Serum Complement Factor H: A Marker for Progression and Outcome Prediction Towards Immunotherapy in Cutaneous Squamous Cell Carcinoma
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Complement Factor H Assay
2.3. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Expression of CFH in hi-cSCC and adv-cSCC Patients
3.3. CFH Is a Diagnostic Classifier for hi-cSCC and adv-cSCC Independent of Conventional High-Risk Features
3.4. Pre-Treatment CFH Independently Predicts PFS in adv-cSCC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
cSCC | cutaneous squamous cell carcinoma |
ICI | immune checkpoint inhibition |
CFH | complement factor H |
References
- Liu, C.; Liu, X.; Cao, P.; Li, X.; Xin, H.; Zhu, S. Global, regional, national prevalence, mortality, and disability-adjusted life-years of cutaneous squamous cell carcinoma and trend analysis from 1990 to 2021 and prediction to 2045. Front. Oncol. 2025, 15, 1523169. [Google Scholar] [CrossRef]
- Hadian, Y.; Howell, J.Y.; Ramsey, M.L.; Buckley, C. Cutaneous Squamous Cell Carcinoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK441939/ (accessed on 12 May 2025).
- Xiang, F.; Lucas, R.; Hales, S.; Neale, R. Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978–2012: Empirical relationships. JAMA Dermatol. 2014, 150, 1063–1071. [Google Scholar] [CrossRef]
- Brinkman, J.N.; Hajder, E.; van der Holt, B.; Den Bakker, M.A.; Hovius, S.E.R.; Mureau, M.A.M. The Effect of Differentiation Grade of Cutaneous Squamous Cell Carcinoma on Excision Margins, Local Recurrence, Metastasis, and Patient Survival: A Retrospective Follow-Up Study. Ann. Plast. Surg. 2015, 75, 323–326. [Google Scholar] [CrossRef]
- Campoli, M.; Brodland, D.G.; Zitelli, J. A prospective evaluation of the clinical, histologic, and therapeutic variables associated with incidental perineural invasion in cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 2014, 70, 630–636. [Google Scholar] [CrossRef]
- Haisma, M.S.; Plaat, B.E.; Bijl, H.P.; Roodenburg, J.L.; Diercks, G.F.; Romeijn, T.R.; Terra, J.B. Multivariate analysis of poten-tial risk factors for lymph node metastasis in patients with cutaneous squamous cell carcinoma of the head and neck. J. Am. Acad. Dermatol. 2016, 75, 722–730. [Google Scholar] [CrossRef]
- Roozeboom, M.H.; Lohman, B.G.P.M.; Westers-Attema, A.; Nelemans, P.J.; Botterweck, A.A.; van Marion, A.M.W.; Kelleners-Smeets, N.W. Clinical and histological prognostic factors for local recurrence and metastasis of cutaneous squamous cell carcinoma: Analysis of a defined population. Acta Derm. Venereol. 2013, 93, 417–421. [Google Scholar] [CrossRef]
- Schmults, C.D.; Karia, P.S.; Carter, J.B.; Han, J.; Qureshi, A.A. Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: A 10-year, single-institution cohort study. JAMA Dermatol. 2013, 149, 541–547. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; van Akkooi, A.; Bataille, V.; Bastholt, L.; Dreno, B.; Dummer, R.; Fargnoli, M.C.; et al. European consensus-based interdisci-plinary guideline for invasive cutaneous squamous cell carcinoma. Part 1: Diagnostics and prevention-Update 2023. Eur. J. Cancer Oxf. Engl. 2023, 193, 113251. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; van Akkooi, A.; Bataille, V.; Bastholt, L.; Dummer, R.; Fargnoli, M.C.; Forsea, A.M.; et al. European consensus-based interdisci-plinary guideline for invasive cutaneous squamous cell carcinoma: Part 2. Treatment-Update 2023. Eur. J. Cancer Oxf. Engl. 2023, 193, 113252. [Google Scholar] [CrossRef] [PubMed]
- Hiller, A.; Oxford, M.B.; Kulkarni, P.B.; Fornadley, J.; Lo, A.; Sivik, J.; Drabick, J.M.; Vakharia, K. Efficacy of Cemiplimab as Adjuvant or Neoadjuvant Therapy in the Treatment of Cutaneous Squamous Cell Carcinoma. Ann. Plast. Surg. 2024, 92 (Suppl. S2), S129–S131. [Google Scholar] [CrossRef] [PubMed]
- Regeneron Pharmaceuticals Inc. Adjuvant Libtayo® (Cemiplimab) Significantly Improves Disease-Free Survival (DFS) After Surgery in High-Risk Cutaneous Squamous Cell Carcinoma (CSCC) in Phase 3 Trial. Available online: https://investor.regeneron.com/news-releases/news-release-details/adjuvant-libtayor-cemiplimab-significantly-improves-disease-free/ (accessed on 12 May 2025).
