Oncogenic Mutations and the Tumor Microenvironment: Drivers of Non-Small Cell Lung Cancer Progression
Simple Summary
Abstract
1. Introduction
2. Stem Cell Dynamics in Lung Health and Disease
2.1. Alveolar Type II (AT2) Cells
2.2. Bronchioalveolar Stem Cells (BASCs)
2.3. Basal Cells
3. Mutational Burden—Implications for Cancer Risk and Early Detection
4. Methods for Mutational Burden Detection
5. Stem Cells Detection in Tissues—Histochemical Insights and Prognostic Value
5.1. ALDH1 (Aldehyde Dehydrogenase 1)
5.2. CD133 (Prominin-1)
5.3. Ubiquitin-Specific Protease 22 (USP22)
5.4. CD44
5.5. SOX2
5.6. NANOG
6. Therapeutic Management of Non-Small Cell Lung Cancer
7. Mutations, Tumor Microenvironment, and the Efficacy of Immunotherapy
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, F.; Li, R.; Zheng, K.; Zhang, X.; Ma, H.; Li, K.; Nie, L. Thermo-Responsive Hydrogel Based on Lung Decellularized Extracellular Matrix for 3D Culture Model to Enhance Cancer Stem Cell Characteristics. Molecules 2024, 29, 4385. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. 2024. Available online: www.cancer.org (accessed on 28 December 2024).
- American Lung Association. Available online: www.lung.org (accessed on 28 December 2024).
- Ahmad, S.; Ahmad, A. Epithelial Regeneration and Lung Stem Cells. In Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–102. ISBN 978-0-12-803809-3. [Google Scholar]
- Behrend, S.J.; Giotopoulou, G.A.; Spella, M.; Stathopoulos, G.T. A Role for Club Cells in Smoking-Associated Lung Adenocarcinoma. Eur. Respir. Rev. 2021, 30, 210122. [Google Scholar] [CrossRef]
- Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung Cancer. N. Engl. J. Med. 2008, 359, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, J.; Flight, R.M.; Naughton, K.J.; Lukyanchuk, A.; Edgin, A.R.; Song, X.; Zhang, H.; Wong, K.; Moseley, H.N.B.; et al. Cellular Origins of EGFR-Driven Lung Cancer Cells Determine Sensitivity to Therapy. Adv. Sci. 2021, 8, 2101999. [Google Scholar] [CrossRef]
- Moye, A.L.; Dost, A.F.; Ietswaart, R.; Sengupta, S.; Ya, V.; Aluya, C.; Fahey, C.G.; Louie, S.M.; Paschini, M.; Kim, C.F. Early-Stage Lung Cancer Is Driven by a Transitional Cell State Dependent on a KRAS-ITGA3-SRC Axis. EMBO J. 2024, 43, 2843–2861. [Google Scholar] [CrossRef]
- Desai, T.J.; Brownfield, D.G.; Krasnow, M.A. Alveolar Progenitor and Stem Cells in Lung Development, Renewal and Cancer. Nature 2014, 507, 190–194. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Lagiedo, M.; Masztalerz, A.; Kozlowska, M.; Nowicka, A.; Brajer, B.; Batura-Gabryel, H.; Sikora, J. Concentrations of SP-A and HSP70 Are Associated with Polarization of Macrophages in Pleural Effusions of Non-Small Cell Lung Cancer. Immunobiology 2018, 223, 200–209. [Google Scholar] [CrossRef]
- Sin, D.D.; Man, S.F.P.; McWilliams, A.; Lam, S. Surfactant Protein D and Bronchial Dysplasia in Smokers at High Risk of Lung Cancer. Chest 2008, 134, 582–588. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Takahashi, M.; Ariki, S.; Asakawa, D.; Tajiri, M.; Wada, Y.; Yamaguchi, Y.; Nishitani, C.; Takamiya, R.; Saito, A.; et al. Surfactant Protein D Suppresses Lung Cancer Progression by Downregulation of Epidermal Growth Factor Signaling. Oncogene 2015, 34, 838–845. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, K.; Cui, G.; Huang, X.; Yao, S.; Guo, W.; Qin, Z.; Li, Y.; Yang, R.; Pu, W.; et al. Lung Regeneration by Multipotent Stem Cells Residing at the Bronchioalveolar-Duct Junction. Nat. Genet. 2019, 51, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Jing, B.; Xu, D.; Guo, W.; Sun, B.; Zhang, J.; Liao, Y.; Song, H.; Wang, T.; Liu, S.; et al. Identification of Active Bronchioalveolar Stem Cells as the Cell of Origin in Lung Adenocarcinoma. Cancer Res. 2022, 82, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, S.; Kishimoto, H.; Kawahara, K.; Sasaki, T.; Sasaki, M.; Nishio, M.; Yajima, N.; Hamada, K.; Horie, Y.; Kubo, H.; et al. Pten Controls Lung Morphogenesis, Bronchioalveolar Stem Cells, and Onset of Lung Adenocarcinomas in Mice. J. Clin. Investig. 2007, 117, 2929–2940. [Google Scholar] [CrossRef] [PubMed]
