Triple-Negative Breast Cancer Systemic Treatment: Disruptive Early-Stage Developments for Overcoming Stagnation in the Advanced Pipeline
Simple Summary
Abstract
1. Introduction
2. The Current Systemic Treatment Landscape
2.1. Standard of Care Overview
2.2. Chemotherapy Agents
2.3. Current Use of TNBC Biological Subtyping
2.4. Targeted Therapies Specifically Approved for TNBC Indication
2.5. Targeted Therapies Approved for BC and Recommended for TNBC
3. TNBC Pipeline
3.1. Trends Overview
3.1.1. ADCs
3.1.2. ICIs
3.1.3. PARP Inhibitors
3.1.4. Anti-Angiogenic Therapies and PI3K/Akt/mTOR Inhibitors
3.1.5. CDK4/6 Inhibitors
3.1.6. MEK Inhibitors
3.1.7. EGFR-Targeting Therapies
3.1.8. Hormonal and Antihormonal Therapies
3.1.9. Disruptive Approaches in Early-Stage Cases
3.2. Targeted Therapies Approved for BC and Under Investigation for TNBC
3.3. Targeted Therapies Approved for Other Indications and Under Investigation for TNBC
3.3.1. mAbs
3.3.2. Small Molecule Inhibitors
3.3.3. Other Therapies
3.4. Investigational Targeted Therapies in the Advanced Clinical Development Stage for TNBC
3.4.1. mAbs
3.4.2. Small Molecule Inhibitors
3.5. Investigational Targeted Therapies in Early Clinical Development Stage for TNBC
3.5.1. mAbs
3.5.2. Small Molecule Inhibitors of Consolidated Targets
3.5.3. Small Molecule Inhibitors for Novel Targets
3.6. γ-Secretase/Notch Receptor Inhibitors
3.7. DNA-Damage Response Inhibitors
3.8. BET Protein Inhibitors
3.9. Aurora Kinase Inhibitors
3.10. Anti-Angiogenic
3.11. Other Small Molecules
4. Onco-Immunotherapy
4.1. Oncolytic Viruses
4.2. Vaccines
4.3. CAR-Cell Therapy
5. Remarks/Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar] [CrossRef]
- Leon-Ferre, R.A.; Goetze, M.P. Advances in systemic therapies for triple negative breast cancer. BMJ 2023, 381, e071674. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef]
- Pareja, F.; Geyer, F.C.; Marchiò, C.; Burke, K.A.; Weigelt, B.; Reis-Filho, J.S. Triple-negative breast cancer: The importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer 2016, 2, 16036. [Google Scholar] [CrossRef]
- Haque, S.; Cook, K.; Sahay, G.; Sun, C. RNA-Based Therapeutics: Current Developments in Targeted Molecular Therapy of Triple-Negative Breast Cancer. Pharmaceutics 2021, 13, 1694. [Google Scholar] [CrossRef]
- Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022, 19, 91–113. [Google Scholar] [CrossRef]
- Guo, L.; Kong, D.; Liu, J.; Zhan, L.; Luo, L.; Zheng, W.; Zheng, Q.; Chen, C.; Sun, S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp. Hematol. Oncol. 2023, 12, 3. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Anderson, B.O.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cance Netw. 2020, 18, 452–478. [Google Scholar] [CrossRef]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis. Ann Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitzet, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef]
- Mandapati, A.; Lukong, K.E. Triple negative breast cancer: Approved treatment options and their mechanisms of action. J. Cancer Res. Clin. Oncol. 2023, 149, 3701–3719. [Google Scholar] [CrossRef]
- Tsai, J.; Bertoni, D.; Hernandez-Boussard, T.; Telli, M.L.; Wapnir, I.L. Lymph Node Ratio Analysis After Neoadjuvant Chemotherapy is Prognostic in Hormone Receptor-Positive and Triple-Negative Breast Cancer. Ann. Surg. Oncol. 2016, 23, 3310–3316. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-C. Triple-negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.-S.; Kumar, A.; Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023, 22, 105. [Google Scholar] [CrossRef]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13 Pt 1, 4429–4434. [Google Scholar] [CrossRef]
