Tumor-Infiltrating Lymphocyte Level Consistently Correlates with Lower Stiffness Measured by Shear-Wave Elastography: Subtype-Specific Analysis of Its Implication in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Clinicopathologic Evaluation
2.2. Elastography
2.3. Pathologic Review of Cases
2.4. Evaluation of TIL
2.5. Statistical analysis
3. Results
3.1. Basal Characteristics of Patients
3.2. Clinicopathologic Impact of Tumor Stiffness in Different Subtype of Breast Cancer
3.3. Subgroup Analysis between Low- and High-Stiffness Groups
3.4. Correlation Analysis of Tumor Stiffness and Clinicopathologic Parameters
3.5. Predictive Clinicopathologic Parameters for High Stiffness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CI | confidence interval |
DCIS | ductal carcinoma in situ |
EIC | extensive intraductal component |
Emax | maximal elasticity |
Emean | mean elasticity |
Emin | minimal elasticity |
ER | estrogen receptor |
Eratio | elasticity ratio |
HG | histologic grade |
HR + HER2-BC | hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer |
IQR | interquartile range |
LI | labeling index |
LN | lymph node |
LVI | lymphovascular invasion |
NG | nuclear grade |
OR | odds ratio |
PR | progesterone receptor |
ROC | receiver operating characteristic |
ROI | region of interest |
SD | standard deviation |
SWE | shear-wave elastography |
TIL | tumor-infiltrating lymphocytes |
TNBC | triple-negative breast cancer |
TSR | tumor–stroma ratio |
References
- Youk, J.H.; Gweon, H.M.; Son, E.J. Shear-wave elastography in breast ultrasonography: The state of the art. Ultrasonography 2017, 36, 300–309. [Google Scholar] [CrossRef]
- Berg, W.A.; Cosgrove, D.O.; Dore, C.J.; Schafer, F.K.; Svensson, W.E.; Hooley, R.J.; Ohlinger, R.; Mendelson, E.B.; Balu-Maestro, C.; Locatelli, M.; et al. Shear-wave elastography improves the specificity of breast us: The be1 multinational study of 939 masses. Radiology 2012, 262, 435–449. [Google Scholar] [CrossRef]
- Au, F.W.; Ghai, S.; Moshonov, H.; Kahn, H.; Brennan, C.; Dua, H.; Crystal, P. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: Determination of the most discriminatory parameter. Am. J. Roentgenol. 2014, 203, W328–W336. [Google Scholar] [CrossRef]
- Cantisani, V.; David, E.; Barr, R.G.; Radzina, M.; de Soccio, V.; Elia, D.; De Felice, C.; Pediconi, F.; Gigli, S.; Occhiato, R.; et al. Us-elastography for breast lesion characterization: Prospective comparison of us birads, strain elastography and shear wave elastography. Ultraschall Med.-Eur. J. Ultrasound 2021, 42, 533–540. [Google Scholar] [CrossRef]
- Bae, J.S.; Chang, J.M.; Lee, S.H.; Shin, S.U.; Moon, W.K. Prediction of invasive breast cancer using shear-wave elastography in patients with biopsy-confirmed ductal carcinoma in situ. Eur. Radiol. 2017, 27, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, L.; Wang, B.; Zhang, H.; Xu, L.; Ye, J.; Liu, Y.; Shao, Y.; Sun, X.; Zou, Y. Diagnostic value of ultrasound elastography in the differentiation of breast invasive ductal carcinoma and ductal carcinoma in situ. Curr. Med. Imaging 2023, 19, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.M.; Park, I.A.; Lee, S.H.; Kim, W.H.; Bae, M.S.; Koo, H.R.; Yi, A.; Kim, S.J.; Cho, N.; Moon, W.K. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur. Radiol. 2013, 23, 2450–2458. [Google Scholar] [CrossRef]