- Micucci, C.; Orciari, S.; Catalano, A. Hyperglycemia Promotes K-Ras-Induced Lung Tumorigenesis through BASCs Amplification. PLoS ONE 2014, 9, e105550. [Google Scholar] [CrossRef]
- Sun, Y.; Han, Y.; Wang, X.; Wang, W.; Wang, X.; Wen, M.; Xia, J.; Xing, H.; Li, X.; Zhang, Z. Correlation of EGFR Del 19 with Fn14/JAK/STAT Signaling Molecules in Non-Small Cell Lung Cancer. Oncol. Rep. 2016, 36, 1030–1040. [Google Scholar] [CrossRef]
- Yin, N.; Liu, Y.; Khoor, A.; Wang, X.; Thompson, E.A.; Leitges, M.; Justilien, V.; Weems, C.; Murray, N.R.; Fields, A.P. Protein Kinase Cι and Wnt/β-Catenin Signaling: Alternative Pathways to Kras/Trp53-Driven Lung Adenocarcinoma. Cancer Cell 2019, 36, 156–167.e7. [Google Scholar] [CrossRef]
- Herreros-Pomares, A.; Doria, P.; Gallach, S.; Meri-Abad, M.; Guijarro, R.; Calabuig-Fariñas, S.; Camps, C.; Jantus-Lewintre, E. A Sonic Hedgehog Pathway Score to Predict the Outcome of Resected Non-Small Cell Lung Cancer Patients. Ann. Surg. Oncol. 2023, 30, 1225–1235. [Google Scholar] [CrossRef]
- Crossen, M.J.; Wilbourne, J.; Fogarty, A.; Zhao, F. Epithelial and Mesenchymal Fate Decisions in Wolffian Duct Development. Trends Endocrinol. Metab. 2023, 34, 462–473. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, X.; Lin, Y.; Zeng, Y. Roles of Airway Basal Stem Cells in Lung Homeostasis and Regenerative Medicine. Respir. Res. 2022, 23, 122. [Google Scholar] [CrossRef]
- Gomi, K.; Tang, Y.; Arbelaez, V.; Crystal, R.G.; Walters, M.S. Endothelial Cell Mediated Promotion of Ciliated Cell Differentiation of Human Airway Basal Cells via Insulin and Insulin-Like Growth Factor 1 Receptor Mediated Signaling. Stem Cell Rev. Rep. 2017, 13, 309–317. [Google Scholar] [CrossRef]
- Jeong, Y.; Hoang, N.T.; Lovejoy, A.; Stehr, H.; Newman, A.M.; Gentles, A.J.; Kong, W.; Truong, D.; Martin, S.; Chaudhuri, A.; et al. Role of KEAP1 / NRF2 and TP53 Mutations in Lung Squamous Cell Carcinoma Development and Radiation Resistance. Cancer Discov. 2017, 7, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Zefi, O.; Waldman, S.; Marsh, A.; Shi, M.K.; Sonbolian, Y.; Khulan, B.; Siddiqui, T.; Desai, A.; Patel, D.; Okorozo, A.; et al. Distinctive Field Effects of Smoking and Lung Cancer Case-Control Status on Bronchial Basal Cell Growth and Signaling. Respir. Res. 2024, 25, 317. [Google Scholar] [CrossRef] [PubMed]
- Nagah, A.; Amer, A. Different Mechanisms of Cigarette Smoking-Induced Lung Cancer. Acta Biotheor. 2021, 69, 37–52. [Google Scholar] [CrossRef]
- Uchinomiya, K.; Tomita, M. A Mathematical Model for Cancer Risk and Accumulation of Mutations Caused by Replication Errors and External Factors. PLoS ONE 2023, 18, e0286499. [Google Scholar] [CrossRef]
- Wang, X.; Ricciuti, B.; Nguyen, T.; Li, X.; Rabin, M.S.; Awad, M.M.; Lin, X.; Johnson, B.E.; Christiani, D.C. Association between Smoking History and Tumor Mutation Burden in Advanced Non–Small Cell Lung Cancer. Cancer Res. 2021, 81, 2566–2573. [Google Scholar] [CrossRef]
- Yang, S.-R.; Gedvilaite, E.; Ptashkin, R.; Chang, J.; Ziegler, J.; Mata, D.A.; Villafania, L.B.; Nafa, K.; Hechtman, J.F.; Benayed, R.; et al. Microsatellite Instability and Mismatch Repair Deficiency Define a Distinct Subset of Lung Cancers Characterized by Smoking Exposure, High Tumor Mutational Burden, and Recurrent Somatic MLH1 Inactivation. J. Thorac. Oncol. 2024, 19, 409–424. [Google Scholar] [CrossRef]