- Lin, N.U.; Vanderplas, A.; Hughes, M.E.; Theriault, R.L.; Edge, S.B.; Wong, Y.-N.; Blayney, D.W.; Niland, J.C.; Winer, E.P.; Weeks, J.C. Clinicopathologic features, patterns of recurrence, and survival among women with triple negative breast cancer in the National Comprehensive Cancer Network. Cancer 2012, 118, 5463–5472. [Google Scholar] [CrossRef]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2023, 41, 1809–1815. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Huang, M.; Haiderali, A.; Fox, G.E.; Frederickson, A.; Cortes, J.; Fasching, P.A.; O’shaughnessy, J. Economic and Humanistic Burden of Triple-Negative Breast Cancer: A Systematic Literature Review. PharmacoEconomics 2022, 40, 519–558. [Google Scholar] [CrossRef]
- Bielo, L.B.; Trapani, D.; Curigliano, G. Pharmacoeconomics of novel pharmacotherapies in triple-negative breast cancer. Expert Opin. Pharmacother. 2023, 24, 789–801. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Song, B.; Yi, M.; Yan, Y.; Mei, Q.; Wu, K. Recent advances in targeted strategies for triple-negative breast cancer. J. Hematol. Oncol. 2023, 16, 100. [Google Scholar] [CrossRef]
- Korde, L.; Somerfield, M.; Hershman, D. Use of Immune Checkpoint Inhibitor Pembrolizumab in the Treatment of High-Risk, Early-Stage Triple-Negative Breast Cancer: ASCO Guideline Rapid Recommendation Update. J. Clin. Oncol. 2022, 40, 1696–1698. [Google Scholar] [CrossRef]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef]
- Jerusalem, G.; Collignon, J.; Schroeder, H.; Lousberg, L. Triple-negative breast cancer: Treatment challenges and solutions. Breast Cancer (Dove Med. Press) 2016, 8, 93–107. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Nicolò, E.; Bielo, L.B.; Curigliano, G.; Tarantino, P. The HER2-low revolution in breast oncology: Steps forward and emerging challenges. Ther. Adv. Med. Oncol. 2023, 15, 17588359231152842. [Google Scholar] [CrossRef]
- Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 327–344. [Google Scholar] [CrossRef]
- Gallagher, R.I.; Wulfkuhle, J.; Wolf, D.M.; Brown-Swigart, L.; Yau, C.; O’grady, N.; Basu, A.; Lu, R.; Campbell, M.J.; Magbanua, M.J.; et al. Protein signaling and drug target activation signatures to guide therapy prioritization: Therapeutic resistance and sensitivity in the I-SPY 2 Trial. Cell Rep. Med. 2023, 4, 101312. [Google Scholar] [CrossRef]
- European Society for Medical Oncology (ESMO)/ESMO-MCBS Scorecards/Trastuzumab Deruxtecan. Available online: https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-for-solid-tumours/esmo-mcbs-scorecards/scorecard-351-1 (accessed on 9 September 2024).
- Haddy, N.; Joudain, H.; Desplas, D.; Mansouri, I.; Di Meglio, A.; Zureik, M. European Society for Medical Oncology (ESMO) Open Acces/Online Abstract 191P. Available online: https://www.esmoopen.com/action/showPdf?pii=S2059-7029%2824%2900981-5 (accessed on 9 September 2024).
- Kontos, F.; Michelakos, T.; Kurokawa, T.; Sadagopan, A.; Schwab, J.H.; Ferrone, C.R.; Ferrone, S. B7-H3: An Attractive Target for Antibody-based Immunotherapy. Clin. Cancer Res. 2021, 27, 1227–1235. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Liu, C.; Wang, Z.; Wu, W.; Zhang, N.; Zhang, L.; Hu, J.; Luo, P.; Zhang, J.; et al. Immune checkpoint modulators in cancer immunotherapy: Recent advances and emerging concepts. J. Hematol. Oncol. 2022, 15, 111. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front. Oncol. 2022, 12, 819128. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). Targeted Therapy to Treat Cancer. Available online: https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies (accessed on 16 February 2024).