- Choi, W.J.; Kim, H.H.; Cha, J.H.; Shin, H.J.; Kim, H.; Chae, E.Y.; Hong, M.J. Predicting prognostic factors of breast cancer using shear wave elastography. Ultrasound Med. Biol. 2014, 40, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Youk, J.H.; Gweon, H.M.; Son, E.J.; Kim, J.A.; Jeong, J. Shear-wave elastography of invasive breast cancer: Correlation between quantitative mean elasticity value and immunohistochemical profile. Breast Cancer Res. Treat. 2013, 138, 119–126. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Wang, Y.; Zheng, X.; Han, J.; Li, Q.; Hu, Y.; Mao, R.; Zhou, J. Quantitative analysis of shear wave elastic heterogeneity for prediction of lymphovascular invasion in breast cancer. Br. J. Radiol. 2021, 94, 20210682. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, J.; Chang, C.; Zhi, W. Feasibility of shear wave elastography imaging for evaluating the biological behavior of breast cancer. Front. Oncol. 2021, 11, 820102. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.H.; Choi, W.J.; Chae, E.Y.; Shin, H.J.; Cha, J.H. Correlation of shear-wave elastography parameters with the molecular subtype and axillary lymph node status in breast cancer. Clin. Imaging 2023, 101, 190–199. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.J.; Hwangbo, L.; Suh, H.B.; Lee, J.W.; Lee, N.K.; Choo, K.S.; Kim, S. Tumor stiffness measured by shear-wave elastography: Association with disease-free survival in women with early-stage breast cancer. Br. J. Radiol. 2021, 94, 20210584. [Google Scholar] [CrossRef]
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Muller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010, 28, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Kemi, N.; Eskuri, M.; Herva, A.; Leppänen, J.; Huhta, H.; Helminen, O.; Saarnio, J.; Karttunen, T.J.; Kauppila, J.H. Tumour-stroma ratio and prognosis in gastric adenocarcinoma. Br. J. Cancer 2018, 119, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M. College of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010, 28, 2784–2795. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of american pathologists clinical practice guideline focused update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef] [PubMed]
- Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Pénault-Llorca, F. The evaluation of tumor-infiltrating lymphocytes (tils) in breast cancer: Recommendations by an international tils working group 2014. Ann. Oncol. 2015, 26, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Ganau, S.; Andreu, F.J.; Escribano, F.; Martin, A.; Tortajada, L.; Villajos, M.; Bare, M.; Teixido, M.; Ribe, J.; Sentis, M. Shear-wave elastography and immunohistochemical profiles in invasive breast cancer: Evaluation of maximum and mean elasticity values. Eur. J. Radiol. 2015, 84, 617–622. [Google Scholar] [CrossRef]
- Gu, J.; Polley, E.C.; Boughey, J.C.; Fazzio, R.T.; Fatemi, M.; Alizad, A. Prediction of invasive breast cancer using mass characteristic frequency and elasticity in correlation with prognostic histologic features and immunohistochemical biomarkers. Ultrasound Med. Biol. 2021, 47, 2193–2201. [Google Scholar] [CrossRef]
- Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018, 15, 366–381. [Google Scholar] [CrossRef]
- Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Amaro, R.; Diaz-Gonzalez, F.; Sanchez-Madrid, F. Adhesion molecules in inflammatory diseases. Drugs 1998, 56, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Harjunpaa, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 2019, 10, 1078. [Google Scholar] [CrossRef] [PubMed]
- Savas, P.; Salgado, R.; Denkert, C.; Sotiriou, C.; Darcy, P.K.; Smyth, M.J.; Loi, S. Clinical relevance of host immunity in breast cancer: From tils to the clinic. Nat. Rev. Clin. Oncol. 2016, 13, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Andre, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: Esmo clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Martinez, A.; Krop, I.E.; Hillman, D.W.; Polley, M.Y.; Parker, J.S.; Huebner, L.; Hoadley, K.A.; Shepherd, J.; Tolaney, S.; Henry, N.L.; et al. Survival, pathologic response, and genomics in calgb 40601 (alliance), a neoadjuvant phase iii trial of paclitaxel-trastuzumab with or without lapatinib in her2-positive breast cancer. J. Clin. Oncol. 2020, 38, 4184–4193. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.H.; Ballman, K.; Polley, M.C.; Campbell, J.D.; Fan, C.; Selitsky, S.; Fernandez-Martinez, A.; Parker, J.S.; Hoadley, K.A.; Hu, Z.; et al. Calgb 40603 (alliance): Long-term outcomes and genomic correlates of response and survival after neoadjuvant chemotherapy with or without carboplatin and bevacizumab in triple-negative breast cancer. J. Clin. Oncol. 2022, 40, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Martinez, A.; Pascual, T.; Singh, B.; Nuciforo, P.; Rashid, N.U.; Ballman, K.V.; Campbell, J.D.; Hoadley, K.A.; Spears, P.A.; Pare, L.; et al. Prognostic and predictive value of immune-related gene expression signatures vs tumor-infiltrating lymphocytes in early-stage erbb2/her2-positive breast cancer: A correlative analysis of the calgb 40601 and pamela trials. JAMA Oncol. 2023, 9, 490–499. [Google Scholar] [CrossRef]
- Evans, A.; Armstrong, S.; Whelehan, P.; Thomson, K.; Rauchhaus, P.; Purdie, C.; Jordan, L.; Jones, L.; Thompson, A.; Vinnicombe, S. Can shear-wave elastography predict response to neoadjuvant chemotherapy in women with invasive breast cancer? Br. J. Cancer 2013, 109, 2798–2802. [Google Scholar] [CrossRef]
- Singh, T.; Kumar, N.; Sandhu, M.; Singla, V.; Singh, G.; Bal, A. Predicting response to neoadjuvant chemotherapy in locally advanced breast cancer after the second cycle of chemotherapy using shear-wave elastography-a preliminary evaluation. Ultrasound Q. 2021, 37, 16–22. [Google Scholar] [CrossRef]
- Yuan, S.; Shao, H.; Na, Z.; Kong, M.; Cheng, W. Value of shear wave elasticity in predicting the efficacy of neoadjuvant chemotherapy in different molecular types. Clin. Imaging 2022, 89, 97–103. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, M.; Lin, H.; Chen, W.; Lu, G.; Yang, F.; Chen, Y.; Chen, G. Potential value of tumor stiffness and se-cadherin in predicting the response to neoadjuvant therapy in her2-positive breast cancers. Future Oncol. 2022, 18, 2817–2825. [Google Scholar] [CrossRef]
- Bae, S.J.; Kim, J.H.; Lee, M.J.; Baek, S.H.; Kook, Y.; Ahn, S.G.; Cha, Y.J.; Jeong, J. Predictive markers of treatment response to neoadjuvant systemic therapy with dual her2-blockade. Cancers 2024, 16, 842. [Google Scholar] [CrossRef]