- Restrepo, J.C.; Martínez Guevara, D.; Pareja López, A.; Montenegro Palacios, J.F.; Liscano, Y. Identification and Application of Emerging Biomarkers in Treatment of Non-Small-Cell Lung Cancer: Systematic Review. Cancers 2024, 16, 2338. [Google Scholar] [CrossRef]
- Jahani, M.M.; Mashayekhi, P.; Omrani, M.D.; Khosravi, A.; Dehghanifard, A.; Azad Manjiri, S.; Zahraie, M.; Mabani, M.; Seifi, S.; Salimi, B.; et al. Assessing the Sensitivity of Nested PCR Followed by Direct Sequencing on Exosomal DNA for EGFR Mutation Detection in NSCLC. Iran. Biomed. J. 2024, 28, 206–213. [Google Scholar] [CrossRef]
- Ospina, A.V. Overview of the Role of Liquid Biopsy in Non-Small Cell Lung Cancer (NSCLC). Clin. Oncol. 2024, 36, e371–e380. [Google Scholar] [CrossRef]
- Gristina, V.; Russo, T.D.B.; Barraco, N.; Gottardo, A.; Pepe, F.; Russo, G.; Fulfaro, F.; Incorvaia, L.; Badalamenti, G.; Troncone, G.; et al. Clinical Utility of ctDNA by Amplicon Based next Generation Sequencing in First Line Non Small Cell Lung Cancer Patients. Sci. Rep. 2024, 14, 22141. [Google Scholar] [CrossRef]
- Liu, X.; Mei, F.; Fang, M.; Jia, Y.; Zhou, Y.; Li, C.; Tian, P.; Lu, C.; Li, G. Cerebrospinal Fluid ctDNA Testing Shows an Advantage over Plasma ctDNA Testing in Advanced Non-Small Cell Lung Cancer Patients with Brain Metastases. Front. Oncol. 2024, 13, 1322635. [Google Scholar] [CrossRef] [PubMed]
- Al-Obeidi, E.; Riess, J.W.; Malapelle, U.; Rolfo, C.; Gandara, D.R. Convergence of Precision Oncology and Liquid Biopsy in Non-Small Cell Lung Cancer. Hematol. Oncol. Clin. N. Am. 2023, 37, 475–487. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wei, C.; Wen, J.; Chen, S.; Chen, L.; Wu, Y.; Shen, Y.; Bai, H.; Zhang, Y.; Chen, X.; et al. Comprehensive Analysis of NGS and ARMS-PCR for Detecting EGFR Mutations Based on 4467 Cases of NSCLC Patients. J. Cancer Res. Clin. Oncol. 2022, 148, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Reina, C.; Šabanović, B.; Lazzari, C.; Gregorc, V.; Heeschen, C. Unlocking the Future of Cancer Diagnosis—Promises and Challenges of ctDNA-Based Liquid Biopsies in Non-Small Cell Lung Cancer. Transl. Res. 2024, 272, 41–53. [Google Scholar] [CrossRef]
- Melo-Cardenas, J.; Zhang, Y.; Zhang, D.D.; Fang, D. Ubiquitin-Specific Peptidase 22 Functions and Its Involvement in Disease. Oncotarget 2016, 7, 44848–44856. [Google Scholar] [CrossRef]
- Roudi, R.; Korourian, A.; Shariftabrizi, A.; Madjd, Z. Differential Expression of Cancer Stem Cell Markers ALDH1 and CD133 in Various Lung Cancer Subtypes. Cancer Investig. 2015, 33, 294–302. [Google Scholar] [CrossRef]
- Yamashita, N.; So, T.; Miyata, T.; Yoshimatsu, T.; Nakano, R.; Oyama, T.; Matsunaga, W.; Gotoh, A. Triple-Negative Expression (ALDH1A1-/CD133-/Mutant P53-) Cases in Lung Adenocarcinoma Had a Good Prognosis. Sci. Rep. 2022, 12, 1473. [Google Scholar] [CrossRef]
- Xia, P.; Liu, D.-H. Cancer Stem Cell Markers for Liver Cancer and Pancreatic Cancer. Stem Cell Res. 2022, 60, 102701. [Google Scholar] [CrossRef]
- Yin, S.; Li, J.; Hu, C.; Chen, X.; Yao, M.; Yan, M.; Jiang, G.; Ge, C.; Xie, H.; Wan, D.; et al. CD133 Positive Hepatocellular Carcinoma Cells Possess High Capacity for Tumorigenicity. Int. J. Cancer 2007, 120, 1444–1450. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Wei, C.; Xu, L.; Liang, Y.; Yan, J.; Li, Y.; He, B.; Sun, C. Application of Hydrogels for Targeting Cancer Stem Cells in Cancer Treatment. Biomed. Pharmacother. 2024, 180, 117486. [Google Scholar] [CrossRef]
