Clinical Utility of a Digital Dermoscopy Image-Based Artificial Intelligence Device in the Diagnosis and Management of Skin Cancer by Dermatologists
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Digital Dermoscopy Image-Based Artificial Intelligence System (DDI-AI Device)
2.2. Study Test Lesions (Cases)
2.3. Board-Certified Dermatologist Evaluations
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Dzwierzynski, W.W. Melanoma Risk Factors and Prevention. Clin. Plast. Surg. 2021, 48, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Balch, C.M.; Soong, S.J.; Gershenwald, J.E.; Thompson, J.F.; Reintgen, D.S.; Cascinelli, N.; Urist, M.; McMasters, K.M.; Ross, M.I.; Kirkwood, J.M.; et al. Prognostic Factors Analysis of 17,600 Melanoma Patients: Validation of the American Joint Committee on Cancer Melanoma Staging System. J. Clin. Oncol. 2001, 19, 3622–3634. [Google Scholar] [CrossRef] [PubMed]
- Pennie, M.L.; Soon, S.L.; Risser, J.B.; Veledar, E.; Culler, S.; Chen, S.C. Melanoma outcomes for Medicare patients: Association of stage and survival with detection by a dermatologist vs. a nondermatologist. Arch. Dermatol. 2007, 143, 488–494. [Google Scholar] [CrossRef]
- Rigel, D.S.; Russak, J.; Friedman, R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J. Clin. 2010, 60, 301. [Google Scholar] [CrossRef]
- WHAT TO LOOK FOR: ABCDES OF MELANOMA. Available online: https://www.aad.org/public/diseases/skin-cancer/find/at-risk/abcdes (accessed on 1 September 2024).
- Soyer, H.P.; Argenziano, G.; Zalaudek, I.; Corona, R.; Sera, F.; Talamini, R.; Barbato, F.; Baroni, A.; Cicale, L.; Di Stefani, A.; et al. Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology 2004, 208, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Zalaudek, I.; Argenziano, G.; Soyer, H.P.; Corona, R.; Sera, F.; Blum, A.; Braun, R.P.; Cabo, H.; Ferrara, G.; Kopf, A.W.; et al. Three-point checklist of dermoscopy: An open internet study. Br. J. Dermatol. 2006, 154, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Marghoob, N.G.; Liopyris, K.; Jaimes, N. Dermoscopy: A Review of the Structures That Facilitate Melanoma Detection. J. Osteopath. Med. 2019, 119, 380–390. [Google Scholar] [CrossRef]
- Ferris, L.K.; Gerami, P.; Skelsey, M.K.; Peck, G.; Hren, C.; Gorman, C.; Frumento, T.; Siegel, D.M. Real-world performance and utility of a noninvasive gene expression assay to evaluate melanoma risk in pigmented lesions. Melanoma Res. 2018, 28, 478–482. [Google Scholar] [CrossRef]
- Ludzik, J.; Becker, A.L.; Latour, E.; Lee, C.; Witkowski, A. Dermoscopic features associated with 3-GEP PLA: LINC00518, PRAME, and TERT expression in suspicious pigmented lesions. Skin. Res. Technol. 2023, 29, e13323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skelsey, M.; Loftis, B.; Kaufmann, M.; Siegel, D.; Bhatia, N.; Walker, M.; Rigby, A.; Whitaker, J.; Stone, S.; Mocia, M.; et al. Non-invasive Gene Expression Analysis Rules Out Melanoma with High Negative Predictive Value Regardless of Skin Phototype. SKIN J. Cutan. Med. 2024, 8, s384. [Google Scholar] [CrossRef]
