Cancer Therapy-Induced Encephalitis
Simple Summary
Abstract
1. Introduction
1.1. Encephalitis
- Fever above 38 °C within the last 72 h.
- New focal neurological signs.
- New epileptic seizure activity, unrelated to a pre-existing condition
- Signs of encephalitis on MRI.
- Abnormal EEG findings consistent with encephalitis.
- CSF pleocytosis.
1.2. Immune Checkpoint Inhibitors
2. Checkpoint Inhibitor-Induced Encephalitis
2.1. Diagnosis of CIIE
2.2. Management of CIIE
2.3. Monitoring of the Evolution of CIIE
3. Immunotherapy-Induced Acute Demyelinating Encephalomyelitis
4. Activated T Cell-Induced Encephalitis
4.1. Chimeric Antigen Receptor T-Cells
4.2. Chimeric Antigen Receptor T-Cell Related Encephalopathy
4.3. Bispecific T Cell Engager Immunotherapy (BiTEs)
5. Chemotherapy-Induced Encephalitis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alam, A.M.; Easton, A.; Nicholson, T.R.; Irani, S.R.; Davies, N.W.; Solomon, T.; Michael, B.D. Encephalitis: Diagnosis, Management and Recent Advances in the Field of Encephalitides. Postgrad. Med. J. 2022, 99, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Tyler, K.L. Acute Viral Encephalitis. N. Engl. J. Med. 2018, 379, 557–566. [Google Scholar] [CrossRef] [PubMed]
- McCracken, L.; Zhang, J.; Greene, M.; Crivaro, A.; Gonzalez, J.; Kamoun, M.; Lancaster, E. Improving the Antibody-Based Evaluation of Autoimmune Encephalitis. Neurol. Neuroimmunol. Neuroinflammation 2017, 4, e404. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.; Tunkel, A.R.; Bloch, K.C.; Lauring, A.S.; Sejvar, J.; Bitnun, A.; Stahl, J.-P.; Mailles, A.; Drebot, M.; Rupprecht, C.E.; et al. Case Definitions, Diagnostic Algorithms, and Priorities in Encephalitis: Consensus Statement of the International Encephalitis Consortium. Clin. Infect. Dis. 2013, 57, 1114–1128. [Google Scholar] [CrossRef] [PubMed]
- Granerod, J.; Ambrose, H.E.; Davies, N.W.; Clewley, J.P.; Walsh, A.L.; Morgan, D.; Cunningham, R.; Zuckerman, M.; Mutton, K.J.; Solomon, T.; et al. Causes of Encephalitis and Differences in Their Clinical Presentations in England: A Multicentre, Population-Based Prospective Study. Lancet Infect. Dis. 2010, 10, 835–844. [Google Scholar] [CrossRef]
- Huang, C.-N.; Tian, X.-B.; Jiang, S.-M.; Chang, S.-H.; Wang, N.; Liu, M.-Q.; Zhang, Q.-X.; Li, T.; Zhang, L.-J.; Yang, L. Comparisons Between Infectious and Autoimmune Encephalitis: Clinical Signs, Biochemistry, Blood Counts, and Imaging Findings. Neuropsychiatr. Dis. Treat. 2020, 16, 2649–2660. [Google Scholar] [CrossRef]
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A Clinical Approach to Diagnosis of Autoimmune Encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef]
- Zuliani, L.; Marangoni, S.; Gaspari, P.D.; Rosellini, I.; Nosadini, M.; Fleming, J.M.; Riva, V.D.; Galloni, E.; Perini, F.; Frigo, A.C.; et al. Epidemiology of Neuronal Surface Antibody-Mediated Autoimmune Encephalitis and Antibody-Based Diagnostics. J. Neuroimmunol. 2021, 357, 577598. [Google Scholar] [CrossRef]
- Lang, B.; Makuch, M.; Moloney, T.; Dettmann, I.; Mindorf, S.; Probst, C.; Stoecker, W.; Buckley, C.; Newton, C.R.; Leite, M.I.; et al. Intracellular and Non-Neuronal Targets of Voltage-Gated Potassium Channel Complex Antibodies. J. Neurol. Neurosurg. Psychiatry 2017, 88, 353. [Google Scholar] [CrossRef]
- Dalmau, J.; Tüzün, E.; Wu, H.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic Anti–N-methyl-D-aspartate Receptor Encephalitis Associated with Ovarian Teratoma. Ann. Neurol. 2007, 61, 25–36. [Google Scholar] [CrossRef]
- Irani, S.R.; Bera, K.; Waters, P.; Zuliani, L.; Maxwell, S.; Zandi, M.S.; Friese, M.A.; Galea, I.; Kullmann, D.M.; Beeson, D.; et al. N-Methyl-d-Aspartate Antibody Encephalitis: Temporal Progression of Clinical and Paraclinical Observations in a Predominantly Non-Paraneoplastic Disorder of Both Sexes. Brain 2010, 133, 1655–1667. [Google Scholar] [CrossRef]