- Sato, T.; Oshi, M.; Huang, J.L.; Chida, K.; Roy, A.M.; Endo, I.; Takabe, K. CD133 Expression Is Associated with Less DNA Repair, Better Response to Chemotherapy and Survival in ER-Positive/HER2-Negative Breast Cancer. Breast Cancer Res. Treat. 2024, 208, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Horst, D.; Kriegl, L.; Engel, J.; Kirchner, T.; Jung, A. CD133 Expression Is an Independent Prognostic Marker for Low Survival in Colorectal Cancer. Br. J. Cancer 2008, 99, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, Y.; Lu, Y. Aberrant Expression of CD133 Protein Correlates with Ki-67 Expression and Is a Prognostic Marker in Gastric Adenocarcinoma. BMC Cancer 2010, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Zeppernick, F.; Ahmadi, R.; Campos, B.; Dictus, C.; Helmke, B.M.; Becker, N.; Lichter, P.; Unterberg, A.; Radlwimmer, B.; Herold-Mende, C.C. Stem Cell Marker CD133 Affects Clinical Outcome in Glioma Patients. Clin. Cancer Res. 2008, 14, 123–129. [Google Scholar] [CrossRef]
- Qu, H.; Li, R.; Liu, Z.; Zhang, J.; Luo, R. Prognostic Value of Cancer Stem Cell Marker CD133 Expression in Non-Small Cell Lung Cancer: A Systematic Review. Int. J. Clin. Exp. Pathol. 2013, 6, 2644–2650. [Google Scholar]
- Lu, J.; Zhang, Y.; Yan, C.; Liu, J.; Qi, D.; Zhou, Y.; Wang, Q.; Yang, J.; Jiang, J.; Wu, B.; et al. TClC Effectively Suppresses the Growth and Metastasis of NSCLC via Polypharmacology. Bioact. Mater. 2025, 45, 567–583. [Google Scholar] [CrossRef]
- Díaz, M.A.; Fusco, M.; Benítez, C.A.; Gayet, F.; García, L.; Victoria, L.; Jaramillo, S.; Bayo, J.; Zubieta, M.R.; Rizzo, M.M.; et al. Targeting Hyaluronan Metabolism-Related Molecules Associated with Resistant Tumor-Initiating Cells Potentiates Chemotherapy Efficacy in Lung Cancer. Sci. Rep. 2024, 14, 16803. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, J.; Liu, W.; Lang, Y.; Xue, Y.; Xu, S. Overexpression of Ubiquitin-Specific Protease 22 Predicts Poor Survival in Patients with Early-Stage Non-Small Cell Lung Cancer. Eur. J. Histochem. 2012, 56, 46. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, K.; Li, W.; Liu, Y.; Pangeni, R.P.; Li, A.; Arvanitis, L.; Raz, D.J. Transcription Factor AP2 Enhances Malignancy of Non-Small Cell Lung Cancer through Upregulation of USP22 Gene Expression. Cell Commun. Signal. 2022, 20, 147. [Google Scholar] [CrossRef]
- Aramini, B.; Masciale, V.; Samarelli, A.V.; Dubini, A.; Gaudio, M.; Stella, F.; Morandi, U.; Dominici, M.; De Biasi, S.; Gibellini, L.; et al. Phenotypic, Functional, and Metabolic Heterogeneity of Immune Cells Infiltrating Non–Small Cell Lung Cancer. Front. Immunol. 2022, 13, 959114. [Google Scholar] [CrossRef]
- Kudo, Y.; Suzuki, H.; Tanaka, T.; Kaneko, M.K.; Kato, Y. Development of a Novel Anti-CD44 Variant 5 Monoclonal Antibody C44Mab-3 for Multiple Applications against Pancreatic Carcinomas. Antibodies 2023, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Ma, D.; Song, G.; Tang, L.; Jiang, X.; Tian, Y.; Yi, Z.; Jiang, C.; Jin, Y.; Hu, A.; et al. The SOX2/PDIA6 Axis Mediates Aerobic Glycolysis to Promote Stemness in Non-Small Cell Lung Cancer Cells. J. Bioenerg. Biomembr. 2024, 56, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, P.; Cui, C.; He, X.; Bian, Y.; Wang, X. The Expression of Nanog Protein and Fibroblast Growth Factor-Inducible Molecule 14 in Patients with Non-Small Cell Lung Cancer and Their Relationship with Pathological Characteristics and Prognosis. Transl. Cancer Res. 2021, 10, 2470–2477. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Chen, X.; Wu, M.; Bi, J.; Xue, H.; Chen, H. Identification of Cellular Senescence-Associated Genes as New Biomarkers for Predicting the Prognosis and Immunotherapy Response of Non-Small Cell Lung Cancer and Construction of a Prognostic Model. Heliyon 2024, 10, e28278. [Google Scholar] [CrossRef]