- Pellacani, G.; Farnetani, F.; Ciardo, S.; Chester, J.; Kaleci, S.; Mazzoni, L.; Bassoli, S.; Casari, A.; Pampena, R.; Mirra, M.; et al. Effect of Reflectance Confocal Microscopy for Suspect Lesions on Diagnostic Accuracy in Melanoma: A Randomized Clinical Trial. JAMA Dermatol. 2022, 158, 754. [Google Scholar] [CrossRef] [PubMed]
- Rajabi-Estarabadi, A.; Bittar, J.M.; Zheng, C.; Nascimento, V.; Camacho, I.; Feun, L.G.; Nasiriavanaki, M.; Kunz, M.; Nouri, K. Optical coherence tomography imaging of melanoma skin cancer. Lasers Med. Sci. 2019, 34, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Schuh, S.; Ruini, C.; Perwein, M.K.E.; Daxenberger, F.; Gust, C.; Sattler, E.C.; Welzel, J. Line-Field Confocal Optical Coherence Tomography: A New Tool for the Differentiation between Nevi and Melanomas? Cancers 2022, 14, 1140. [Google Scholar] [CrossRef]
- Malvehy, J.; Hauschild, A.; Curiel-Lewandrowski, C.; Mohr, P.; Hofmann-Wellenhof, R.; Motley, R.; Berking, C.; Grossman, D.; Paoli, J.; Loquai, C.; et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: An international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br. J. Dermatol. 2014, 171, 1099–1107. [Google Scholar] [CrossRef]
- Owji, S.; Han, J.; He, H.; Lopera, I.; Tassavor, M.; Brownstone, N.; Gulati, N.; Ungar, B.; Ungar, J. Diagnostic Efficacy of Electrical Impedance Spectroscopy Versus Dermoscopy for Pigmented Skin Lesions: A Pilot Study. SKIN J. Cutan. Med. 2022, 6, 210–216. [Google Scholar] [CrossRef]
- Jaklitsch, E.; Thames, T.; De Campos Silva, T.; Coll, P.; Oliviero, M.; Ferris, L.K. Clinical Utility of an AI-powered, Handheld Elastic Scattering Spectroscopy Device on the Diagnosis and Management of Skin Cancer by Primary Care Physicians. J. Prim. Care Community Health 2023, 14, 21501319231205979. [Google Scholar] [CrossRef]
- Monheit, G.; Cognetta, A.B.; Ferris, L.; Rabinovitz, H.; Gross, K.; Martini, M.; Grichnik, J.M.; Mihm, M.; Prieto, V.G.; Googe, P.; et al. The Performance of MelaFind: A Prospective Multicenter Study. Arch. Dermatol. 2011, 147, 188. [Google Scholar] [CrossRef]
- Fink, C.; Jaeger, C.; Jaeger, K.; Haenssle, H.A. Diagnostic performance of the MelaFind device in a real-life clinical setting. JDDG J. Dtsch. Dermatol. Ges. 2017, 15, 414–419. [Google Scholar] [CrossRef]