- Geidel, G.; Heidrich, I.; Kött, J.; Schneider, S.W.; Pantel, K.; Gebhardt, C. Emerging precision diagnostics in advanced cu-taneous squamous cell carcinoma. NPJ Precis. Oncol. 2022, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- The Complement System as a Target in Cancer Immunotherapy—Merle—2024—European Journal of Immunology—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/eji.202350820 (accessed on 12 May 2025).
- Senent, Y.; Tavira, B.; Pio, R.; Ajona, D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett. 2022, 549, 215900. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; Daugan, M.V.; Sautés-Fridman, C.; Fridman, W.H.; Roumenina, L.T. Complement System: Promoter or Sup-pressor of Cancer Progression? Antibodies 2020, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Daugan, M.V.; Revel, M.; Thouenon, R.; Dragon-Durey, M.A.; Robe-Rybkine, T.; Torset, C.; Merle, N.S.; Noé, R.; Verkarre, V.; Oudard, S.M.; et al. Intracellular Factor H Drives Tumor Progression Independently of the Complement Cascade. Cancer Immunol. Res. 2021, 9, 909–925. [Google Scholar] [CrossRef]
- Cui, T.; Chen, Y.; Knösel, T.; Yang, L.; Zöller, K.; Galler, K.; Berndt, A.; Mihlan, M.; Zipfel, P.F.; Petersen, I. Human complement factor H is a novel diagnostic mark-er for lung adenocarcinoma. Int. J. Oncol. 2011, 39, 161–168. [Google Scholar]
- Roumenina, L.T.; Daugan, M.V.; Petitprez, F.; Sautès-Fridman, C.; Fridman, W.H. Context-dependent roles of comple-ment in cancer. Nat. Rev. Cancer 2019, 19, 698–715. [Google Scholar] [CrossRef]
- Riihilä, P.M.; Nissinen, L.M.; Ala-Aho, R.; Kallajoki, M.; Grénman, R.; Meri, S.; Peltonen, S.; Peltonen, J.; Kähäri, V.-M. Complement factor H: A biomarker for progression of cutaneous squamous cell carcinoma. J. Investig. Dermatol. 2014, 134, 498–506. [Google Scholar] [CrossRef]
- Johnson, E.M.; Uppalapati, C.K.; Pascual, A.S.; Estrada, S.I.; Averitte, R.L.; Leyva, K.J.; Hull, E.E. Complement Factor H in cSCC: Evidence of a Link Between Sun Exposure and Immunosuppression in Skin Cancer Progression. Front. Oncol. 2022, 12, 819580. [Google Scholar] [CrossRef]
- Saxena, R.; Gottlin, E.B.; Campa, M.J.; Bushey, R.T.; Guo, J.; Patz, E.F.; He, Y.-W. Complement factor H: A novel innate immune checkpoint in cancer immunotherapy. Front. Cell Dev. Biol. 2024, 12, 1302490. [Google Scholar] [CrossRef]
- Clarke, J.M.; Simon, G.R.; Mamdani, H.; Gu, L.; Herndon, J.E.; Stinchcombe, T.E.; Ready, N.; Crawford, J.; Sonpavde, G.; Balevic, S.; et al. Complement factor H targeting anti-body GT103 in refractory non-small cell lung cancer: A phase 1b dose escalation trial. Nat. Commun. 2025, 16, 93. [Google Scholar] [CrossRef]