- Darnell, R.B.; Posner, J.B. Paraneoplastic Syndromes Involving the Nervous System. N. Engl. J. Med. 2003, 349, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Graus, F.; Vogrig, A.; Muñiz-Castrillo, S.; Antoine, J.-C.G.; Desestret, V.; Dubey, D.; Giometto, B.; Irani, S.R.; Joubert, B.; Leypoldt, F.; et al. Updated Diagnostic Criteria for Paraneoplastic Neurologic Syndromes. Neurol. Neuroimmunol. Neuroinflammation 2021, 8, e1014. [Google Scholar] [CrossRef]
- Williams, T.J.; Benavides, D.R.; Patrice, K.-A.; Dalmau, J.O.; de Ávila, A.L.R.; Le, D.T.; Lipson, E.J.; Probasco, J.C.; Mowry, E.M. Association of Autoimmune Encephalitis with Combined Immune Checkpoint Inhibitor Treatment for Metastatic Cancer. JAMA Neurol. 2016, 73, 928. [Google Scholar] [CrossRef] [PubMed]
- Zafar, Z.; Vogler, C.; Hudali, T.; Bhattarai, M. Nivolumab-Associated Acute Demyelinating Encephalitis: A Case Report and Literature Review. Clin. Med. Res. 2019, 17, 29–33. [Google Scholar] [CrossRef]
- Jeffery, O.J.; Lennon, V.A.; Pittock, S.J.; Gregory, J.K.; Britton, J.W.; McKeon, A. GABAB Receptor Autoantibody Frequency in Service Serologic Evaluation. Neurology 2013, 81, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Joubert, B.; Kerschen, P.; Zekeridou, A.; Desestret, V.; Rogemond, V.; Chaffois, M.-O.; Ducray, F.; Larrue, V.; Daubail, B.; Idbaih, A.; et al. Clinical Spectrum of Encephalitis Associated With Antibodies Against the α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor: Case Series and Review of the Literature. JAMA Neurol. 2015, 72, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Graus, F.; Dalmau, J. Paraneoplastic Neurological Syndromes in the Era of Immune-Checkpoint Inhibitors. Nat. Rev. Clin. Oncol. 2019, 16, 535–548. [Google Scholar] [CrossRef]
- Duong, S.L.; Prüss, H. Paraneoplastic Autoimmune Neurological Syndromes and the Role of Immune Checkpoint Inhibitors. Neurotherapeutics 2022, 19, 848–863. [Google Scholar] [CrossRef]
- Pohl, D.; Alper, G.; Haren, K.V.; Kornberg, A.J.; Lucchinetti, C.F.; Tenembaum, S.; Belman, A.L. Acute Disseminated Encephalomyelitis: Updates on an Inflammatory CNS Syndrome. Neurology 2016, 87, S38–S45. [Google Scholar] [CrossRef]
- Johnson, D.B.; Nebhan, C.A.; Moslehi, J.J.; Balko, J.M. Immune-Checkpoint Inhibitors: Long-Term Implications of Toxicity. Nat. Rev. Clin. Oncol. 2022, 19, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Prasad, V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.Z.; Aqeel, S.B.; Lingamaneni, P.; Pichardo, R.C.; Jawed, A.; Khalid, S.; Banskota, S.U.; Fu, P.; Mangla, A. Association of Immune Checkpoint Inhibitors With Neurologic Adverse Events: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e227722. [Google Scholar] [CrossRef] [PubMed]
- Perrinjaquet, C.; Desbaillets, N.; Hottinger, A.F. Neurotoxicity Associated with Cancer Immunotherapy: Immune Checkpoint Inhibitors and Chimeric Antigen Receptor T-Cell Therapy. Curr. Opin. Neurol. 2019, 32, 500–510. [Google Scholar] [CrossRef]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Cuzzubbo, S.; Javeri, F.; Tissier, M.; Roumi, A.; Barlog, C.; Doridam, J.; Lebbe, C.; Belin, C.; Ursu, R.; Carpentier, A.F. Neurological Adverse Events Associated with Immune Checkpoint Inhibitors: Review of the Literature. Eur. J. Cancer 2017, 73, 1–8. [Google Scholar] [CrossRef]
- Astaras, C.; de Micheli, R.; Moura, B.; Hundsberger, T.; Hottinger, A.F. Neurological Adverse Events Associated with Immune Checkpoint Inhibitors: Diagnosis and Management. Curr. Neurol. Neurosci. Rep. 2018, 18, 3. [Google Scholar] [CrossRef]
- Schneider, S.; Potthast, S.; Komminoth, P.; Schwegler, G.; Böhm, S. PD-1 Checkpoint Inhibitor Associated Autoimmune Encephalitis. Case Rep. Oncol. 2017, 10, 473–478. [Google Scholar] [CrossRef]