- Ludzik, J.; Becker, A.L.; Lee, C.; Witkowski, A. Augmenting pigmented lesion assay results with the three-point dermoscopy checklist to improve pigmented lesion triage. Skin. Res. Technol. 2022, 28, 877–879. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Longo, C.; Navarrete-Dechent, C.; Tschandl, P.; Apalla, Z.; Argenziano, G.; Braun, R.P.; Bataille, V.; Cabo, H.; Hoffmann-Wellhenhof, R.; Forsea, A.M.; et al. Delphi Consensus Among International Experts on the Diagnosis, Management, and Surveillance for Lentigo Maligna. Dermatol. Pract. Concept. 2023, 13, e2023244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tran, T.; Cyr, P.R.; Verdieck, A.; Lu, M.D.; Ahrns, H.T.; Berry, E.G.; Bowen, W.; Braun, R.P.; Cusick-Lewis, J.M.; Doan, H.Q.; et al. Expert Consensus Statement on Proficiency Standards for Dermoscopy Education in Primary Care. J. Am. Board Fam. Med. 2023, 36, 25–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russo, T.; Piccolo, V.; Moscarella, E.; Tschandl, P.; Kittler, H.; Paoli, J.; Lallas, A.; Braun, R.P.; Thomas, L.; Soyer, H.P.; et al. Indications for Digital Monitoring of Patients with Multiple Nevi: Recommendations from the International Dermoscopy Society. Dermatol. Pract. Concept. 2022, 12, e2022182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaudy-Marqueste, C.; Wazaefi, Y.; Bruneu, Y.; Triller, R.; Thomas, L.; Pellacani, G.; Malvehy, J.; Avril, M.F.; Monestier, S.; Richard, M.A.; et al. Ugly Duckling Sign as a Major Factor of Efficiency in Melanoma Detection. JAMA Dermatol. 2017, 153, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
- Saha, K.K.; Miller, D.; Wang, S. A comparison of some approximate confidence intervals for a single proportion for clustered binary outcome data. Int. J. Biostat. 2015, 12, 20150024. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Litchman, G.H.; Marson, J.W.; Svoboda, R.M.; Rigel, D.S. Integrating Electrical Impedance Spectroscopy into Clinical Decisions for Pigmented Skin Lesions Improves Diagnostic Accuracy: A Multitiered Study. SKIN J. Cutan. Med. 2020, 4, 424–430. [Google Scholar] [CrossRef]
- FDA Clearance Granted for First AI-Powered Medical Device to Detect All Three Common Skin Cancers (Melanoma, Basal Cell Carcinoma and Squamous Cell Carcinoma). Available online: https://www.dermasensor.com/fda-clearance-granted-for-first-ai-powered-medical-device-to-detect-all-three-common-skin-cancers-melanoma-basal-cell-carcinoma-and-squamous-cell-carcinoma/ (accessed on 26 March 2024).
- Device Classification Under Section 513(f)(2)(De Novo). Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm?id=DEN230008 (accessed on 1 September 2024).
Characteristic | Total | Benign | Malignant |
---|---|---|---|
Number, n (%) | 50 (100.0%) | 25 (100.0%) | 25 (100.0%) |
Age µ (SD) | 60.9 (18.8) | 61.0 (18.8) | 60.8 (18.6) |
Gender | |||
Male, n (%) | 34 (68.0%) | 16 (64.0%) | 18 (72.0%) |
Female, n (%) | 16 (32.0%) | 9 (36.0%) | 7 (28.0%) |
Fitzpatrick skin type, n (%) | |||
I | 6 (12.0%) | 0 (0.0%) | 6 (24.0%) |
II | 21 (42.0%) | 10 (40.0%) | 11 (44.0%) |
III | 14 (28.0%) | 11 (44.0%) | 5 (20.0%) |
IV | 7 (14.0%) | 4 (16.0%) | 3 (12.0%) |
