MGMT Methylation and Differential Survival Impact by Sex in Glioblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design, Ethics, Reporting, Patient Selection, and Data Collection
2.2. MGMT and CpG Methylation Analysis
2.3. Statistical Analysis
3. Results
3.1. Sex, MGMT Methylation Status and Clinical Outcomes
3.2. Impact of Site-Specific CpG Methylation Status on OS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015. Neuro Oncol. 2018, 20, iv1–iv86, Erratum in: Neuro Oncol. 2018, 23, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Zawlik, I.; Vaccarella, S.; Kita, D.; Mittelbronn, M.; Franceschi, S.; Ohgaki, H. Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: A population-based study. Neuroepidemiology 2009, 32, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Cao, V.T.; Jung, T.Y.; Jung, S.; Jin, S.G.; Moon, K.S.; Kim, I.Y.; Kang, S.S.; Park, C.S.; Lee, K.H.; Chae, H.J. The correlation and prognostic significance of MGMT promoter methylation and MGMT protein in glioblastomas. Neurosurgery 2009, 65, 866–875; discussion 875. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Baborie, A.; Alam, F.; Joyce, K.; Moxham, M.; Sibson, R.; Crooks, D.; Husband, D.; Shenoy, A.; Brodbelt, A.; et al. Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br. J. Cancer 2009, 101, 124–131. [Google Scholar] [CrossRef]
- Esteller, M.; Garcia-Foncillas, J.; Andion, E.; Goodman, S.N.; Hidalgo, O.F.; Vanaclocha, V.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 2000, 343, 1350–1354, Erratum in: N. Engl. J. Med. 2000, 343, 1740. [Google Scholar] [CrossRef] [PubMed]
- Christmann, M.; Nagel, G.; Horn, S.; Krahn, U.; Wiewrodt, D.; Sommer, C.; Kaina, B. MGMT activity, promoter methylation and immunohistochemistry of pretreatment and recurrent malignant gliomas: A comparative study on astrocytoma and glioblastoma. Int. J. Cancer 2010, 127, 2106–2118. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Warrington, N.M.; Taylor, S.J.; Whitmire, P.; Carrasco, E.; Singleton, K.W.; Wu, N.; Lathia, J.D.; Berens, M.E.; Kim, A.H.; et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci. Transl. Med. 2019, 11, eaao5253. [Google Scholar] [CrossRef] [PubMed]
- Schiffgens, S.; Wilkens, L.; Brandes, A.A.; Meier, T.; Franceschi, E.; Ermani, M.; Hartmann, C.; Sandalcioglu, I.E.; Dumitru, C.A. Sex-specific clinicopathological significance of novel (Frizzled-7) and established (MGMT, IDH1) biomarkers in glioblastoma. Oncotarget 2016, 7, 55169–55180. [Google Scholar] [CrossRef]
- Franceschi, E.; Tosoni, A.; Minichillo, S.; Depenni, R.; Paccapelo, A.; Bartolini, S.; Michiara, M.; Pavesi, G.; Urbini, B.; Crisi, G.; et al. The Prognostic Roles of Gender and O6-Methylguanine-DNA Methyltransferase Methylation Status in Glioblastoma Patients: The Female Power. World Neurosurg. 2018, 112, e342–e347. [Google Scholar] [CrossRef]