- Dey, P.; Wang, A.; Ziegler, Y.; Kumar, S.; Yan, S.; Kim, S.H.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen Receptor Beta 1: A Potential Therapeutic Target for Female Triple Negative Breast Cancer. Endocrinology 2022, 163, bqac172. [Google Scholar] [CrossRef]
- Gómez-Aleza, C.; Nguyen, B.; Yoldi, G.; Ciscar, M.; Barranco, A.; Hernández-Jiménez, E.; Maetens, M.; Salgado, R.; Zafeiroglou, M.; Pellegrini, P.; et al. Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells. Nat. Commun. 2022, 11, 6335. [Google Scholar] [CrossRef]
- Gómez-Aleza, C.; González-Suárez, E. Inhibition of RANK signaling as a potential immunotherapy in breast cancer. OncoImmunology 2021, 10, 1923156. [Google Scholar] [CrossRef]
- Ciscar, M.; Trinidad, E.M.; Perez-Chacon, G.; Alsaleem, M.; Jimenez, M.; Jimenez-Santos, M.J.; Perez-Montoyo, H.; Sanz-Moreno, A.; Vethencourt, A.; Toss, M.; et al. RANK is a poor prognosis marker and a therapeutic target in ER-negative postmenopausal breast cancer. EMBO Mol. Med. 2023, 15, e16715. [Google Scholar] [CrossRef]
- Link, T.; Blohmer, J.-U.; Schmitt, W.D.; Kuhlmann, J.D.; Just, M.; Untch, M.; Stotzer, O.; Fasching, P.A.; Thill, M.; Reinisch, M.; et al. RANK Expression as an Independent Predictor for Response to Neoadjuvant Chemotherapy in Luminal-Like Breast Cancer: A Translational Insight from the GeparX Trial. Clin. Cancer Res. 2023, 29, 4606–4612. [Google Scholar] [CrossRef]
- Patel, S.A.; Nilsson, M.B.; Le, X.; Cascone, T.; Jain, R.K.; Heymach, J.V. Molecular Mechanisms and Future Implications of VEGF/VEGFR in Cancer Therapy. Clin. Cancer Res. 2023, 29, 30–39. [Google Scholar] [CrossRef]
- Thomas, A.; Reis-Filho, J.S.; Geyer, C.E., Jr.; Wen, H.Y. Rare subtypes of triple negative breast cancer: Current understanding and future directions. NPJ Breast Cancer 2023, 9, 55. [Google Scholar] [CrossRef]
- Bajrami, I.; Marlow, R.; van de Ven, M.; Brough, R.; Pemberton, H.N.; Frankum, J.; Song, F.; Rafiq, R.; Konde, A.; Krastev, D.B.; et al. E-Cadherin/ROS1 Inhibitor Synthetic Lethality in Breast Cancer. Cancer Discov. 2018, 8, 498–515. [Google Scholar] [CrossRef]
- Bader, J.C.; Razak, A.R.A.; Shacham, S.; Xu, H. Pharmacokinetics of Selinexor: The First-in-Class Selective Inhibitor of Nuclear Export. Clin. Pharmacokinet. 2021, 60, 957–969. [Google Scholar] [CrossRef]
- Shastry, M.; Jacob, S.; Rugo, H.S.; Hamilton, E. Antibody-drug conjugates targeting TROP-2: Clinical development in metastatic breast cancer. Breast 2022, 66, 169–177. [Google Scholar] [CrossRef]