- Tsolou, A.; Lamprou, I.; Fortosi, A.-O.; Liousia, M.; Giatromanolaki, A.; Koukourakis, M.I. ‘Stemness’ and ‘Senescence’ Related Escape Pathways Are Dose Dependent in Lung Cancer Cells Surviving Post Irradiation. Life Sci. 2019, 232, 116562. [Google Scholar] [CrossRef]
- Alduais, Y.; Zhang, H.; Fan, F.; Chen, J.; Chen, B. Non-Small Cell Lung Cancer (NSCLC): A Review of Risk Factors, Diagnosis, and Treatment. Medicine 2023, 102, e32899. [Google Scholar] [CrossRef]
- Huang, X.; Field, M.; Vinod, S.; Ball, H.; Batumalai, V.; Keall, P.; Holloway, L. Radiotherapy Protocol Compliance in Routine Clinical Practice for Patients with Stages I–III Non-small-cell Lung Cancer. J. Med. Imaging Radiat. Oncol. 2024, 68, 729–739. [Google Scholar] [CrossRef]
- He, Y. Neoadjuvant Therapy for Non-Small Cell Lung Cancer and Esophageal Cancer. Am. J. Cancer Res. 2024, 14, 1258–1277. [Google Scholar] [CrossRef]
- Mikra, C.; Mitrakas, A.; Ghizzani, V.; Katsani, K.R.; Koffa, M.; Koukourakis, M.; Psomas, G.; Protti, S.; Fagnoni, M.; Fylaktakidou, K.C. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int. J. Mol. Sci. 2023, 24, 1834. [Google Scholar] [CrossRef]
- Si, Q.; Bai, M.; Wang, X.; Wang, T.; Qin, Y. Photonanozyme–Kras–Ribosome Combination Treatment of Non-Small Cell Lung Cancer after COVID-19. Front. Immunol. 2024, 15, 1420463. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Q.; Wang, X.; Jin, Z.; Cheng, Y.; Wang, G. Clinical Practice of Photodynamic Therapy for Non-Small Cell Lung Cancer in Different Scenarios: Who Is the Better Candidate? Respiration 2024, 103, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, X.; Ke, H.; Lyu, G. Cryoablation Is Superior to Radiofrequency Ablation for the Treatment of Non-Small Cell Lung Cancer: A Meta-Analysis. Cryobiology 2023, 112, 104560. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, T.; Goto, T.; Anraku, M.; Kohno, M.; Izumi, Y.; Horinouchi, H.; Nomori, H. Dissection of Lung Parenchyma Using Electrocautery Is a Safe and Acceptable Method for Anatomical Sublobar Resection. J. Cardiothorac. Surg. 2012, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fang, X.; Wang, D.; Li, Q.; Zhang, K.; Li, Y.; Li, J.; Pang, H.; Cheng, Z.; Zhang, C.; et al. Is Cryoablation Still Suitable for Advanced Non-Small Cell Lung Cancer after Failure of First-Line Chemotherapy? A Multicenter, Prospective, Randomized-Controlled Trial of Eighty-Seven Patients. Cryobiology 2024, 115, 104864. [Google Scholar] [CrossRef]
- Hibino, M.; Imamura, Y.; Shimoyama, R.; Fukui, T.; Fukai, R.; Iwase, A.; Tamura, Y.; Chihara, Y.; Okabe, T.; Uryu, K.; et al. Impact of First-Line Osimertinib and Other EGFR-Tyrosine Kinase Inhibitors on Overall Survival in Untreated Advanced EGFR-Mutated Non-Small Cell Lung Cancer in Japan: Updated Data from TREAD Project 01. Target. Oncol. 2024, 19, 925–939. [Google Scholar] [CrossRef]
- Tran, P.N.; Klempner, S.J. Focus on Alectinib and Competitor Compounds for Second-Line Therapy in ALK-Rearranged NSCLC. Front. Med. 2016, 3, 65. [Google Scholar] [CrossRef]
- Desilets, A.; Repetto, M.; Drilon, A. Repotrectinib: Redefining the Therapeutic Landscape for Patients with ROS1 Fusion-driven Non-small Cell Lung Cancer. Clin. Transl. Med. 2024, 14, e70017. [Google Scholar] [CrossRef]
- Doroshow, D.B.; Herbst, R.S. Treatment of Advanced Non–Small Cell Lung Cancer in 2018. JAMA Oncol. 2018, 4, 569. [Google Scholar] [CrossRef]
- Lin, G.-B.; Chen, W.-T.; Kuo, Y.-Y.; Liu, H.-H.; Chen, Y.-M.; Leu, S.-J.; Chao, C.-Y. Thermal Cycling Hyperthermia Sensitizes Non-Small Cell Lung Cancer A549 Cells to EGFR-Tyrosine Kinase Inhibitor Erlotinib. bioRxiv 2022, 2022, 490542. [Google Scholar]
- Smyth, R.; Billatos, E. Novel Strategies for Lung Cancer Interventional Diagnostics. J. Clin. Med. 2024, 13, 7207. [Google Scholar] [CrossRef]