- Sun, T.; Plutynski, A.; Ward, S.; Rubin, J.B. An integrative view on sex differences in brain tumors. Cell Mol. Life Sci. 2015, 72, 3323–3342. [Google Scholar] [CrossRef] [PubMed]
- Adamson, C.; Kanu, O.O.; Mehta, A.I.; Di, C.; Lin, N.; Mattox, A.K.; Bigner, D.D. Glioblastoma multiforme: A review of where we have been and where we are going. Expert Opin. Investig. Drugs 2009, 18, 1061–1083. [Google Scholar] [CrossRef] [PubMed]
- Jen, J.F.; Cutler, D.L.; Pai, S.M.; Batra, V.K.; Affrime, M.B.; Zambas, D.N.; Heft, S.; Hajian, G. Population pharmacokinetics of temozolomide in cancer patients. Pharm. Res. 2000, 17, 1284–1289. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, L.; Chen, H.; Wang, Y.; Xu, Y.; Mao, H.; Li, J.; Mills, G.B.; Shu, Y.; Li, L.; et al. Comprehensive Characterization of Molecular Differences in Cancer between Male and Female Patients. Cancer Cell 2016, 29, 711–722. [Google Scholar] [CrossRef]
- Sun, T.; Warrington, N.M.; Luo, J.; Brooks, M.D.; Dahiya, S.; Snyder, S.C.; Sengupta, R.; Rubin, J.B. Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males. J Clin Investig. 2014, 124, 4123–4133. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.; Lysiak, M.; Magnusson, A.; Rosell, J.; Söderkvist, P.; Malmström, A. Sex Disparities in MGMT Promoter Methylation and Survival in Glioblastoma: Further Evidence from Clinical Cohorts. J. Clin. Med. 2021, 10, 556. [Google Scholar] [CrossRef]
- Shireman, J.M.; Ammanuel, S.; Eickhoff, J.C.; Dey, M. Sexual dimorphism of the immune system predicts clinical outcomes in glioblastoma immunotherapy: A systematic review and meta-analysis. Neurooncol. Adv. 2022, 4, vdac082. [Google Scholar] [CrossRef]
- Cioffi, G.; Waite, K.A.; Dmukauskas, M.; Glantz, M.; Aulakh, S.; Nicolaides, T.; Sengupta, S.; Xiu, J.; Barnholtz-Sloan, J.S. Sex Differences in Glioblastoma Response to Treatment: Impact of MGMT Methylation. Neuro-Oncol. Adv. 2024, 6, vdae031. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Rubin, J.B.; Lathia, J.D.; Berens, M.E.; Barnholtz-Sloan, J.S. Females have the survival advantage in glioblastoma. Neuro Oncol. 2018, 20, 576–577. [Google Scholar] [CrossRef]
- Kfoury, N.; Sun, T.; Yu, K.; Rockwell, N.; Tinkum, K.L.; Qi, Z.; Warrington, N.M.; McDonald, P.; Roy, A.; Weir, S.J.; et al. Cooperative p16 and p21 action protects female astrocytes from transformation. Acta Neuropathol. Commun. 2018, 6, 12. [Google Scholar] [CrossRef]
