A Fast 3D Range-Modulator Delivery Approach: Validation of the FLUKA Model on a Varian ProBeam System Including a Robustness Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. 3D Range-Modulator: Design and Manufacturing
2.2. Monte Carlo Simulations
2.2.1. ProBeam FLUKA Model
2.2.2. Base-Line Data Simulations
2.2.3. Reference Cube RM Simulations
2.2.4. Simulations of Misalignment Scenarios
2.2.5. Simulations of Step RM vs. Stepless RM
2.3. Dose Measurements
3. Results
3.1. Base-Line Data
3.2. Reference Cube RM
3.3. Reference vs. Transformed Cube RM Simulations
3.4. Step RM vs. Stepless RM
4. Discussion
4.1. Reference Cube RM
4.2. Reference vs. Transformed Cube RM Simulations
4.3. Step RM vs. Stepless RM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simeonov, Y.; Weber, U.; Penchev, P.; Ringbæk, T.P.; Schuy, C.; Brons, S.; Engenhart-Cabillic, R.; Bliedtner, J.; Zink, K. 3D Range-Modulator for Scanned Particle Therapy: Development, Monte Carlo Simulations and Experimental Evaluation. Phys. Med. Biol. 2017, 62, 7075–7096. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, Y.; Weber, U.; Schuy, C.; Engenhart-Cabillic, R.; Penchev, P.; Flatten, V.; Zink, K. Development, Monte Carlo Simulations and Experimental Evaluation of a 3D Range-Modulator for a Complex Target in Scanned Proton Therapy. Biomed. Phys. Eng. Express 2022, 8, 035006. [Google Scholar] [CrossRef] [PubMed]
- Harrison, N.; Kang, M.; Liu, R.; Charyyev, S.; Wahl, N.; Liu, W.; Zhou, J.; Higgins, K.A.; Simone, C.B.; Bradley, J.D.; et al. A Novel Inverse Algorithm to Solve the Integrated Optimization of Dose, Dose Rate, and Linear Energy Transfer of Proton FLASH Therapy with Sparse Filters. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Charyyev, S.; Wahl, N.; Liu, W.; Kang, M.; Zhou, J.; Yang, X.; Baltazar, F.; Palkowitsch, M.; Higgins, K.; et al. An Integrated Physical Optimization Framework for Proton Stereotactic Body Radiation Therapy FLASH Treatment Planning Allows Dose, Dose Rate, and Linear Energy Transfer Optimization Using Patient-Specific Ridge Filters. Int. J. Radiat. Oncol. Biol. Phys. 2023, 116, 949–959. [Google Scholar] [CrossRef]
- Deffet, S.; Souris, K.; Sterpin, E. Optimization of Patient-Specific Range Modulators for Conformal FLASH Proton Therapy. arXiv 2023, arXiv:2303.08649. [Google Scholar]
- Ma, C.; Zhou, J.; Chang, C.-W.; Wang, Y.; Patel, P.R.; Yu, D.S.; Tian, S.; Yang, X. Streamlined Pin-Ridge-Filter Design for Single-Energy Proton FLASH Planning. Med. Phys. 2024, 51, 2955–2966. [Google Scholar] [CrossRef] [PubMed]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.-F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef] [PubMed]
- Vozenin, M.-C.; Fornel, P.D.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.-F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-Pig and Cat-Cancer Patients. Clin. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Adrian, G.; Konradsson, E.; Lempart, M.; Bäck, S.; Ceberg, C.; Petersson, K. The FLASH Effect Depends on Oxygen Concentration. Br. J. Radiol. 2019, 93, 20190702. [Google Scholar] [CrossRef] [PubMed]
- Diffenderfer, E.S.; Verginadis, I.I.; Kim, M.M.; Shoniyozov, K.; Velalopoulou, A.; Goia, D.; Putt, M.; Hagan, S.; Avery, S.; Teo, K.; et al. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Diffenderfer, E.S.; Sørensen, B.S.; Mazal, A.; Carlson, D.J. The Current Status of Preclinical Proton FLASH Radiation and Future Directions. Med. Phys. 2022, 49, 2039–2054. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.; Traneus, E.; Safai, S.; Kolano, A.; van de Water, S. Treatment Planning for Flash Radiotherapy: General Aspects and Applications to Proton Beams. Med. Phys. 2022, 49, 2861–2874. [Google Scholar] [CrossRef]
- Jolly, S.; Owen, H.; Schippers, M.; Welsch, C. Technical Challenges for FLASH Proton Therapy. Phys. Medica 2020, 78, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Zink, K.; Baumann, K.S.; Theiss, U.; Subtil, F.; Lahrmann, S.; Eberle, F.; Adeberg, S. Organization and Operation of Multi Particle Therapy Facilities: The Marburg Ion-Beam Therapy Center, Germany (MIT). Health Technol. 2024, 14, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Sala, P.R.; Fassò, A.; Ranft, J. FLUKA: A Multi-Particle Transport Code (Program Version 2005); CERN: Geneva, Switzerland, 2005. [Google Scholar]
- Böhlen, T.T.; Cerutti, F.; Chin, M.P.W.; Fassò, A.; Ferrari, A.; Ortega, P.G.; Mairani, A.; Sala, P.R.; Smirnov, G.; Vlachoudis, V. The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nucl. Data Sheets 2014, 120, 211–214. [Google Scholar] [CrossRef]
Shift/Rotation | Gamma Index (2%/2 mm, Local) | |
---|---|---|
Proximal (11 cm) | Distal (16 cm) | |
Treatment field: 1 mm shift in X | 100% | 100% |
3D RM: 1.5 mm shift in X | 100% | 100% |
3D RM: 1.5 mm shift in both X/Y | 99% | 73% |
3D RM: 0.5° angular deflection | 99% | 86% |
3D RM: 1.5° angular deflection | 77% | 23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeonov, Y.; Weber, U.; Krieger, M.; Schuy, C.; Folkerts, M.; Paquet, G.; Lansonneur, P.; Penchev, P.; Zink, K. A Fast 3D Range-Modulator Delivery Approach: Validation of the FLUKA Model on a Varian ProBeam System Including a Robustness Analysis. Cancers 2024, 16, 3498. https://doi.org/10.3390/cancers16203498
Simeonov Y, Weber U, Krieger M, Schuy C, Folkerts M, Paquet G, Lansonneur P, Penchev P, Zink K. A Fast 3D Range-Modulator Delivery Approach: Validation of the FLUKA Model on a Varian ProBeam System Including a Robustness Analysis. Cancers. 2024; 16(20):3498. https://doi.org/10.3390/cancers16203498
Chicago/Turabian StyleSimeonov, Yuri, Ulrich Weber, Miriam Krieger, Christoph Schuy, Michael Folkerts, Gerard Paquet, Pierre Lansonneur, Petar Penchev, and Klemens Zink. 2024. "A Fast 3D Range-Modulator Delivery Approach: Validation of the FLUKA Model on a Varian ProBeam System Including a Robustness Analysis" Cancers 16, no. 20: 3498. https://doi.org/10.3390/cancers16203498
APA StyleSimeonov, Y., Weber, U., Krieger, M., Schuy, C., Folkerts, M., Paquet, G., Lansonneur, P., Penchev, P., & Zink, K. (2024). A Fast 3D Range-Modulator Delivery Approach: Validation of the FLUKA Model on a Varian ProBeam System Including a Robustness Analysis. Cancers, 16(20), 3498. https://doi.org/10.3390/cancers16203498