- Shah, K.P.; Song, H.; Ye, F.; Moslehi, J.J.; Balko, J.M.; Salem, J.-E.; Johnson, D.B. Demographic Factors Associated with Toxicity in Patients Treated with Anti–Programmed Cell Death-1 Therapy. Cancer Immunol. Res. 2020, 8, 851–855. [Google Scholar] [CrossRef]
- Shah, S.; Dunn-Pirio, A.; Luedke, M.; Morgenlander, J.; Skeen, M.; Eckstein, C. Nivolumab-Induced Autoimmune Encephalitis in Two Patients with Lung Adenocarcinoma. Case Rep. Neurol. Med. 2018, 2018, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Geis, C.; Planagumà, J.; Carreño, M.; Graus, F.; Dalmau, J. Autoimmune Seizures and Epilepsy. J. Clin. Investig. 2019, 129, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ramberger, M.; O’Connor, K.C.; Bashford-Rogers, R.J.M.; Irani, S.R. The B Cell Immunobiology That Underlies CNS Autoantibody-Mediated Diseases. Nat. Rev. Neurol. 2020, 16, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Graus, F. Antibody-Mediated Encephalitis. N. Engl. J. Med. 2018, 378, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Vogrig, A.; Fouret, M.; Joubert, B.; Picard, G.; Rogemond, V.; Pinto, A.-L.; Muñiz-Castrillo, S.; Roger, M.; Raimbourg, J.; Dayen, C.; et al. Increased Frequency of Anti-Ma2 Encephalitis Associated with Immune Checkpoint Inhibitors. Neurol.-Neuroimmunol. Neuroinflammation 2019, 6, e604. [Google Scholar] [CrossRef]
- Hottinger, A.F.; de Micheli, R.; Guido, V.; Karampera, A.; Hagmann, P.; Pasquier, R.D. Natalizumab May Control Immune Checkpoint Inhibitor–Induced Limbic Encephalitis. Neurol. Neuroimmunol. Neuroinflammation 2018, 5, e439. [Google Scholar] [CrossRef]
- Stuby, J.; Herren, T.; Naumburger, G.S.; Papet, C.; Rudiger, A. Immune Checkpoint Inhibitor Therapy-Associated Encephalitis: A Case Series and Review of the Literature. Swiss Med. Wkly. 2020, 150, w20377. [Google Scholar] [CrossRef]
- Farina, A.; Villagrán-García, M.; Fourier, A.; Pinto, A.-L.; Chorfa, F.; Timestit, N.; Alberto, T.; Aupy, J.; Benaiteau, M.; Birzu, C.; et al. Diagnostic and Prognostic Biomarkers in Immune Checkpoint Inhibitor-Related Encephalitis: A Retrospective Cohort Study. Lancet Reg. Health-Eur. 2024, 44, 101011. [Google Scholar] [CrossRef]
- Ashique, S.; Mohanto, S.; Ahmed, M.G.; Mishra, N.; Garg, A.; Chellappan, D.K.; Omara, T.; Iqbal, S.; Kahwa, I. Gut-Brain Axis: A Cutting-Edge Approach to Target Neurological Disorders and Potential Synbiotic Application. Heliyon 2024, 10, e34092. [Google Scholar] [CrossRef]
- Khawar, M.M.; Ijaz, S.; Goyal, P.; Kandambige, D.; Sharifa, M.; Maslamani, A.N.J.; Kutabi, S.A.; Saleh, I.; Albshir, M.M.; Almadhoun, M.K.I.K.; et al. The Gut-Brain Axis in Autoimmune Diseases: Emerging Insights and Therapeutic Implications. Cureus 2023, 15, e48655. [Google Scholar] [CrossRef]
- Andrews, M.C.; Vasanthakumar, A. Gut Microbiota—A Double-Edged Sword in Cancer Immunotherapy. Trends Cancer 2023, 9, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Solomon, T.; Michael, B.D.; Smith, P.E.; Sanderson, F.; Davies, N.W.S.; Hart, I.J.; Holland, M.; Easton, A.; Buckley, C.; Kneen, R.; et al. Management of Suspected Viral Encephalitis in Adults–Association of British Neurologists and British Infection Association National Guidelines. J. Infect. 2012, 64, 347–373. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Villagrán-García, M.; Joubert, B. Soluble Biomarkers for Immune Checkpoint Inhibitor-Related Encephalitis: A Mini-Review. Rev. Neurol. 2024; in press. [Google Scholar] [CrossRef]