- Tagliamonte, M.; Petrizzo, A.; Tornesello, M.L.; Buonaguro, F.M.; Buonaguro, L. Antigen-Specific Vaccines for Cancer Treatment. Hum. Vaccines Immunother. 2014, 10, 3332–3346. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.M.; Govindan, R.; Balogh, K.N.; Spigel, D.R.; Garon, E.B.; Bushway, M.E.; Poran, A.; Sheen, J.H.; Kohler, V.; Esaulova, E.; et al. Personalized Neoantigen Vaccine NEO-PV-01 with Chemotherapy and Anti-PD-1 as First-Line Treatment for Non-Squamous Non-Small Cell Lung Cancer. Cancer Cell 2022, 40, 1010–1026.e11. [Google Scholar] [CrossRef] [PubMed]
- Besse, B.; Felip, E.; Garcia Campelo, R.; Cobo, M.; Mascaux, C.; Madroszyk, A.; Cappuzzo, F.; Hilgers, W.; Romano, G.; Denis, F.; et al. Randomized Open-Label Controlled Study of Cancer Vaccine OSE2101 versus Chemotherapy in HLA-A2-Positive Patients with Advanced Non-Small-Cell Lung Cancer with Resistance to Immunotherapy: ATALANTE-1. Ann. Oncol. 2023, 34, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Frascati, R.; Early, A.P.; Reid, M.E.; Lee, K.; Muhitch, J.; Mesa, C.; Luaces, P.L.; Santos-Morales, O.; Dozier, A.; Puzanov, I.; et al. Final Results from a Phase II Trial of CIMAvax-EGF and Nivolumab as Second-Line (2L) Therapy after Platinum-Based Chemotherapy in Advanced Non-Small Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2023, 41, 9135. [Google Scholar] [CrossRef]
- Deme, D.; Öven, B.; Göker, E.; Lang, I.; Brück, P.; Wenger, M.; Munshi, N.; Schell, T.; Ünsal-Kaçmaz, K.; Markman, J.; et al. 597 Preliminary Results from LuCa-MERIT-1, a First-in-Human Phase I Trial Evaluating the Fixed Antigen RNA Vaccine BNT116 in Patients with Advanced Non-Small Cell Lung Cancer. J. Immunother. Cancer 2023, 11, A679. [Google Scholar] [CrossRef]
- Malhotra, J.; Huang, A.; Amini, A.; Lee, P. Novel Immunotherapeutics for the Treatment of Non-Small Cell Lung Cancer (NSCLC) Resistant to PD-1/PD-L1 Inhibitors. Cancers 2024, 16, 3603. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef]
- Pandha, H.S.; Ralph, C.; Harrington, K.; Curti, B.D.; Sanborn, R.E.; Akerley, W.L.; Gupta, S.; Rudin, C.M.; Rosenberg, J.E.; Kaufman, D.R.; et al. Keynote-200 Phase 1b: A Novel Combination Study of Intravenously Delivered Coxsackievirus A21 and Pembrolizumab in Advanced Cancer Patients. J. Clin. Oncol. 2017, 35, 15. [Google Scholar] [CrossRef]
- Guan, J.; Sun, K.; Guerrero, C.A.; Zheng, J.; Xu, Y.; Mathur, S.; Teh, B.S.; Farach, A.; Zhang, J.; Butler, E.; et al. A Phase 2 Study of In Situ Oncolytic Virus Therapy and Stereotactic Body Radiation Therapy Followed by Pembrolizumab in Metastatic Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2024, 118, 1531–1540. [Google Scholar] [CrossRef]
- Saltos, A.N.; Arrowood, C.; Beasley, G.; Ronald, J.; El-Haddad, G.; Guerra-Guevara, L.; Khan, U.; Wolf, S.; Gu, L.; Wang, X.F.; et al. A Phase 1 First-in-Human Study of Interferon Beta (IFNβ) and Membrane-Stable CD40L Expressing Oncolytic Virus (MEM-288) in Solid Tumors Including Non–Small-Cell Lung Cancer (NSCLC). J. Clin. Oncol. 2023, 41, 2569. [Google Scholar] [CrossRef]
- Mountzios, G.; Naidoo, J.; Wang, C.; Creelan, B.C.; Trotier, D.C.; Campbell, T.C.; Peters, S. Beyond Chemoimmunotherapy in Advanced Non–Small Cell Lung Cancer: New Frontiers, New Challenges. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e432526. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Lee, S.M.; Doger De Spéville, B.; Gettinger, S.N.; Häfliger, S.; Sukari, A.; Papa, S.; Rodríguez-Moreno, J.F.; Graf Finckenstein, F.; Fiaz, R.; et al. Lifileucel, an Autologous Tumor-Infiltrating Lymphocyte Monotherapy, in Patients with Advanced Non–Small Cell Lung Cancer Resistant to Immune Checkpoint Inhibitors. Cancer Discov. 