- Quillien, V.; Lavenu, A.; Sanson, M.; Legrain, M.; Dubus, P.; Karayan-Tapon, L.; Mosser, J.; Ichimura, K.; Figarella-Branger, D. Outcome-based determination of optimal pyrosequencing assay for MGMT methylation detection in glioblastoma patients. J. Neurooncol. 2014, 116, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Quillien, V.; Lavenu, A.; Karayan-Tapon, L.; Carpentier, C.; Labussière, M.; Lesimple, T.; Chinot, O.; Wager, M.; Honnorat, J.; Saikali, S.; et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer 2012, 118, 4201–4211. [Google Scholar] [CrossRef] [PubMed]
- Bienkowski, M.; Berghoff, A.S.; Marosi, C.; Wöhrer, A.; Heinzl, H.; Hainfellner, J.A.; Preusser, M. Clinical Neuropathology practice guide 5-2015: MGMT methylation pyrosequencing in glioblastoma: Unresolved issues and open questions. Clin. Neuropathol. 2015, 34, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Gállego Pérez-Larraya, J.; Ducray, F.; Chinot, O.; Catry-Thomas, I.; Taillandier, L.; Guillamo, J.S.; Campello, C.; Monjour, A.; Cartalat-Carel, S.; Barrie, M.; et al. Temozolomide in elderly patients with newly diagnosed glioblastoma and poor performance status: An ANOCEF phase II trial. J. Clin. Oncol. 2011, 29, 3050–3055. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front. Oncol. 2020, 9, 1547. [Google Scholar] [CrossRef] [PubMed]
- Wiewrodt, D.; Nagel, G.; Dreimüller, N.; Hundsberger, T.; Perneczky, A.; Kaina, B. MGMT in primary and recurrent human glioblastomas after radiation and chemotherapy and comparison with p53 status and clinical outcome. Int. J. Cancer 2008, 122, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Gittleman, H.; Ostrom, Q.T.; Stetson, L.C.; Waite, K.; Hodges, T.R.; Wright, C.H.; Wright, J.; Rubin, J.B.; Berens, M.E.; Lathia, J.; et al. Sex is an important prognostic factor for glioblastoma but not for nonglioblastoma. Neuro-Oncol. Pract. 2019, 6, 451–462. [Google Scholar] [CrossRef]
- Ippolito, J.E.; Yim, A.K.; Luo, J.; Chinnaiyan, P.; Rubin, J.B. Sexual dimorphism in glioma glycolysis underlies sex differences in survival. JCI Insight. 2017, 2, e92142. [Google Scholar] [CrossRef]
- Hallaert, G.; Pinson, H.; Van den Broecke, C.; Van Roost, D.; Kalala, J.P.; Boterberg, T. Sex-based survival differences in IDH-wildtype glioblastoma: Results from a retrospective cohort study. J. Clin. Neurosci. 2021, 91, 209–213. [Google Scholar] [CrossRef]
Characteristic | Total | Female | Male |
---|---|---|---|
(n= 464) | (n = 170) | (n = 294) | |
Mean age (SD) | 63.4 ± 12.0 | 64.0 ± 11 | 63.0 ± 12.4 |
Patients aged ≥ 65, n (%) | 213 (45.9) | 82 (48.2) | 131 (44.6) |
Race, White *, n (%) | 414 (91.4) | 150 (90.4) | 264 (92.0) |
MGMT methylated, n (%) | 197 (42.5) | 87 (51.2) | 110 (37.4) |
Surgery type, n (%) | |||
Biopsy | 331 (71.3) | 119 (70.0) | 212 (72.1) |
Resection | 133 (28.7) | 51 (30.0) | 82 (27.9) |
KPS before surgery, n (%) ** | |||
≤80 | 80 (17.2) | 33 (19.4) | 47 (16.0) |