- Diéras, V.; Han, H.S.; Kaufman, B.; Wildiers, H.; Friedlander, M.; Ayoub, J.P.; Puhalla, S.L.; Bondarenko, I.; Campone, M.; Jakobsen, E.H.; et al. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 1269–1282. [Google Scholar] [CrossRef]
- Zuo, W.J.; Chen, L.; Shen, Y.; Wang, Z.H.; Liu, G.Y.; Yu, K.D.; Di, G.H.; Wu, J.; Li, J.J.; Shao, Z.M. Rational and trial design of FASCINATE-N: A prospective, randomized, precision-based umbrella trial. Ther. Adv. Med. Oncol. 2024, 14, 17588359231225032. [Google Scholar] [CrossRef]
- Saravanan, R.; Balasubramanian, V.; Balamurugan, S.S.S.; Ezhil, I.; Afnaan, Z.; John, J.; Sundaram, S.; Gouthaman, S.; Pakala, S.B.; Rayala, S.K.; et al. Zinc transporter LIV1: A promising cell surface target for triple negative breast cancer. J. Cell. Physiol. 2022, 237, 4132–4156. [Google Scholar] [CrossRef]
- Cao, X.; Li, B.; Chen, J.; Dang, J.; Chen, S.; Gunes, E.G.; Xu, B.; Tian, L.; Muend, S.; Raoof, M.; et al. Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer. J. Immunother. Cancer 2021, 9, e002022. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, H.; Yu, J.; Tian, W.; Song, Y. Targeting CD47 for cancer immunotherapy. J. Hematol. Oncol. 2021, 14, 180. [Google Scholar] [CrossRef]
- Rousseau, A.; Parisi, C.; Barlesi, F. Anti-TIGIT therapies for solid tumors: A systematic review. ESMO Open 2023, 8, 101184. [Google Scholar] [CrossRef]
- Braud, V.M.; Meghraoui-Kheddar, A.; Elaldi, R.; Petti, L.; Germain, C.; Anjuère, F. LLT1-CD161 Interaction in Cancer: Promises and Challenges. Front. Immunol. 2022, 13, 847576. [Google Scholar] [CrossRef]
- Millrud, C.R.; Deronic, A.; Grönberg, C.; Gyllenbäck, E.J.; von Wachenfeldt, K.; Forsberg, G.; Liberg, D. Blockade of IL-1α and IL-1β signaling by the anti-IL1RAP antibody nadunolimab (CAN04) mediates synergistic anti-tumor efficacy with chemotherapy. Cancer Immunol. Immunother. 2023, 72, 667–678. [Google Scholar] [CrossRef]
- Krijgsman, D.; Roelands, J.; Hendrickx, W.; Bedognetti, D.; Kuppen, P.J.K. HLA-G: A New Immune Checkpoint in Cancer? Int. J. Mol. Sci. 2020, 21, 4528. [Google Scholar] [CrossRef]
- Merck KGaA Press Release, 5 February 2019. Available online: https://www.merckgroup.com/en/news/m7824-2019-02-05.html (accessed on 22 August 2024).
- Spira, A.; Awada, A.; Isambert, N.; Lorente, D.; Penel, N.; Zhang, Y.; Ojalvo, L.S.; Hicking, C.; Rolfe, P.A.; Ihling, C.; et al. Identification of HMGA2 as a predictive biomarker of response to bintrafusp alfa in a phase 1 trial in patients with advanced triple-negative breast cancer. Front. Oncol. 2022, 12, 981940. [Google Scholar] [CrossRef]
- Aliqopa® Information at EMA Website. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/aliqopa (accessed on 10 September 2024).