- Larkin, J.; Chmielowski, B.; Lao, C.D.; Hodi, F.S.; Sharfman, W.; Weber, J.; Suijkerbuijk, K.P.M.; Azevedo, S.; Li, H.; Reshef, D.; et al. Neurologic Serious Adverse Events Associated with Nivolumab Plus Ipilimumab or Nivolumab Alone in Advanced Melanoma, Including a Case Series of Encephalitis. Oncologist 2017, 22, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Achufusi, A.; Armand, P.; Berkenstock, M.K.; Bhatia, S.; Budde, L.E.; Chokshi, S.; Davies, M.; et al. Management of Immunotherapy-Related Toxicities, Version 1.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Gresa-Arribas, N.; Titulaer, M.J.; Torrents, A.; Aguilar, E.; McCracken, L.; Leypoldt, F.; Gleichman, A.J.; Balice-Gordon, R.; Rosenfeld, M.R.; Lynch, D.; et al. Antibody Titres at Diagnosis and during Follow-up of Anti-NMDA Receptor Encephalitis: A Retrospective Study. Lancet Neurol. 2014, 13, 167–177. [Google Scholar] [CrossRef]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef]
- Charrot, S.; Hallam, S. CAR-T Cells: Future Perspectives. Hemasphere 2019, 3, e188. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for Relapsed or Refractory Adult B-Cell Acute Lymphoblastic Leukaemia: Phase 2 Results of the Single-Arm, Open-Label, Multicentre ZUMA-3 Study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene Maraleucel for Patients with Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Topp, M.S.; Gökbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and Activity of Blinatumomab for Adult Patients with Relapsed or Refractory B-Precursor Acute Lymphoblastic Leukaemia: A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2015, 16, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Yang, J.C.; Atkins, M.B.; Disis, M.L. Toxicities of Immunotherapy for the Practitioner. J. Clin. Oncol. 2015, 33, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric Antigen Receptor T-Cell Therapy - Assessment and Management of Toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Torre, M.; Solomon, I.H.; Sutherland, C.L.; Nikiforow, S.; DeAngelo, D.J.; Stone, R.M.; Vaitkevicius, H.; Galinsky, I.A.; Padera, R.F.; Trede, N.; et al. Neuropathology of a Case With Fatal CAR T-Cell-Associated Cerebral Edema. J. Neuropathol. Exp. Neurol. 2018, 77, 877–882. [Google Scholar] [CrossRef]
- Gust, J.; Hay, K.A.; Hanafi, L.-A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial Activation and Blood–Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Park, J.H.; Salloum, D.; Riviere, I.; Flynn, J.; Mead, E.; Halton, E.; Wang, X.; Senechal, B.; Purdon, T.; et al. Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-Cell Therapy in Patients with B-Cell Acute Lymphoblastic Leukemia. Cancer Discov. 2018, 8, 958–971. [Google Scholar] [CrossRef]
- Zhou, X.; Rasche, L.; Kortüm, K.M.; Danhof, S.; Hudecek, M.; Einsele, H. Toxicities of Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma: An Overview of Experience From Clinical Trials, Pathophysiology, and Management Strategies. Front. Immunol. 2020, 11, 620312. [Google Scholar] [CrossRef]
- Schubert, M.-L.; Schmitt, M.; Wang, L.; Ramos, C.A.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-Effect Management of Chimeric Antigen Receptor (CAR) T-Cell Therapy. Ann. Oncol. 2021, 32, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Huang, S.; Chen, S.; Wang, Y.; Sun, Q.; Xu, X.; Li, Y. Mechanisms of Cytokine Release Syndrome and Neurotoxicity of CAR T-Cell Therapy and Associated Prevention and Management Strategies. J. Exp. Clin. Cancer Res. 2021, 40, 367. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Locke, F.L.; Lin, Y.; Jain, N.; Daver, N.; Gulbis, A.M.; Adkins, S.; et al. Toxicity Management after Chimeric Antigen Receptor T Cell Therapy: One Size Does Not Fit “ALL”. Nat. Rev. Clin. Oncol. 2018, 15, 218. [Google Scholar] [CrossRef] [PubMed]
- Norelli, M.; Camisa, B.; Barbiera, G.; Falcone, L.; Purevdorj, A.; Genua, M.; Sanvito, F.; Ponzoni, M.; Doglioni, C.; Cristofori, P.; et al. Monocyte-Derived IL-1 and IL-6 Are Differentially Required for Cytokine-Release Syndrome and Neurotoxicity Due to CAR T Cells. Nat. Med. 2018, 24, 739–748. [Google Scholar] [CrossRef]