90–100 | 96 (20.7) | 28 (16.5) | 68 (23.1) |
Unknown | 288 (62.1) | 109 (64.1) | 179 (60.9) |
KPS after surgery, n (%) * | |||
<80 | 204 (48.0) | 82 (51.6) | 122 (45.9) |
80 | 111 (26.1) | 40 (25.2) | 71 (26.7) |
90–100 | 110 (25.9) | 37 (23.3) | 73 (27.4) |
IDH mutation status, n (%) | |||
No | 370 (79.7) | 137 (80.6) | 233 (79.3) |
Yes | 22 (4.7) | 11 (6.5) | 11 (3.7) |
Unknown | 72 (15.5) | 22 (12.9) | 50 (17.0) |
EGFR amplification, n (%) | |||
No | 235 (50.6) | 86 (50.6) | 149 (50.7) |
Yes | 161 (34.7) | 66 (38.8) | 95 (32.3) |
Unknown | 68 (14.7) | 18 (10.6) | 50 (17.0) |
Ki67, ≤40% | 269 (59.6) | 180 (62.7) | 89 (54.3) |
Steroid use *, n (%) | |||
No | 9 (2.2) | 4 (2.6) | 5 (1.9) |
Yes | 408 (97.8) | 150 (97.4) | 258 (98.1) |
Factor | Total (n = 464) | MGMT Un-Methylated (n = 267) | MGMT Methylated (n = 197) | p-Value |
---|---|---|---|---|
Mean age | 63.4 ± 12.0 | 62.0 ± 11.7 | 65.2 ± 12.0 | 0.004 a |
Patients aged ≥ 65 | 213 (45.9) | 106 (39.7) | 107 (54.3) | 0.002 c |
Sex, female | 170 (36.6) | 83 (31.1) | 87 (44.2) | 0.004 c |
Race, White * | 414 (91.4) | 243 (93.1) | 171 (89.1) | 0.13 c |
Complete resection surgery | 133 (28.7) | 72 (27.0) | 61 (31.0) | 0.35 |
Steroid use * | 408 (97.8) | 232 (97.1) | 176 (98.9) | 0.21 c |
Ki67 ≤ 40 * | 0.007 | 169 (65.0) | 100 (52.4) | 0.007 c |
IDH mutation status | 0.002 c | |||
No | 370 (79.7) | 211 (79.0) | 159 (80.7) | |
Yes | 22 (4.7) | 6 (2.2) | 16 (8.1) | |
Unknown | 72 (15.5) | 50 (18.7) | 22 (11.2) | |
EGFR amplification | 0.25 c | |||
No | 235 (50.6) | 129 (48.3) | 106 (53.8) | |
Yes | 161 (34.7) | 93 (34.8) | 68 (34.5) | |
Unknown | 68 (14.7) | 45 (16.9) | 23 (11.7) |
Variable | n | Events | Median OS, Months | 2-Year OS, % (95% CI) | Univariate HR (95% CI) | Univariate Wald p-Value | Cox Multivariable HR (95% CI) | Multivariable Wald p-Value |
---|---|---|---|---|---|---|---|---|
Sex and MGMT group | ||||||||
Un-methylated/female | 83 | 68 (82%) | 9.5 | 11.1 (2.9, 19.3) | 1.98 (1.39, 2.82) | <0.001 | 2.07 (1.45, 2.95) | <0.0001 |
Methylated/female | 87 | 59 (68%) | 18.7 | 36.8 (25.3, 48.3) | 1 | 1 | ||
Un-methylated/male | 184 | 151 (82%) | 11.3 | 12.2 (6.8, 17.6) | 1.72 (1.27, 2.33) | <0.001 | 2.14 (1.57, 2.93) | <0.0001 |
Methylated/male | 110 | 78 (71%) | 12.4 | 24.3 (14.4, 34.1) | 1.45 (1.03, 2.04) | 0.032 | 1.42 (1.01, 1.99) | 0.04 |
Un-methylated/male vs. methylated/male | 1.19 (0.90, 1.56) | 0.22 | 1.51 (1.14, 2.00) | 0.004 | ||||
Un-methylated/female vs. un-methylated/male | 1.15 (0.86, 1.53) | 0.34 | 1.04 (0.77, 1.39) | 0.81 | ||||
Age at surgery | ||||||||
<65 | 251 | 180 (72%) | 15.0 | 26.1 (19.8, 32.4) | 1 | 1 | ||
≥65 | 213 | 176 (83%) | 7.8 | 11.2 (6.2, 16.3) | 1.85 (1.50, 2.29) | <0.001 | 2.25 (1.8, 2.81) | <0.0001 |
Race | ||||||||
