]
- Abdul Razak, A.R.; Mau-Soerensen, M.; Gabrail, N.Y.; Gerecitano, J.F.; Shields, A.F.; Unger, T.J.; Saint-Martin, J.R.; Carlson, R.; Landesman, Y.; McCauley, D.; et al. First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2016, 34, 4142–4150. [Google Scholar] [CrossRef]
- Zou, S.; Tong, Q.; Liu, B.; Huang, W.; Tian, Y.; Fu, X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer 2020, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Z.; Liu, Y.; Wang, P.; Zhang, R. STAT3 expression correlates with prognosis of thymic epithelial tumors. J. Cardiothorac. Surg. 2013, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Okabe, N.; Fujiwara, M.; Tachibana, K.; Tanaka, R.; Kondo, H.; Kamma, H. STAT3 activation in thymic epithelial tumors: Correlation with cyclin D1, JAK3, and clinical behavior. Gen. General. Thorac. Cardiovasc. Surg. 2021, 69, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
Reference/Study | Treatment | N | ORR (%) | DCR (%) | Median PFS (Months) | Median OS (Months) |
---|---|---|---|---|---|---|
SSTR Targeting Agents Palmieri et al. (2002) [10] Loehrer et al. (2004) [11] NCT05918302 [12] NCT04375267 [13] | Octreotide + Prednisone Octreotide + Prednisone Everolimus + PRRT Everolimus Olaparib + PRRT | 16 (10 T, 3 TC, 3 NET) 38 (32 T, 5 TC, 1 NET) 120 (solid tumor) 18 (solid tumor) | 38 32 (38 T, 0 TC/NET) | 75 68 | 14 9.2 | 15 NR |
EGFR Targeting Agents Kurup et al. (2005) [14] Bedano et al. (2008) [15] NCT01025089 [16] | Gefitinib Erlotinib + Bevacizumab Cetuximab + PAC | 26 (19 T, 7 TC) 18 (11 T, 7 TC) 18 (T, TC) | 4 0 | 58 60 | - - | - - |
c-KIT Targeting Agents Salter et al. (2008) [17] Giaccone et al. (2009) [18] | Imatinib Imatinib | 11 (TC) 7 (2 T, 5 TC) | 0 0 (100 T, 0 TC) | 27 29 | - 2 | - 4 |
Epigenetic Targeting Agents Giaccone et al. (2011) [19] Thomas et al. (2014) [20] | Belinostat Belinostat + PAC | 41 (25 T, 16 TC) 25 (11 T, 14 TC) | 5 (8 T, 0 TC) 40 (64 T, 21 TC) | 68 (79 T, 50 TC) 100 (93 T, 96 TC) | 5.8 (11.4 T, 2.7 TC) 9.0 (NR T, 7.2 TC) | 19.2 (NR T, 12.4 TC) 28.5 (NR T, 21.4 TC) |
Anti-Angiogenic Agents Thomas et al. (2015) [21] Sato et al. (2020) [22] Perrino et al. (2022) * [23] Conforti et al. (2022) [24] NCT04710628 [25] NCT03463460 [26] NCT03583086 [27] NCT03694002 [28] | Sunitinib Lenvatinib Regorafenib Axitinib + Avelumab Lenvatinib + Pembrolizumab Sunitinib + Pembrolizumab Vorolanib + Nivolumab CT + Ramucirumab | 41 (16 T, 25 TC) 42 (TC) 19 (11 T, 8 TC) 32 (5 T, 27 TC) 43 (T, TC) 30 (TC) 88 (solid tumor) 66 | 6 T, 26 TC 38 37 (10 T, 0 TC) 34 (40 T, 33 TC) | 81 T, 91 TC 95 79 (90 T, 86 TC) 91 (100 T, 89 TC) | 8.5 T, 7.2 TC 9.3 9.6 (9.6 T, 9.2 TC) 7.5 | 15.5 T, NR TC NR 33.8 (NR T, 20.1 TC) 26.6 |
IGFR-PI3K-AKT Agents Rajan et al. (2014) [29] Zucali et al. (2018) [30] Abu Zaid et al. (2022) [31] | Cixutumumab Everolimus Buparlisib | 49 (37 T, 12 TC) 50 (32 T, 18 TC) 14 (T) | 10 (14 T, 0 TC) 12 (9 T, 17 TC) 7 | 78 (89 T, 42 TC) 88 (94 T, 78 TC) 50 | 8.2 (9.9 T, 1.7 TC) 10.1 (16.6 T, 5.6 TC) 11.1 | 16.2 (27.5 T, 8.4 TC) 25.7 (NR T, 14.7 TC) 40.0 |
Cell Cycle/STAT3 Agents Besse et al. (2018) [32] Besse et al. (2018) [32] Kalra et al. (2018) [33] Jung et al. (2023) [34] NCT03556228 [35] | Milciclib Milciclib Napabucasin Palbociclib VMD-928 | 72 (20 T, 52 TC) 30 (17 T, 13 TC) 16 (10 T, 6 TC) 48 (24 T, 23 TC, 1 UNK) 74 (solid tumor or lymphoma) | 4.2 3.3 25 T, 67 TC 13 (17 T, 9 TC) | 72 70 63 T, 83 TC 79 (79 T, 78 TC) | 5.8 5.7 - 11.0 (13 T, 9.2 TC) | 24.4 21.0 - 26.4 (26.4 T, 25.6 TC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniar, R.; Loehrer, P.J., Sr. What Have We Learned from Molecularly Informed Clinical Trials on Thymomas and Thymic Carcinomas—Current Status and Future Directions? Cancers 2024, 16, 416. https://doi.org/10.3390/cancers16020416
Maniar R, Loehrer PJ Sr. What Have We Learned from Molecularly Informed Clinical Trials on Thymomas and Thymic Carcinomas—Current Status and Future Directions? Cancers. 2024; 16(2):416. https://doi.org/10.3390/cancers16020416
Chicago/Turabian StyleManiar, Rohan, and Patrick J. Loehrer, Sr. 2024. "What Have We Learned from Molecularly Informed Clinical Trials on Thymomas and Thymic Carcinomas—Current Status and Future Directions?" Cancers 16, no. 2: 416. https://doi.org/10.3390/cancers16020416
APA StyleManiar, R., & Loehrer, P. J., Sr. (2024). What Have We Learned from Molecularly Informed Clinical Trials on Thymomas and Thymic Carcinomas—Current Status and Future Directions? Cancers, 16(2), 416. https://doi.org/10.3390/cancers16020416