- Nellan, A.; McCully, C.M.L.; Garcia, R.C.; Jayaprakash, N.; Widemann, B.C.; Lee, D.W.; Warren, K.E. Improved CNS Exposure to Tocilizumab after Cerebrospinal Fluid Compared to Intravenous Administration in Rhesus Macaques. Blood 2018, 132, 662–666. [Google Scholar] [CrossRef]
- Mackall, C.L.; Miklos, D.B. CNS Endothelial Cell Activation Emerges as a Driver of CAR T Cell–Associated Neurotoxicity. Cancer Discov. 2017, 7, 1371–1373. [Google Scholar] [CrossRef]
- Hagop, K.; Anthony, S.; Nicola, G.; Fielding, A.K.; Schuh, A.C.; Josep-Maria, R.; Andrew, W.; Hervé, D.; Robin, F.; Renato, B.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef]
- Hutchings, M.; Morschhauser, F.; Iacoboni, G.; Carlo-Stella, C.; Offner, F.C.; Sureda, A.; Salles, G.; Martínez-Lopez, J.; Crump, M.; Thomas, D.N.; et al. Glofitamab, a Novel, Bivalent CD20-Targeting T-Cell–Engaging Bispecific Antibody, Induces Durable Complete Remissions in Relapsed or Refractory B-Cell Lymphoma: A Phase I Trial. J. Clin. Oncol. 2021, 39, 1959–1970. [Google Scholar] [CrossRef]
- Budde, L.E.; Sehn, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and Efficacy of Mosunetuzumab, a Bispecific Antibody, in Patients with Relapsed or Refractory Follicular Lymphoma: A Single-Arm, Multicentre, Phase 2 Study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef] [PubMed]
- Shanshal, M.; Caimi, P.F.; Adjei, A.A.; Ma, W.W. T-Cell Engagers in Solid Cancers—Current Landscape and Future Directions. Cancers 2023, 15, 2824. [Google Scholar] [CrossRef] [PubMed]
- Goebeler, M.-E.; Bargou, R. Blinatumomab: A CD19/CD3 Bispecific T Cell Engager (BiTE) with Unique Anti-Tumor Efficacy. Leuk. Lymphoma 2016, 57, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.S.; Schiller, G.; Benjamin, R.; Jia, C.; Zhang, A.; Zhu, M.; Zimmerman, Z.; Topp, M.S. Neurologic Adverse Events in Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia Treated with Blinatumomab: Management and Mitigating Factors. Ann. Hematol. 2018, 98, 159–167. [Google Scholar] [CrossRef]
- Schlegel, U. Central Nervous System Toxicity of Chemotherapy. Eur. Assoc. Neurooncology Mag. 2011, 1, 25–29. [Google Scholar]
- Peddi, P.F.; Peddi, S.; Santos, E.S.; Morgensztern, D. Central Nervous System Toxicities of Chemotherapeutic Agents. Expert. Rev. Anticancer 2014, 14, 857–863. [Google Scholar] [CrossRef]
- Ziske, C.G.; Schöttker, B.; Gorschlüter, M.; Mey, U.; Kleinschmidt, R.; Schlegel, U.; Sauerbruch, T.; Schmidt-Wolf, I.G.H. Acute Transient Encephalopathy after Paclitaxel Infusion: Report of Three Cases. Ann. Oncol. 2002, 13, 629–631. [Google Scholar] [CrossRef]
- Verstappen, C.C.P.; Heimans, J.J.; Hoekman, K.; Postma, T.J. Neurotoxic Complications of Chemotherapy in Patients with Cancer. Drugs 2003, 63, 1549–1563. [Google Scholar] [CrossRef]
- Widemann, B.C.; Balis, F.M.; Shalabi, A.; Boron, M.; O’Brien, M.; Cole, D.E.; Jayaprakash, N.; Ivy, P.; Castle, V.; Muraszko, K.; et al. Treatment of Accidental Intrathecal Methotrexate Overdose With Intrathecal Carboxypeptidase G2. JNCI J. Natl. Cancer Inst. 2004, 96, 1557–1559. [Google Scholar] [CrossRef]
- Widemann, B.C.; Sung, E.; Anderson, L.; Salzer, W.L.; Balis, F.M.; Monitjo, K.S.; McCully, C.; Hawkins, M.; Adamson, P.C. Pharmacokinetics and Metabolism of the Methotrexate Metabolite 2, 4-Diamino-N(10)-Methylpteroic Acid. J. Pharmacol. Exp. Ther. 2000, 294, 894–901. [Google Scholar] [PubMed]
- Green, J.M. Glucarpidase to Combat Toxic Levels of Methotrexate in Patients. Ther. Clin. Risk Manag. 2012, 8, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Pelgrims, J.; Vos, F.D.; den Brande, J.V.; Schrijvers, D.; Prové, A.; Vermorken, J.B. Methylene Blue in the Treatment and Prevention of Ifosfamide-Induced Encephalopathy: Report of 12 Cases and a Review of the Literature. Br. J. Cancer 2000, 82, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Hamadani, M.; Awan, F. Role of Thiamine in Managing Ifosfamide-Induced Encephalopathy. J. Oncol. Pharm. Pr. 2006, 12, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Eichler, A.F.; Batchelor, T.T.; Henson, J.W. Diffusion and Perfusion Imaging in Subacute Neurotoxicity Following High-Dose Intravenous Methotrexate. Neuro-Oncol. 2007, 9, 373–377. [Google Scholar] [CrossRef]