Other race | 39 | 31 (79%) | 11.5 | 14.4 (1.6, 27.2) | 1 | |||
White | 414 | 318 (77%) | 12.2 | 19.7 (15.3, 24.2) | 0.93 (0.64, 1.34) | 0.68 | ||
Surgery | ||||||||
Incomplete resection (partial/biopsy) | 331 | 270 (82%) | 8.5 | 14.3 (10.0, 18.6) | 1.90 (1.49, 2.43) | <0.001 | 2.10 (1.64, 2.69) | <0.0001 |
Complete resection | 133 | 86 (65%) | 17.1 | 32.4 (22.7, 42.2) | 1 | 1 | ||
Ki67 Proliferation index | ||||||||
≤40% | 269 | 206 (77%) | 10.3 | 15.1 (9.9, 20.2) | 1.18 (0.95, 1.46) | 0.13 | ||
>40% | 182 | 141 (77%) | 12.8 | 23.6 (16.6, 30.5) | ||||
Steroid use | ||||||||
0: No | 9 | 8 (89%) | 15.3 | 25.9 (0.0, 56.6) | 1 | |||
1: Yes | 408 | 312 (76%) | 12.8 | 20.6 (16.1, 25.2) | 1.17 (0.58, 2.37) | 0.65 |
CpG/Sex Group | n | Mean CpG, Median (IQR) | Death, n (%) | Median (mo) | 1-Year OS% (95% CI) | Log-Rank p-Value | Cox Univariate Hazard Ratio (95% CI) | Cox Univariate Wald p-Value |
---|---|---|---|---|---|---|---|---|
Before matching * | 0.002 | |||||||
cpg < 12/female | 52 | 3.0 (2.0, 3.0) | 42 (81%) | 9.5 | 35.9 (21.7, 50.1) | 2.36 (1.47, 3.78) | <0.001 | |
cpg ≥ 12/female | 52 | 41.5 (23.5, 59.0) | 31 (60%) | 18.9 | 68.0 (54.9, 81.0) | -- | ||
cpg < 12/male ** | 132 | 2.0 (2.0, 3.0) | 105 (80%) | 11.0 | 45.3 (36.1, 54.4) | 1.95 (1.30, 2.93) | 0.001 | |
cpg ≥ 12/male | 68 | 37.5 (22.5, 50.5) | 45 (66%) | 12.4 | 53.3 (40.8, 65.7) | 1.603 (1.012, 2.540) | 0.04 | |
After matching * | 0.02 | |||||||
cpg < 12/female | 50 | 2.5 (2.0, 3.0) | 40 (80%) | 10.0 | 37.4 (22.8, 52.0) | 2.54 (1.35, 4.77) | 0.004 | |
cpg ≥ 12/female | 26 | 35.0 (18.0, 46.0) | 13 (50%) | 18.7 | 78.4 (61.3, 95.5) | 1 | ||
cpg < 12/male ** | 50 | 2.5 (2.0, 3.0) | 38 (76%) | 13.6 | 56.7 (41.8, 71.6) | 1.78 (0.94, 3.37) | 0.08 | |
cpg ≥ 12/male | 26 | 35.0 (18.0, 46.0) | 19 (73%) | 13.0 | 56.0 (36.4,75.6) | 1.64 (0.81,3.33) | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnett, A.E.; Ozair, A.; Bamashmos, A.S.; Li, H.; Bosler, D.S.; Yeaney, G.; Ali, A.; Peereboom, D.M.; Lathia, J.D.; Ahluwalia, M.S. MGMT Methylation and Differential Survival Impact by Sex in Glioblastoma. Cancers 2024, 16, 1374. https://doi.org/10.3390/cancers16071374
Barnett AE, Ozair A, Bamashmos AS, Li H, Bosler DS, Yeaney G, Ali A, Peereboom DM, Lathia JD, Ahluwalia MS. MGMT Methylation and Differential Survival Impact by Sex in Glioblastoma. Cancers. 2024; 16(7):1374. https://doi.org/10.3390/cancers16071374
Chicago/Turabian StyleBarnett, Addison E., Ahmad Ozair, Anas S. Bamashmos, Hong Li, David S. Bosler, Gabrielle Yeaney, Assad Ali, David M. Peereboom, Justin D. Lathia, and Manmeet S. Ahluwalia. 2024. "MGMT Methylation and Differential Survival Impact by Sex in Glioblastoma" Cancers 16, no. 7: 1374. https://doi.org/10.3390/cancers16071374