Anatomic location, n (%) | |||
Head | 12 (24.0%) | 4 (16.0%) | 8 (32.0%) |
Trunk | 21 (42.0%) | 11 (44.0%) | 10 (40.0%) |
Upper extremities | 10 (20.0%) | 7 (28.0%) | 3 (12.0%) |
Lower extremity | 7 (14.0%) | 3 (12.0%) | 4 (16.0%) |
Melanocytic, n (%) | |||
Yes | 13 (26.0%) | 6 (24.0%) | 7 (28.0%) |
No | 37 (74.0%) | 19 (76.0%) | 18 (72.0%) |
Pigmentation, n (%) | |||
Pigmented | 31 (42.6%) | 16 (64.0%) | 15 (60.0%) |
Non-pigmented | 19 (18.0%) | 9 (36.0%) | 10 (40.0%) |
Color, n (%) | |||
Dark | 17 (34.0%) | 7 (28.0%) | 10 (40.0%) |
Light | 21 (42.0%) | 13 (52.0%) | 8 (32.0%) |
Light and dark | 12 (24.0%) | 5 (20.0%) | 7 (28.0%) |
Surface, n (%) | |||
Flat | 14 (28.0%) | 6 (24.0%) | 8 (32.0%) |
Elevated | 36 (72.0%) | 19 (76.0%) | 17 (68.0%) |
Texture, n (%) | |||
Smooth | 30 (60.0%) | 17(68.0%) | 13 (52.0%) |
Rough | 20 (40.0%) | 8 (32.0%) | 12 (48.0%) |
Biopsied, n (%) | 34 (68.0%) | 9 (36.0%) | 25 (100.0%) |
Diagnosis, n (%) | |||
Seborrheic keratosis | 10 (20.0%) | ||
Basal cell carcinoma | 9 (18.0%) | ||
Squamous cell carcinoma | 8 (16.0%) | ||
Actinic keratosis | 3 (6.0%) | ||
Melanoma | 2 (4.0%) | ||
Melanoma in situ | 2 (4.0%) | ||
Severely atypical nevus | 3 (6.0%) | ||
Solar lentigo | 2 (4.0%) | ||
Benign melanocytic nevus | 1 (2.0%) | ||
Blue nevus | 1 (2.0%) | ||
Dermatofibroma | 1 (2.0%) | ||
Hemangioma | 1 (2.0%) | ||
LPLK | 1 (2.0%) | ||
Mild atypical nevus | 1 (2.0%) | ||
Sebaceous hyperplasia | 1 (2.0%) | ||
Squamous cell carcinoma in situ | 1 (2.0%) |
Characteristic | Frequency n (%) |
---|---|
Gender | |
Male | 26 (72.2%) |
Female | 10 (27.8%) |
Specialization | |
Clinical dermatologist | 30 (83.3%) |
Dermatopathologist | 6 (16.6%) |
Years of relevant work experience | |
1–5 | 2 (5.6%) |
6–10 | 12 (33.3%) |
11–15 | 7 (19.4%) |
16–20 | 2 (5.6%) |
>20 | 13 (36.1%) |
Type of practice environment | |
Academic | 16 (44.4%) |
Group private practice (dermatology) | 14 (38.9%) |
Group private practice (multidisciplinary) | 2 (5.6%) |
Federally qualified health center | 2 (5.6%) |
Solo private practice | 1 (2.8%) |
Hospital | 1 (2.8%) |
Other | 1 (2.8%) |
Type of population setting | |
Urban area | 33 (63.6%) |
Urban cluster | 12 (33.3%) |
Rural | 1 (2.8%) |
Frequency of performing biopsies | |
>3 per week | 30 (83.3%) |
1–3 per week | 2 (5.6%) |
Few times per year | 2 (5.6%) |
None | 2 (5.6%) |
Dermatology referral frequency | |
Always | 3 (8.3%) |
Most of the time | 1 (2.8%) |
Sometimes | 1 (2.8%) |
Rarely | 5 (13.9%) |
Never | 26 (72.2%) |
Self-rated skin lesion assessment competence | |
Intermediate | 3 (8.3%) |
Advanced | 12 (33.3%) |
Expert | 21 (58.3%) |
Perform skin checks | |
Yes | 34 (94.4%) |
No | 2 (5.6%) |
Modality | B | M | P | N | TP | FN | FP | TN | Total | Sensitivity | 95% CI | Specificity | 95% CI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Management | Clinical Image Only | 900 | 900 | 946 | 854 | 630 | 270 | 316 | 584 | 1800 | 70.0% | [66.9:72.9] | 64.9% | [61.7:67.9] |