- Song, C.; Zhang, J.; Xu, C.; Gao, M.; Li, N.; Geng, Q. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. Int. J. Biol. Sci. 2023, 19, 5089–5103. [Google Scholar] [CrossRef]
- Ferrarotto, R.; Mishra, V.; Herz, E.; Yaacov, A.; Solomon, O.; Rauch, R.; Mondshine, A.; Motin, M.; Leibovich-Rivkin, T.; Davis, M.; et al. AL101, a gamma-secretase inhibitor, has potent antitumor activity against adenoid cystic carcinoma with activated NOTCH signaling. Cell Death Dis. 2022, 13, 678. [Google Scholar] [CrossRef]
- Andrikopoulou, A.; Liontos, M.; Koutsoukos, K.; Dimopoulos, M.-A.; Zagouri, F. The emerging role of BET inhibitors in breast cancer. Breast 2020, 53, 152–163. [Google Scholar] [CrossRef]
- Du, R.; Huang, C.; Liu, K.; Li, X.; Dong, Z. Targeting AURKA in Cancer: Molecular mechanisms and opportunities for Cancer therapy. Mol. Cancer 2021, 20, 15. [Google Scholar] [CrossRef]
- Parmar, D.; Apte, M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur. J. Pharmacol. 2021, 899, 174021. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute (NCI), Personalized Synthetic Long Peptide Vaccine Definition. Available online: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/personalized-synthetic-long-peptide-vaccine (accessed on 20 August 2024).
- Maalej, K.M.; Merhi, M.; Inchakalody, V.P.; Mestiri, S.; Alam, M.; Maccalli, C.; Cherif, H.; Uddin, S.; Steinhoff, M.; Marincola, F.M.; et al. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol. Cancer 2023, 22, 20. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, M.B.; Domaica, C.I.; Zwirner, N.W. Leveraging NKG2D Ligands in Immuno-Oncology. Front. Immunol. 2021, 12, 713158. [Google Scholar] [CrossRef] [PubMed]
(a) Therapies specifically approved for TNBC. | ||
General Information | Indication Details (EMA) | Ongoing TNBC CT at Highest Phase |
|
| Phase III.
|
|
| Phase III.
|
|
| Phase III.
|
(b) Therapies approved for BC and recommended for TNBC. | ||
General information | Indication details (EMA) | Ongoing TNBC CT at highest phase |
|
| Phase III.
|
|
| Phase II.
|
| (Referring to Avastin®)
| Phase III.
|
|
| Phase II.
|
General Information | Indication Details (EMA) | Ongoing TNBC CT at Highest Phase |
---|---|---|
|
| Phase II.
|
| (Referring to Afinitor®)
| Phase III.
|
|
| Phase III.
|
|
| Phase III.
|
|
| Phase I/II.
|
|
| Phase II.
|
|
| Phase II.
|
| (Referring to Tyverb®)
| Phase I.
|
|
| Phase III.
|
(a) mAb-Based Targeted Therapies | ||
General Information | Indication Details (EMA) | Ongoing TNBC CT at Highest Phase |
| Merkel cell, urothelial and renal cell carcinoma. | Phase III.
|
| NSCLC, SCLC, biliary tract cancer, and hepatocellular carcinoma. | Phase III.
|
| Melanoma; NSCLC; malignant pleural mesothelioma; renal cell carcinoma; classical Hodgkin lymphoma; squamous cell cancer of the head and neck; urothelial carcinoma; dMMR or MSI-H colorectal cancer; oesophageal squamous cell carcinoma; gastric, gastro-oesophageal junction or oesophageal adenocarcinoma. | Phase II. NCT02393794, NCT03487666, NCT02499367, NCT04159818, NCT05888831, NCT04180371, NCT03818685, NCT03449108, NCT04331067, NCT03414684, NCT03546686. In general participation criteria are TNBC or advanced solid tumors including TNBC, and none of the CTs ask for PDL1 status test. |
| Cutaneous squamous cell carcinoma, basal cell carcinoma, NSCLC, and cervical cancer. | Phase II.
|
| Endometrial cancer. | Phase II.
|
| Peripheral T-cell lymphoma. | Phase II.
|
| Metastatic Merkel cell carcinoma. | Phase II.
|
| Advanced/unresectable hepatocellular carcinoma and NSCLC, in combination with durvalumab. | Phase II.
|
| (Referring to Erbitux®) EGFR-expressing/RAS wild-type metastatic colorectal cancer, squamous cell cancer of the head and neck. | Phase Ia/Ib.