- Yamada, N.; Yamasaki, K.; Yamamoto, N.; Kuki, I.; Sakuma, H.; Hara, J. Chemotherapy-Induced Autoimmune-Mediated Encephalitis during Germinoma Treatment. Brain Dev. 2021, 43, 967–971. [Google Scholar] [CrossRef]
- Jung, N.-Y.; Woo, K.-N.; Cho, J.W.; Kim, H.-W. Anti-Yo-Associated Autoimmune Encephalitis after Colon Cancer Treatment. J. Neurocritical Care 2020, 13, 104–107. [Google Scholar] [CrossRef]
- Broecker, F.; Shanin, E.; Lysov, N.; Shanin, V. Chemotherapy-Induced, Broadly Reactive Autoantibodies in a Colon Cancer Patient. Cureus 2022, 14, e31954. [Google Scholar] [CrossRef]
- Janjua, T.K.; Hassan, M.; Afridi, H.K.; Zahid, N.A. Oxaliplatin-Induced Posterior Reversible Encephalopathy Syndrome (PRES). BMJ Case Rep. 2017, 2017, bcr-2017-221571. [Google Scholar] [CrossRef]
- Floeter, A.E.; Patel, A.; Tran, M.; Chamberlain, M.C.; Hendrie, P.C.; Gopal, A.K.; Cassaday, R.D. Posterior Reversible Encephalopathy Syndrome Associated With Dose-Adjusted EPOCH (Etoposide, Prednisone, Vincristine, Cyclophosphamide, Doxorubicin) Chemotherapy. Clin. Lymphoma Myeloma Leuk. 2016, 17, 225–230. [Google Scholar] [CrossRef]
- Kabre, R.S.; Kamble, K.M. Gemcitabine and Cisplatin Induced Posterior Reversible Encephalopathy Syndrome: A Case Report with Review of Literature. J. Res. Pharm. Pr. 2016, 5, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Martín, G.; Bellido, L.; Cruz, J.J. Reversible Posterior Leukoencephalopathy Syndrome Induced by Sunitinib. J. Clin. Oncol. 2007, 25, 3559. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, R.; Adusumilli, J.; Baxter, D.L.; El-Khoueiry, A.; Harik, S.I. Reversible Posterior Leukoencephalopathy Syndrome Induced by RAF Kinase Inhibitor BAY 43-9006. J. Clin. Oncol. 2006, 24, e48. [Google Scholar] [CrossRef] [PubMed]
- Glusker, P.; Recht, L.; Lane, B. Reversible Posterior Leukoencephalopathy Syndrome and Bevacizumab. N. Engl. J. Med. 2006, 354, 980–982. [Google Scholar] [CrossRef]
- Hamid, M.; Ghani, A.; Micaily, I.; Sarwar, U.; Lashari, B.; Malik, F. Posterior Reversible Encephalopathy Syndrome (PRES) after Bevacizumab Therapy for Metastatic Colorectal Cancer. J. Community Hosp. Intern. Med. Perspect. 2018, 8, 130–133. [Google Scholar] [CrossRef]
- Mavragani, C.P.; Vlachoyiannopoulos, P.G.; Kosmas, N.; Boletis, I.; Tzioufas, A.G.; Voulgarelis, M. A Case of Reversible Posterior Leucoencephalopathy Syndrome after Rituximab Infusion. Rheumatology 2004, 43, 1450–1451. [Google Scholar] [CrossRef]
- Ricard, D.; Durand, T.; Tauziède-Espariat, A.; Leclercq, D.; Psimaras, D. Cancer Neurology in Clinical Practice, Neurological Complications of Cancer and Its Treatment; Springer: Cham, Switzerland, 2017; pp. 241–273. [Google Scholar] [CrossRef]
Selection of High and Intermediate-Risk Tumor-Associated Autoantibody-Mediated Encephalitis | |
---|---|
Autoantibody-Mediated Encephalitis | Related Tumor |
High-risk antibodies (>70% paraneoplastic) | |
Hu | Small and non-small cell lung cancer, neuroendocrine tumors, and neuroblastoma |
CV2/CRMP5 | Small cell lung cancer and thymoma |
Yo | Small and non-small cell lung cancer, breast cancer |
Ma2 | Testicular cancer, non-small cell lung cancer |
SOX1 | Small cell lung cancer |
PCA2/MAP1B | Small and non-small cell lung cancer, breast cancer |
Ri | Small and non-small cell lung cancer, breast cancer |
Tr | Hodgkin’s lymphoma |
KLHL11 | Testicular cancer |
Intermediate-risk antibodies (30–70% paraneoplastic) | |
NMDAR | Ovarian or extraovarian teratomas |