- Leiter, U.; Heppt, M.V.; Steeb, T.; Alter, M.; Amaral, T.; Bauer, A.; Bechara, F.G.; Becker, J.C.; Breitbart, E.W.; Breuninger, H. S3 guideline “actinic keratosis and cutaneous squamous cell carcinoma”—update 2023, part 2: Epidemiology and etiology, diagnostics, surgical and systemic treatment of cutaneous squamous cell carcinoma (cSCC), surveillance and prevention. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 2023, 21, 1422–1434. [Google Scholar] [CrossRef] [PubMed]
- Parente, R.; Clark, S.J.; Inforzato, A.; Day, A.J. Complement factor H in host defense and immune evasion. Cell. Mol. Life Sci. 2016, 74, 1605–1624. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.P.; Pangburn, M.K.; Cortés, C. Complement control protein factor H: The good, the bad, and the inadequate. Mol. Immunol. 2010, 47, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, J.; Renner, B.; Pickering, M.C.; Serkova, N.J.; Smith-Jones, P.M.; Clambey, E.T.; Nemenoff, R.A.; Thurman, J.M. Complement factor H–deficient mice develop spontaneous hepatic tumors. J. Clin. Investig. 2020, 130, 4039–4054. [Google Scholar] [CrossRef]
- Ajona, D.; Castaño, Z.; Garayoa, M.; Zudaire, E.; Pajares, M.J.; Martinez, A.; Cuttitta, F.; Montuenga, L.M.; Pio, R. Expression of complement factor H by lung cancer cells: Effects on the activation of the alternative pathway of complement. Cancer Res. 2004, 64, 6310–6318. [Google Scholar] [CrossRef]
- Mao, X.; Zhou, L.; Tey, S.K.; Ma, A.P.Y.; Yeung, C.L.S.; Ng, T.H.; Wong, S.W.K.; Liu, B.H.M.; Fung, Y.M.E.; Patz, E.F.; et al. Tumour extracellular vesicle-derived Complement Fac-tor H promotes tumorigenesis and metastasis by inhibiting complement-dependent cytotoxicity of tumour cells. J. Extracell. Vesicles 2020, 10, e12031. [Google Scholar] [CrossRef]
- Park, S.Y.; Eum, D.-Y.; Jin, Y.; Lee, C.Y.; Shim, J.W.; Choi, S.H.; Park, S.-J.; Heo, K.; Choi, Y.J. Downregulation of complement factor H attenuates the stemness of MDA-MB-231 breast cancer cells via modulation of the ERK and p38 signaling pathways. Oncol. Lett. 2023, 26, 521. [Google Scholar] [CrossRef]
- Borras, C.; Canonica, J.; Jorieux, S.; Abache, T.; El Sanharawi, M.; Klein, C.; Delaunay, K.; Jonet, L.; Salvodelli, M.; Naud, M.-C.; et al. CFH exerts anti-oxidant effects on retinal pigment epithelial cells independently from protecting against membrane attack complex. Sci. Rep. 2019, 9, 13873. [Google Scholar] [CrossRef]
- Oh, Y.; Zheng, Z.; Kim, K.-Y.; Xu, X.; Pei, M.; Oh, B.; Kim, S.K.; Chung, K.Y.; Roh, M.R. A nomogram combining clinical factors and biomarkers for pre-dicting the recurrence of high-risk cutaneous squamous cell carcinoma. BMC Cancer 2022, 22, 1126. [Google Scholar] [CrossRef]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic pro-gression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef]