2024, 14, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, V.; Chesney, J.; Kloecker, G. Cellular Therapy for Lung Cancer: Focusing on Chimeric Antigen Receptor T (CAR T) Cells and Tumor-Infiltrating Lymphocyte (TIL) Therapy. Cancers 2023, 15, 3733. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Araujo, D.M.; Abdul Razak, A.R.; Agulnik, M.; Attia, S.; Blay, J.-Y.; Carrasco Garcia, I.; Charlson, J.A.; Choy, E.; Demetri, G.D.; et al. Afamitresgene Autoleucel for Advanced Synovial Sarcoma and Myxoid Round Cell Liposarcoma (SPEARHEAD-1): An International, Open-Label, Phase 2 Trial. Lancet 2024, 403, 1460–1471. [Google Scholar] [CrossRef]
- Ma, H.; Das, J.; Prendergast, C.; De Jong, D.; Braumuller, B.; Paily, J.; Huang, S.; Liou, C.; Giarratana, A.; Hosseini, M.; et al. Advances in CAR T Cell Therapy for Non-Small Cell Lung Cancer. Curr. Issues Mol. Biol. 2023, 45, 9019–9038. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, W.; Chen, Y.; Zhang, L.; Shen, H.; Wang, Z.; Tian, S.; Yang, X.; Cui, D.; He, Y.; et al. Engineering C-Met-CAR NK-92 Cells as a Promising Therapeutic Candidate for Lung Adenocarcinoma. Pharmacol. Res. 2023, 188, 106656. [Google Scholar] [CrossRef]
- Cantini, L.; Pecci, F.; Merloni, F.; Lanese, A.; Lenci, E.; Paoloni, F.; Aerts, J.G.J.V.; Berardi, R. Old but Gold: The Role of Drug Combinations in Improving Response to Immune Check-Point Inhibitors in Thoracic Malignancies beyond NSCLC. Explor. Target. Anti-Tumor Ther. 2021, 2, 1–25. [Google Scholar] [CrossRef]
- Waterhouse, D.; Lam, J.; Betts, K.A.; Yin, L.; Gao, S.; Yuan, Y.; Hartman, J.; Rao, S.; Lubinga, S.; Stenehjem, D. Real-World Outcomes of Immunotherapy–Based Regimens in First-Line Advanced Non-Small Cell Lung Cancer. Lung Cancer 2021, 156, 41–49. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; Von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef] [PubMed]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in Combination with Carboplatin plus Nab-Paclitaxel Chemotherapy Compared with Chemotherapy Alone as First-Line Treatment for Metastatic Non-Squamous Non-Small-Cell Lung Cancer (IMpower130): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Novello, S.; Kowalski, D.M.; Luft, A.; Gümüş, M.; Vicente, D.; Mazières, J.; Rodríguez-Cid, J.; Tafreshi, A.; Cheng, Y.; Lee, K.H.; et al. Pembrolizumab Plus Chemotherapy in Squamous Non–Small-Cell Lung Cancer: 5-Year Update of the Phase III KEYNOTE-407 Study. J. Clin. Oncol. 2023, 41, 1999–2006. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; De La Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Lim, S.M.; Hong, M.H.; Kim, H.R. Immunotherapy for Non-Small Cell Lung Cancer: Current Landscape and Future Perspectives. Immune Netw. 2020, 20, e10. [Google Scholar] [CrossRef]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; Van Den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.A.; Cho, B.C.; Reinmuth, N.; Lee, K.H.; Luft, A.; Ahn, M.-J.; Van Den Heuvel, M.M.; Cobo, M.; Vicente, D.; Smolin, A.; et al. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-Line Treatment of Metastatic Non–Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 661. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.-J.; Yang, J.; Yu, H.; Saka, H.; Ramalingam, S.; Goto, K.; Kim, S.-W.; Yang, L.; Walding, A.; Oxnard, G.R. 136O: Osimertinib Combined with Durvalumab in EGFR-Mutant Non-Small Cell Lung Cancer: Results from the TATTON Phase Ib Trial. J. Thorac. Oncol. 2016, 11, S115. [Google Scholar] [CrossRef]
- Oxnard, G.R.; Yang, J.C.-H.; Yu, H.; Kim, S.-W.; Saka, H.; Horn, L.; Goto, K.; Ohe, Y.; Mann, H.; Thress, K.S.; et al. TATTON: A Multi-Arm, Phase Ib Trial of Osimertinib Combined with Selumetinib, Savolitinib, or Durvalumab in EGFR-Mutant Lung Cancer. Ann. Oncol. 2020, 31, 507–516. [Google Scholar] [CrossRef]