AMPAR | Small cell lung cancer, malignant thymoma |
GABA A/B | Small cell lung cancer |
CASPR2 | Malignant thymoma |
mGluRs | Hodgkin’s lymphoma |
Approved Checkpoint Inhibitors and Their Indications | |||
---|---|---|---|
Drug Name | Target | First Approval | Indications |
Pembrolizumab (Keytruda) | PD-1 | 2014 | Melanoma, NSCLC, HNSCC, HL, PMBCL, UC, microsatellite instable tumors (MSI-H or dMMR) (CRC, endometrial, stomach, small intestine, BTC, RCC, TNBC, uterine cancer) |
Nivolumab (OPDIVO) | PD-1 | 2014 | NSCLC, mesothelioma, melanoma, RCC, HL, HNSCC, CRC, UC, esophageal adenocarcinoma, esophageal SCC, |
Cemiplimab (LIBTAYO) | PD-1 | 2018 | SCC, NSCLC, Cervical Cancer |
Dostarlimab (JEMPERLI) | PD-1 | 2021 | EMA: dMMR endometrial cancer; FDA: dMMR) solid tumors (CRC, endometrial, stomach, small intestine, BTC, RCC, TNBC, uterine cancer) |
Atezolizumab (TECENTRIQ) | PD-L1 | 2016 | NSCLC, SCLC, UC, TNBC, melanoma, HCC |
Durvalumab (IMFINZI) | PD-L1 | 2016 | NSCLC, SCLC, UC, BTC |
Avelumab (BAVENCIO) | PD-L1 | 2017 | Merkel cell carcinoma, UC, RCC |
Ipilimumab (YERVOY) | CTLA-4 | 2011 | Melanoma, RCC, CRC, mesothelioma, esophageal SCC |
Tremelimumab (IMJUDO) | CTLA-4 | 2022 | NSCLC, HCC |
Relatlimab and nivolumab (OPDUALAG) | LAG-3 and PD-1 | 2022 | Melanoma |
Differential Diagnosis and Work-Up | |
---|---|
Differential Diagnosis | Work-Up |
Infection (sepsis-induced encephalopathy; bacterial, fungal or viral meningoencephalitis; brain abscess) | Blood tests including culture, CSF analysis including culture and viral PCR (herpes simplex, varicella-zoster), MRI |
Brain Metastasis/Leptomeningeal tumor dissemination | CSF analysis, MRI |
Metabolic encephalopathy | Blood tests * |
Nonconvulsive status epilepticus | EEG |
Paraneoplastic limbic encephalitis | Blood tests **, CSF analysis ***, MRI |
PRES | MRI |
Stroke (ischemia/intracerebral hemorrhage) | MRI |
Vasculitis | Blood tests (ANCA), MRI |
Grading and Management ICANS | ||||
---|---|---|---|---|
1. Grading of ICANS | ||||
ICANS Grade 1 | ICANS Grade 2 | ICANS Grade 3 | ICANS Grade 4 | |
Neurological assessment score (by ICE score) | 7–9 (mild impairment) | 3–6 (moderate impairment) | 0–2 (severe impairment) | 0 patients in critical condition and/or unable to perform assessment |
Depressed level of consciousness (not attributable to other factors (sedation…) | spontaneous awakening | awakens to voice | Awakens only to tactical stimulus | Patient is unarousable or needs vigorous/ repetitive tactical stimulus. Stupor or coma |
Raised intracranial pressure | NA | NA | Focal/local edema on neuroimaging | Diffuse cerebral edema on neuroimaging; decerebrate or decorticate posturing or cranial nerve VI palsy; or papilledema or Cushing’s triad |
Seizure | NA | NA | Any clinical seizure that resolves rapidly or non-convulsive seizure on EEG that resolves with intervention | Life-threatening generalized seizure (>5 min) or repetitive clinical or electrical seizures without return to baseline in between |
Motor findings | NA | NA | NA | Deep focal motor weakness such as hemi or paraparesis |
2. Management recommendations for ICANS | ||||
Grade 1 | ||||
IV hydration, vigilant supportive care, aspiration precautions | ||||
Withhold oral intake of food, fluids & medicines, assess swallowing | ||||
Avoid all medications that may cause CNS depression | ||||
Agitated patients may be controlled with low-dose lorazepam (0.25–0.5 mg IV q8h) or haloperidol (0.5 mg IV q6h) | ||||
Search for and follow a possible papilledema | ||||
Cerebral MRI + MRI of the spine if focal peripheral neurological deficits | ||||
Lumbar puncture with measurement of opening pressure | ||||
Daily 30 min EEG until toxicity symptoms resolve, in the absence of seizure prophylactic levetiracetam q12h | ||||
Consider Tocilizumab 8 mg/kg IV or siltuximab 11 mg/kg IV if concomitant CRS | ||||