DDI | 900 | 900 | 1043 | 757 | 759 | 141 | 284 | 616 | 1800 | 84.3% | [81.8:86.6] | 68.4% | [65.3:71.4] | |
DDI-AI Device | 900 | 900 | 1081 | 719 | 820 | 80 | 261 | 639 | 1800 | 91.1% | [89.1:92.8] | 71.0% | [68.0:73.9] | |
Diagnosis | Clinical Image Only | 900 | 900 | 809 | 991 | 571 | 329 | 238 | 662 | 1800 | 63.4% | [60.2:66.5] | 73.6% | [70.6:76.3] |
DDI | 900 | 900 | 926 | 874 | 709 | 191 | 217 | 683 | 1800 | 78.8% | [76.0:81.3] | 75.9% | [73.0:78.6] | |
DDI-AI Device | 900 | 900 | 949 | 851 | 775 | 125 | 174 | 726 | 1800 | 86.1% | [83.7:88.2] | 80.7% | [78.0:83.1] |
Clinical Image | DDI | DDI-AI | * Sig.DDI vs. CI | * Sig.DDI-AI vs. DDI | |
---|---|---|---|---|---|
Management Performance | |||||
Sensitivity [95% CI] | 70.0 [66.9:72.9] | 84.3 [81.8:86.6] | 91.1 [89.1:92.8] | ||
Specificity [95% CI] | 64.9 [61.7:67.9] | 68.4 [65.3:71.4] | 71.0 [68.0:73.9] | ||
AUC [95% CI] | 69.7 [67.3:72.1] | 79.9 [77.8:82.0] | 85.0 [83.2:86.8] | <0.00001 | 0.00033 |
Diagnostic Performance | |||||
Sensitivity [95% CI] | 63.4 [60.2:66.5] | 78.8 [76.0:81.3] | 86.1 [83.7:88.2] | ||
Specificity [95% CI] | 73.6 [70.6:76.3] | 75.9 [73.0:78.6] | 80.7 [78.0:83.1] | ||
AUC [95% CI] | 69.1 [66.7:71.6] | 79.0 [76.8:71.6] | 84.2 [82.3:86.1] | <0.00001 | <0.00001 |
Management Performance Analysis | Diagnostic Performance Analysis | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Images | DDI | DDI-AI Device | Heatmaps | Clinical Images | DDI | DDI-AI Device | Heatmaps | |||||||||||||||||
Factor | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | ||||||||
Intercept | 0.68 | [0.40:1.16] | 0.31 | [0.04:1.85] | 0.05 | [0.03:0.07] | 0.02 | [0.00:0.16] | 0.72 | [0.44:1.20] | 0.18 | [0.04:0.72] | 0.20 | [0.02:1.04] | 0.37 | [0.08:1.35] | ||||||||
Diagnosis | ||||||||||||||||||||||||
Benign | – | – | – | – | – | – | – | – | ||||||||||||||||
Malignant | 4.27 | [3.50:5.22] | 12.9 | [10.2:16.4] | 28.8 | [21.8:38.4] | 9.77 | [7.63:12.6] | 4.85 | [3.96:5.95] | 12.0 | [9.60:15.0] | 26.0 | [20.2:33.5] | 14.2 | [10.1:20.1] | ||||||||
Confidence in Diagnosis | ||||||||||||||||||||||||
None | – | – | – | – | – | – | – | – | ||||||||||||||||
Slight | 0.57 | [0.31:1.02] | 0.40 | [0.07:3.64] | * | 3.93 | [0.55:79.6] | 0.66 | [0.38:1.13] | 1.55 | [0.38:7.19] | 0.81 | [0.15:7.54] | 1.22 | [0.32:5.86] | |||||||||
Moderate | 0.61 | [0.35:1.07] | 0.49 | [0.08:4.38] | 1.71 | [1.10:2.65] | 5.90 | [0.84:118.7] | 0.65 | [0.38:1.11] | 1.19 | [0.30:5.41] | 0.78 | [0.15:7.16] | 0.93 | [0.25:4.43] | ||||||||
High | 0.82 | [0.47:1.43] | 0.88 | [0.15:7.78] | 3.28 | [2.17:4.95] | 4.91 | [0.70:98.7] | 0.74 | [0.43:1.27] | 1.73 | [0.44:7.85] | 0.92 | [0.17:8.40] | 0.38 | [0.10:1.83] | ||||||||
Specific Feature | ||||||||||||||||||||||||