- Khaddour, K.; Murakami, N.; Ruiz, E.S.; Silk, A.W. Cutaneous Squamous Cell Carcinoma in Patients with Sol-id-Organ-Transplant-Associated Immunosuppression. Cancers 2024, 16, 3083. [Google Scholar] [CrossRef]
- Zavdy, O.; Coreanu, T.; Bar-On, D.Y.; Ritter, A.; Bachar, G.; Shpitzer, T.; Kurman, N.; Mansour, M.; Ad-El, D.; Rozovski, U.; et al. Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients—A Comparison between Different Immunomodulating Conditions. Cancers 2023, 15, 1764. [Google Scholar] [CrossRef]
High-Risk cSCC | Advanced cSCC | ||
---|---|---|---|
Total patients | 62 | 42 | |
Median age at diagnosis (years) | 78 (55–90) | 80 (55–98) | |
Sex | |||
male | 46 (74.1%) | 33 (78.6%) | |
female | 16 (25.9%) | 9 (21.4%) | |
Clinical high-risk factors | |||
location: ear, lip, temple | 15 (24.2%) | 10 (23.8%) | |
local recurrence | 6 (9.6%) | 15 (35.7%) | |
diameter above 2 cm | 43 (69.3%) | 30 (71.4%) | |
immunosuppression | 19 (30.6%) | 10 (23.8%) | |
not movable to ground tissue | 4 (6.4%) | 18 (42.9%) | |
Histopathological high-risk factors | |||
infiltration depth above 6 mm | 21 (33.9%) | 16 (38.1%) | |
desmoplasia | 0 | 0 | |
perineural invasion | 17 (27.4%) | 11 (26.2%) | |
infiltration beyond the subcutis | 24 (38.7%) | 26 (61.9%) | |
poor differentiation | 22 (35.5%) | 19 (45.2%) | |
Median tumor diameter in cm (min, max) | 3 (1–6.5) | 5 (1–18) | |
Median infiltration depth in mm (min, max) | 7 (0.4–24) | 6 (1–19) | |
Comorbidities | |||
infection or inflammation | 8 (12.9%) | 12 (28.5%) | |
autoimmune disease | 14 (22.6%) | 7 (16.6%) | |
cardiovascular disease | 45 (72.6%) | 29 (69.0%) | |
immunosuppression | 20 (32.2%) | 8 (18.0%) | |
hematological neoplasm | 7 (11.3%) | 5 (11.9%) | |
ECOG status | |||
0 | 33 (53.2%) | 13 (31.0%) | |
1 | 22 (35.5%) | 24 (57.1%) | |
2 | 5 (8.1%) | 3 (7.1%) | |
3 | 2 (3.2%) | 2 (4.8%) | |
Number of blood samples analyzed for CFH | |||
Pre-treatment | 62 | 42 | |
Week 6 | NA | 19 | |
Week 12 | NA | 19 | |
Mean CFH levels in pg/mL (min, max) | |||
Pre-treatment | 367 (122–895) | 465 (172–1307) | |
Week 6 | NA | 319 (252–511) | |
Week 12 | NA | 343 (215–484) | |
Median follow-up (months) | NA | 10 |
Univariable | Multivariable | |||
---|---|---|---|---|
OR (CI) | p-Value | OR (CI) | p-Value | |
Pre-treatment CFH (low) | 0.17 (0.02–0.73) | 0.030 | 0.13 (0.02–0.7) | 0.026 |
Number of clinical high-risk factors (high) | 2 (1.29–3.23) | 0.002 | 2.18 (1.3–3.83) | 0.004 |
Number of total high-risk factors (high) | 1.43 (1.12–1.86) | 0.005 | 1.23 (0.85–1.81) | 0.274 |
ECOG (1) | 2.77 (1.18–6.72) | 0.020 | 2.61 (0.96–7.43) | 0.063 |
Inflammatory condition | 0.29 (0.06–0.98) | 0.066 | ||
Immunosuppression status | 0.49 (0.18–1.23) | 0.14 | ||
Amount of histological high-risk factors (high) | 1.26 (0.92–1.75) | 0.150 | ||
Tumor diameter (high) | 1.1 (0.96–1.29) | 0.184 | ||