- Kim, M.J.; Eun, N.L.; Ahn, S.G.; Kim, J.H.; Youk, J.H.; Son, E.J.; Jeong, J.; Cha, Y.J.; Bae, S.J. Elasticity values as a predictive modality for response to neoadjuvant chemotherapy in breast cancer. Cancers 2024, 16, 377. [Google Scholar] [CrossRef]
HR + HER2-BC (n = 628) | HER2 + BC (n = 103) | TNBC (n = 72) | p | |
---|---|---|---|---|
Age, years (median, IQR) | 51 (45–60) | 55 (48–60) | 54 (46–61) | 0.081 |
Histologic diagnosis, n (%) | 0.002 | |||
Invasive ductal carcinoma | 529 (84.2) | 99 (96.1) | 61 (84.7) | |
Invasive lobular carcinoma | 37 (5.9) | 1 (1.0) | 2 (2.8) | |
Mixed invasive ductal carcinoma | 15 (2.4) | 2 (1.9) | 2 (2.8) | |
Mucinous carcinoma | 27 (4.3) | 0 (0.0) | 0 (0.0) | |
Others | 20 (3.2) | 1 (1.0) | 7 (9.7) | |
Total size, cm (mean ± SD) | 2.2 ± 1.4 | 2.6 ± 1.3 | 2.3 ± 1.1 | <0.001 * |
Invasive sizes, cm (mean ± SD) | 1.8 ± 1.1 | 1.6 ± 0.8 | 1.9 ± 0.9 | 0.110 |
NG, n (%) | <0.001 | |||
Low | 8 (1.3) | 0 (0.0) | 0 (0.0) | |
Intermediate | 546 (86.9) | 44 (42.7) | 20 (27.8) | |
High | 74 (11.8) | 59 (57.3) | 52 (72.2) | |
HG, n (%) | <0.001 | |||
I | 159 (25.3) | 3 (2.9) | 0 (0.0) | |
II | 434 (69.1) | 73 (70.9) | 29 (40.3) | |
III | 35 (5.6) | 27 (26.2) | 43 (59.7) | |
LVI, n (%) | 0.052 | |||
Absent | 449 (71.5) | 82 (79.6) | 59 (81.9) | |
Present | 179 (28.5) | 21 (20.4) | 13 (18.1) | |
pT stage | <0.001 | |||
1 | 429 (68.3) | 70 (68.0) | 38 (52.8) | |
2 | 186 (29.6) | 33 (32.0) | 34 (47.2) | |
3 | 13 (2.1) | 0 (0.0) | 0 (0.0) | |
LN metastasis, n (%) | 0.019 | |||
Absent | 494 (78.8) | 89 (86.4) | 65 (90.3) | |
Present | 133 (21.2) | 14 (13.6) | 7 (9.7) | |
DCIS % | 19.6 ± 23.5 | 28.3 ± 308 | 17.1 ± 25.9 | 0.003 ** |
EIC | <0.001 | |||
Negative | 468 (74.5) | 63 (61.2) | 55 (76.4) | |
Positive | 160 (25.5) | 40 (38.8) | 17 (23.6) | |
TSR, % (mean ± SD) | 51.5 ± 30.0 | 61.0 ± 23.4 | 60.6 ± 26.3 | 0.321 |
TIL, % (mean ± SD) | 12.8 ± 16.8 | 37.9 ± 33.2 | 36.9 ± 31.1 | <0.001 *** |
Ki67 LI, % (mean ± SD) | 12.1 ± 14.2 | 31.2 ± 18.7 | 51.1 ± 28.8 | <0.001 **** |
Stiffness parameters | ||||
Eratio (mean ± SD) | 12.7 ± 10.7 | 13.7 ± 14.2 | 16.2 ± 20.3 | 0.366 |
Emean, kPa (mean ± SD) | 150.5 ± 65.7 | 142.0 ± 75.3 | 151.8 ± 65.8 | 0.330 |
Emax, kPa (mean ± SD) | 172.8 ± 72.7 | 160.0 ± 80.7 | 171.0 ± 72.2 | 0.194 |
Emin, kPa (mean ± SD) | 119.1 ± 85.9 | 108.7 ± 65.1 | 122.0 ± 63.4 | 0.220 |
HR + HER2-BC | HER2 + BC | TNBC | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Median | ROC Threshold | Mean | Median | ROC Threshold | Mean | Median | ROC Threshold | |
Emean, kPa | 151.9 | 146.8 | 134.6 | 142.7 | 122.9 | 121.7 | 152.1 | 147.2 | 140.2 |
Emin, kPa | 119.0 | 111.5 | 121.3 | 108.6 | 95.4 | 110.1 | 121.2 | 114.1 | 100.5 |
Emax, kPa | 173.8 | 172.1 | 178.0 | 160.5 | 145.4 | 141.8 | 172.0 | 161.0 | 150.4 |
HR + HER2- BC (n = 628) Cutoff Emax = 173.0 kPa | HER2 + BC (n = 103) Cutoff Emax = 133.0 kPa | TNBC (n = 72) Cutoff Emax = 172.0 kPa | |||||||
---|---|---|---|---|---|---|---|---|---|
Low Emax | High Emax | p | Low Emax | High Emax | p | Low Emax | High Emax | p | |
Total size, cm (mean ± SD) | 1.9 ± 1.3 | 2.5 ± 1.4 | <0.001 | 2.7 ± 1.5 | 2.5 ± 1.1 | 0.512 | 2.1 ± 1.0 | 2.6 ± 1.1 | 0.031 |
Invasive size, cm (mean ± SD) | 1.4 ± 0.9 | 2.2 ± 1.2 | <0.001 | 1.3 ± 0.7 | 1.9 ± 0.7 | <0.001 | 1.7 ± 1.0 | 2.2 ± 0.8 | 0.028 |
NG, n (%) | 0.785 | 0.532 | 0.394 | ||||||
1 | 5 (1.6) | 3 (1.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |||