None | – | – | – | – | – | – | – | – | ||||||||||||||||
Asymmetry &/or atypical network | 2.30 | [1.74:3.04] | 1.92 | [1.36:2.70] | ||||||||||||||||||||
Blue-white-grey-violet color(s) | 3.62 | [2.35:5.66] | 2.37 | [1.41:4.03] | ||||||||||||||||||||
Round structures | 1.70 | [1.24:2.32] | 1.36 | [0.91:2.01] |
DDI | DDI-AI | DDI-AI Heatmaps | ||||
---|---|---|---|---|---|---|
MD3PC Specific Feature | OR | 95% CI | OR | 95% CI | OR | 95% CI |
(Intercept) | 0.70 | [0.61:0.79] | 0.50 | [0.44:0.58] | 0.27 | [0.23:0.32] |
None | – | – | – | |||
Asymmetry and/or atypical network | 1.92 | [1.52:2.44] | 3.59 | [2.84:4.54] | 8.62 | [6.63:11.3] |
Blue–white–grey–violet color(s) | 5.19 | [3.61:7.62] | 7.44 | [4.97:11.42] | 13.9 | [9.10:21.6] |
Round structures | 1.48 | [1.12:1.95] | 1.93 | [1.43:2.61] | 3.57 | [2.59:4.92] |
With DDI-AI Device Output | ||||||
---|---|---|---|---|---|---|
None | Slight | Moderate | High | Total | ||
With DDI | None | 2 | 3 | 1 | 0 | 6 |
Slight | 0 | 48 | 80 | 30 | 158 | |
Moderate | 0 | 64 | 266 | 213 | 543 | |
High | 1 | 30 | 141 | 921 | 1093 | |
Total | 3 | 145 | 488 | 1164 | 1800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkowski, A.M.; Burshtein, J.; Christopher, M.; Cockerell, C.; Correa, L.; Cotter, D.; Ellis, D.L.; Farberg, A.S.; Grant-Kels, J.M.; Greiling, T.M.; et al. Clinical Utility of a Digital Dermoscopy Image-Based Artificial Intelligence Device in the Diagnosis and Management of Skin Cancer by Dermatologists. Cancers 2024, 16, 3592. https://doi.org/10.3390/cancers16213592
Witkowski AM, Burshtein J, Christopher M, Cockerell C, Correa L, Cotter D, Ellis DL, Farberg AS, Grant-Kels JM, Greiling TM, et al. Clinical Utility of a Digital Dermoscopy Image-Based Artificial Intelligence Device in the Diagnosis and Management of Skin Cancer by Dermatologists. Cancers. 2024; 16(21):3592. https://doi.org/10.3390/cancers16213592
Chicago/Turabian StyleWitkowski, Alexander M., Joshua Burshtein, Michael Christopher, Clay Cockerell, Lilia Correa, David Cotter, Darrell L. Ellis, Aaron S. Farberg, Jane M. Grant-Kels, Teri M. Greiling, and et al. 2024. "Clinical Utility of a Digital Dermoscopy Image-Based Artificial Intelligence Device in the Diagnosis and Management of Skin Cancer by Dermatologists" Cancers 16, no. 21: 3592. https://doi.org/10.3390/cancers16213592
APA StyleWitkowski, A. M., Burshtein, J., Christopher, M., Cockerell, C., Correa, L., Cotter, D., Ellis, D. L., Farberg, A. S., Grant-Kels, J. M., Greiling, T. M., Grichnik, J. M., Leachman, S. A., Linfante, A., Marghoob, A., Marks, E., Nguyen, K., Ortega-Loayza, A. G., Paragh, G., Pellacani, G., ... Ludzik, J. (2024). Clinical Utility of a Digital Dermoscopy Image-Based Artificial Intelligence Device in the Diagnosis and Management of Skin Cancer by Dermatologists. Cancers, 16(21), 3592. https://doi.org/10.3390/cancers16213592