Autoimmune disease | 0.69 (0.24–1.83) | 0.462 | ||
Sex (female) | 0.78 (0.3–1.96) | 0.609 | ||
Cardiovascular disease | 0.84 (0.36–2.01) | 0.697 | ||
Infiltration depth (high) | 0.99 (0.89–1.08) | 0.768 | ||
Age at diagnosis (high) | 0.99 (0.95–1.04) | 0.819 | ||
Hematological neoplasm | 1.06 (0.29–3.58) | 0.923 |
Univariable | Multivariable | |||
---|---|---|---|---|
HR (CI) | p-Value | HR (CI) | p-Value | |
Baseline CFH (low) | 0.36 (0.14–0.94) | 0.036 | 0.29 (0.1–0.78) | 0.014 |
Immunosuppression status | 3.04 (1.16–7.98) | 0.024 | 3.8 (1.38–10.42) | 0.009 |
CFH 6 weeks (low) | 1 (0.99–1.01) | 0.064 | ||
Amount of histological high-risk factors (high) | 1.36 (0.94–1.98) | 0.103 | ||
Hematological neoplasm | 2.42 (0.8–7.32) | 0.117 | ||
Amount of total high-risk factors (high) | 1.2 (0.94–1.53) | 0.140 | ||
Sex (female) | 0.44 (0.12–1.6) | 0.214 | ||
CFH 12 weeks (low) | 1 (0.99–1) | 0.319 | ||
ECOG (1) | 1.71 (0.55–5.27) | 0.353 | ||
Inflammatory condition | 2 (0.46–8.77) | 0.358 | ||
Tumor diameter (high) | 1.04 (0.92–1.18) | 0.502 | ||
Amount of clinical high-risk factors (high) | 1.11 (0.74–1.67) | 0.598 | ||
Infiltration depth (high) | 1.04 (0.89–1.21) | 0.610 | ||
Autoimmune disease | 1.28 (0.43–3.84) | 0.657 | ||
Age at diagnosis (high) | 1.01 (0.97–1.06) | 0.661 | ||
Cardiovascular disease | 0.9 (0.36–2.25) | 0.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geidel, G.; Adam, L.; Bänsch, S.; Fekade, N.; Deitert, B.; Rünger, A.; Kött, J.; Zell, T.; Heidrich, I.; Smit, D.J.; et al. Serum Complement Factor H: A Marker for Progression and Outcome Prediction Towards Immunotherapy in Cutaneous Squamous Cell Carcinoma. Cancers 2025, 17, 2162. https://doi.org/10.3390/cancers17132162
Geidel G, Adam L, Bänsch S, Fekade N, Deitert B, Rünger A, Kött J, Zell T, Heidrich I, Smit DJ, et al. Serum Complement Factor H: A Marker for Progression and Outcome Prediction Towards Immunotherapy in Cutaneous Squamous Cell Carcinoma. Cancers. 2025; 17(13):2162. https://doi.org/10.3390/cancers17132162
Chicago/Turabian StyleGeidel, Glenn, Laura Adam, Sabrina Bänsch, Nathan Fekade, Benjamin Deitert, Alessandra Rünger, Julian Kött, Tim Zell, Isabel Heidrich, Daniel J. Smit, and et al. 2025. "Serum Complement Factor H: A Marker for Progression and Outcome Prediction Towards Immunotherapy in Cutaneous Squamous Cell Carcinoma" Cancers 17, no. 13: 2162. https://doi.org/10.3390/cancers17132162
APA StyleGeidel, G., Adam, L., Bänsch, S., Fekade, N., Deitert, B., Rünger, A., Kött, J., Zell, T., Heidrich, I., Smit, D. J., Pantel, K., Schneider, S. W., & Gebhardt, C. (2025). Serum Complement Factor H: A Marker for Progression and Outcome Prediction Towards Immunotherapy in Cutaneous Squamous Cell Carcinoma. Cancers, 17(13), 2162. https://doi.org/10.3390/cancers17132162