2 | 280 (87.2) | 266 (86.6) | 23 (46.9) | 21 (38.9) | 9 (22.5) | 11 (34.4) | |||
3 | 36 (11.2) | 38 (12.4) | 26 (53.1) | 33 (61.1) | 31 (77.5) | 21 (65.6) | |||
HG, n (%) | 0.134 | 0.004 | 1.000 | ||||||
I | 92 (28.7) | 67 (21.8) | 2 (4.1) | 1 (1.9) | 0 (0.0) | 0 (0.0) | |||
II | 213 (66.4) | 221 (72.0) | 41 (83.7) | 32 (59.3) | 16 (40.0) | 13 (40.6) | |||
III | 16 (5.0) | 19 (6.2) | 6 (12.2) | 21 (38.9) | 24 (60.0) | 19 (59.4) | |||
LVI, n (%) | <0.001 | 0.223 | 0.093 | ||||||
Absent | 254 (79.1) | 195 (63.5) | 42 (85.7) | 40 (74.1) | 36 (90.0) | 23 (71.9) | |||
Present | 67 (20.9) | 112 (36.5) | 7 (14.3) | 14 (25.9) | 4 (10.0) | 9 (28.1) | |||
pT stage, n (%) | <0.001 | 0.028 | 0.010 | ||||||
1 | 261 (81.3) | 168 (54.7) | 39 (79.6) | 31 (57.4) | 27 (67.5) | 11 (34.4) | |||
2 | 58 (18.1) | 128 (41.7) | 10 (20.4) | 23 (42.6) | 13 (32.5) | 21 (65.6) | |||
3 | 2 (0.6) | 11 (3.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |||
LN metastasis, n (%) | 0.004 | 0.504 | 1 | ||||||
Absent | 268 (83.5) | 226 (73.9) | 44 (89.8) | 45 (83.3) | 36 (90.0) | 29 (90.6) | |||
Present | 53 (16.5) | 80 (26.1) | 5 (10.2) | 9 (16.7) | 4 (10.0) | 3 (9.4) | |||
DCIS, % (mean ± SD) | 21.5 ± 25.6 | 17.5 ± 21.0 | 0.034 | 36.3 ± 34.1 | 21.0 ± 25.6 | 0.012 | 19.3 ± 27.0 | 14.4 ± 24.6 | 0.426 |
EIC, n (%) | 0.062 | 0.160 | 0.556 | ||||||
Absent | 228 (71.0) | 239 (77.9) | 26 (53.1) | 37 (68.5) | 29 (72.5) | 26 (81.3) | |||
Present | 93 (29.0) | 68 (22.1) | 23 (46.9) | 17 (31.5) | 11 (27.5) | 6 (18.8) | |||
TSR, % (mean ± SD) | 50.1 ± 29.2 | 52.8 ± 30.6 | 0.331 | 55.3 ± 26.4 | 64.7 ± 20.6 | 0.083 | 59.3 ± 26.7 | 62.2 ± 26.3 | 0.700 |
TIL, % (mean ± SD) | 14.3 ± 18.2 | 11.3 ± 15.0 | 0.028 | 46.8 ± 35.4 | 29.7 ± 29.1 | 0.009 | 49.4 ± 29.9 | 21.4 ± 35.4 | <0.001 |
Ki67 LI, % (mean ± SD) | 11.0 ± 13.5 | 13.2 ± 14.8 | 0.051 | 32.4 ± 18.5 | 30.2 ± 19.0 | 0.552 | 51.4 ± 27.0 | 50.7 ± 24.6 | 0.911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eun, N.L.; Bae, S.J.; Youk, J.H.; Son, E.J.; Ahn, S.G.; Jeong, J.; Kim, J.H.; Lee, Y.; Cha, Y.J. Tumor-Infiltrating Lymphocyte Level Consistently Correlates with Lower Stiffness Measured by Shear-Wave Elastography: Subtype-Specific Analysis of Its Implication in Breast Cancer. Cancers 2024, 16, 1254. https://doi.org/10.3390/cancers16071254
Eun NL, Bae SJ, Youk JH, Son EJ, Ahn SG, Jeong J, Kim JH, Lee Y, Cha YJ. Tumor-Infiltrating Lymphocyte Level Consistently Correlates with Lower Stiffness Measured by Shear-Wave Elastography: Subtype-Specific Analysis of Its Implication in Breast Cancer. Cancers. 2024; 16(7):1254. https://doi.org/10.3390/cancers16071254
Chicago/Turabian StyleEun, Na Lae, Soong June Bae, Ji Hyun Youk, Eun Ju Son, Sung Gwe Ahn, Joon Jeong, Jee Hung Kim, Yangkyu Lee, and Yoon Jin Cha. 2024. "Tumor-Infiltrating Lymphocyte Level Consistently Correlates with Lower Stiffness Measured by Shear-Wave Elastography: Subtype-Specific Analysis of Its Implication in Breast Cancer" Cancers 16, no. 7: 1254. https://doi.org/10.3390/cancers16071254
APA StyleEun, N. L., Bae, S. J., Youk, J. H., Son, E. J., Ahn, S. G., Jeong, J., Kim, J. H., Lee, Y., & Cha, Y. J. (2024). Tumor-Infiltrating Lymphocyte Level Consistently Correlates with Lower Stiffness Measured by Shear-Wave Elastography: Subtype-Specific Analysis of Its Implication in Breast Cancer. Cancers, 16(7), 1254. https://doi.org/10.3390/cancers16071254