|
| (Referring to (I) and (II)) (I) Prevention of SRE in bone metastases, treatment of giant cell tumor of bone|(II) treatment of osteoporosis and bone loss associated with hormone ablation in prostate cancer. | Phase I.
|
(b) Small molecule inhibitor-based targeted therapies. | ||
General information | Indication details (EMA) | Ongoing TNBC CT at highest phase |
| Advanced epithelial high-grade ovarian, fallopian tube, or primary peritoneal cancer. | Phase III.
|
| Differentiated thyroid, hepatocellular and endometrial carcinoma. | Phase II.
|
| Metastatic colorectal cancer (mCRC). | Phase II.
|
| (I)Unresectable locally advanced/metastatic medullary thyroid carcinoma|(II)renal cell, hepatocellular, differentiated thyroid carcinoma. | Phase II.
|
| Unresectable or metastatic melanoma with a BRAF V600 mutation. | Phase II.
|
| Symptomatic, inoperable plexiform neurofibromas in pediatric patients ≥ 3 years with neurofibromatosis type 1 | Phase II.
|
| Unresectable or metastatic melanoma with a BRAF V600 mutation. | Phase II.
|
| (Referring to Tarceva®) NSCLC, pancreatic cancer. | None ongoing, completed phase II.
|
| (Referring to Iressa®) NSCLC with activating mutations of EGFR-TK. | Phase II.
|
| ALK+ or ROS1+ NSCLC, ALK+ anaplastic large cell lymphoma, ALK+ inflammatory myofibroblastic tumor. | Phase II.
|
|
| Phase I.
|
(c) Other therapies. | ||
General information | Indication details (EMA) | Ongoing TNBC CT at highest phase |
| Unresectable melanoma | Phase I/II.
|
| (Referring to Casodex®) Prostate cancer. | Phase II.
|
| Prostate cancer. | Phase II.
|
Therapy | General Information | Ongoing TNBC CT at Highest Phase |
Oncolytic virus |
| Phase II.
|
| Phase I/II.
| |
Vaccine |
| Phase II.
|
| Phase I/II.
| |
CAR-cell |
| None ongoing, completed phase I
|
| Phase I.
| |
| None ongoing, terminated phase I.
| |
| Phase I.
| |
| Phase I
| |
| Phase I/II.
| |
| None ongoing, terminated phase I.
| |
| Phase I/II.
| |
| Phase I/II.
| |
| Phase I/II.
| |
| Phase I
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Ron, C.; Vethencourt, A.; González-Suárez, E.; Oruezabal, R.I. Triple-Negative Breast Cancer Systemic Treatment: Disruptive Early-Stage Developments for Overcoming Stagnation in the Advanced Pipeline. Cancers 2025, 17, 633. https://doi.org/10.3390/cancers17040633
Alonso-Ron C, Vethencourt A, González-Suárez E, Oruezabal RI. Triple-Negative Breast Cancer Systemic Treatment: Disruptive Early-Stage Developments for Overcoming Stagnation in the Advanced Pipeline. Cancers. 2025; 17(4):633. https://doi.org/10.3390/cancers17040633
Chicago/Turabian StyleAlonso-Ron, Carlos, Andrea Vethencourt, Eva González-Suárez, and Roke Iñaki Oruezabal. 2025. "Triple-Negative Breast Cancer Systemic Treatment: Disruptive Early-Stage Developments for Overcoming Stagnation in the Advanced Pipeline" Cancers 17, no. 4: 633. https://doi.org/10.3390/cancers17040633
APA StyleAlonso-Ron, C., Vethencourt, A., González-Suárez, E., & Oruezabal, R. I. (2025). Triple-Negative Breast Cancer Systemic Treatment: Disruptive Early-Stage Developments for Overcoming Stagnation in the Advanced Pipeline. Cancers, 17(4), 633. https://doi.org/10.3390/cancers17040633