Grade 2 | ||||
Consider transferring the patient to ICU if CRES associated with ≥grade 2 ICANS | ||||
Supportive care and neurological work-up as indicated for grade 1 ICANS | ||||
Tocilizumab 8 mg/kg IV or siltuximab 11 mg/kg IV if concurrent CRS | ||||
Dexamethasone 10 mg IV q6h if refractory to anti-IL-6 or for ICANS without CRS | ||||
Grade 3 | ||||
Transfer to ICU | ||||
Supportive care and neurological work-up as indicated for grade 1 ICANS | ||||
Anti-IL-6 therapy if associated with concurrent CRS | ||||
Dexamethasone 10 mg IV q6h if CRES symptoms worsen despite anti-IL-6 therapy or for ICANS without CRS. Taper once ICANS is resolved to grade 1 | ||||
Follow papilledema | ||||
consider repeat MRI every 2–3 days if persistent CRES ≥ grade 3 | ||||
Grade 4 | ||||
ICU monitoring—consider mechanical ventilation for airway protection. | ||||
Supportive care and neurological work-up as indicated for grade 1 ICANS. | ||||
Anti-IL-6 therapy and repeat neuroimaging as described for grades 2 and 3 ICANS. | ||||
High-dose corticosteroids continued until improvement to ICANS grade 1 (methylprednisolone IV 1g/day, followed by a rapid taper: 250 mg q12h for 2 days, 125 mg q12h for 2 days, 60 mgq12h for 2 days). | ||||
Stage ≥ 3 papilledema with CSF opening pressure ≥ 20 mmHg: High dose corticosteroids (methylprednisolone IV 1g/d); elevate the head end of patient’s bed to 30°; hyperventilation to achieve a partial pressure of arterial carbon dioxide (PaCO2) of 28–30 mmHg, but maintained for no longer than 24 h; hyperosmolar therapy with mannitol or hypertonic saline; consider neurosurgery consultation for Ommaya reservoir/drain; consider anesthetics for burst-suppression pattern on EEG; metabolic profiling and daily imaging of the brain to prevent rebound cerebral edema, renal failure, electrolyte abnormalities, hypovolemia, and hypotension |
Acute Chemotherapy-Induced CNS Toxicity and Management | |||||
---|---|---|---|---|---|
Drug | Symptoms | Frequency | Threshold Dosage | Risk Factors | Therapy/ Prophylaxis |
Methotrexate (MTX) | Acute reversible encephalopathy | Rare | >0.5 g/m2 | Whole-brain radiotherapy | Frequently self-limiting |
Subacute encephalopathy | Very rare | After 2nd or 3rd iv application | Increased levels of Homocysteine | Dextromethorphan | |
Chronic encephalopathy | Infrequent after MTX alone | >0.5 g/m2 | Whole-brain radiotherapy, intrathecal MTX | None | |
Ara-C | Cerebellar dysfunction plus possible acute encephalopathy | Frequent, if dose > 36 g/m2 | cumulative dose >36 g/m2 | Renal insufficiency, increased alkaline phosphatase, age > 60, neurological comorbidity | Frequently self-limiting |
5-Fluorouracil | Acute encephalopathy | Rare | Low dihydropyridine dehydrogenase | None | |
Cerebellar dysfunction plus facultative additional CNS symptoms | Rare | Allopurinol increase, N-Phosphonoacetyl- aspartate (PALA) thymidine | Often self-limiting | ||
Inflammatory multifocal leukoencephalopathy | Rare | Levamisole | None | ||
Ifosfamide | Acute encephalopathy | Up to 30% | High dose, renal and hepatic insufficiency, low albumin | Frequently self-limiting. methylene-blue, thiamine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desbaillets, N.P.; Hottinger, A.F. Cancer Therapy-Induced Encephalitis. Cancers 2024, 16, 3571. https://doi.org/10.3390/cancers16213571
Desbaillets NP, Hottinger AF. Cancer Therapy-Induced Encephalitis. Cancers. 2024; 16(21):3571. https://doi.org/10.3390/cancers16213571
Chicago/Turabian StyleDesbaillets, Nicolas P., and Andreas F. Hottinger. 2024. "Cancer Therapy-Induced Encephalitis" Cancers 16, no. 21: 3571. https://doi.org/10.3390/cancers16213571
APA StyleDesbaillets, N. P., & Hottinger, A. F. (2024). Cancer Therapy-Induced Encephalitis. Cancers, 16(21), 3571. https://doi.org/10.3390/cancers16213571