- Werner, R.; Steinmann, N.; Decaluwe, H.; Date, H.; De Ruysscher, D.; Opitz, I. Complex Situations in Lung Cancer: Multifocal Disease, Oligoprogression and Oligorecurrence. Eur. Respir. Rev. 2024, 33, 230200. [Google Scholar] [CrossRef]
- Xanthopoulou, E.; Lamprou, I.; Mitrakas, A.G.; Michos, G.D.; Zois, C.E.; Giatromanolaki, A.; Harris, A.L.; Koukourakis, M.I. Autophagy Blockage Up-Regulates HLA-Class-I Molecule Expression in Lung Cancer and Enhances Anti-PD-L1 Immunotherapy Efficacy. Cancers 2024, 16, 3272. [Google Scholar] [CrossRef]
- Jawed, R.; Bhatti, H.; Khan, A. Genetic Profile of Ferroptosis in Non-Small Cell Lung Carcinoma and Pharmaceutical Options for Ferroptosis Induction. Clin. Transl. Oncol. 2024, 1–20. [Google Scholar] [CrossRef]
- Ichikawa, M.; Muramatsu, N.; Matsunaga, W.; Ishikawa, T.; Okuda, T.; Okamoto, H.; Gotoh, A. Effects of Inhalable Gene Transfection as a Novel Gene Therapy for Non-Small Cell Lung Cancer and Malignant Pleural Mesothelioma. Sci. Rep. 2022, 12, 8634. [Google Scholar] [CrossRef]
- Takayuki, N.; Keiko, T.; Junji, U.; Yoshiko, K.; Nobuyo, T.; Tadaaki, Y.; Koichi, T. Advanced Non-Small-Cell Lung Cancer in Elderly Patients: Patient Features and Therapeutic Management. BioMed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Wiegmans, A.P.; Ivanova, E.; Naei, V.Y.; Monkman, J.; Fletcher, J.; Mullally, W.; Warkiani, M.E.; O’Byrne, K.; Kulasinghe, A. Poor Patient Outcome Correlates with Active Engulfment of Cytokeratin Positive CTCs within Cancer-Associated Monocyte Population in Lung Cancer. Clin. Exp. Metastasis 2024, 41, 219–228. [Google Scholar] [CrossRef]
- Deng, K.; Liu, L.; Tan, X.; Zhang, Z.; Li, J.; Ou, Y.; Wang, X.; Yang, S.; Xiang, R.; Sun, P. WIP1 Promotes Cancer Stem Cell Properties by Inhibiting P38 MAPK in NSCLC. Signal Transduct. Target. Ther. 2020, 5, 36. [Google Scholar] [CrossRef]
- Shoji, F.; Yamashita, T.; Kinoshita, F.; Takamori, S.; Fujishita, T.; Toyozawa, R.; Ito, K.; Yamazaki, K.; Nakashima, N.; Okamoto, T. Artificial Intelligence-Derived Gut Microbiome as a Predictive Biomarker for Therapeutic Response to Immunotherapy in Lung Cancer: Protocol for a Multicentre, Prospective, Observational Study. BMJ Open 2022, 12, e061674. [Google Scholar] [CrossRef]
- Wael, M.; Wael, M.; Hosam, M.; Youssef, A.; Ellackany, R.; Alzahabi, A. Immunotherapy, Immunobiomarkers and Gene Analysis Role in the Improvement of Lung Cancer Treatment. Radiother. Clin. Oncol. 2022, 1–11. [Google Scholar] [CrossRef]
- Saggese, P.; Martinez, C.; Tran, L.; Lim, R.; Dumitras, C.; Grogan, T.; Elashoff, D.; Salehi-Rad, R.; Dubinett, S.; Liu, B.; et al. Genotoxic Treatment Enhances Immune Response in a Genetic Model of Lung Cancer. Cancers 2021, 13, 3595. [Google Scholar] [CrossRef]
- Attili, I.; Passaro, A.; Corvaja, C.; Trillo Aliaga, P.; Del Signore, E.; Spitaleri, G.; De Marinis, F. Immune Checkpoint Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: A Systematic Review. Cancer Treat. Rev. 2023, 119, 102602. [Google Scholar] [CrossRef]
- Etxeberria, I.; Teijeira, A.; Montuenga, L.M.; Berraondo, P.; Melero, I. Epistatic Oncogenic Interactions Determine Cancer Susceptibility to Immunotherapy. Cancer Discov. 2018, 8, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef]
- Mitsudomi, T.; Morita, S.; Yatabe, Y.; Negoro, S.; Okamoto, I.; Tsurutani, J.; Seto, T.; Satouchi, M.; Tada, H.; Hirashima, T.; et al. Gefitinib versus Cisplatin plus Docetaxel in Patients with Non-Small-Cell Lung Cancer Harbouring Mutations of the Epidermal Growth Factor Receptor (WJTOG3405): An Open Label, Randomised Phase 3 Trial. Lancet Oncol. 2010, 11, 121–128. [Google Scholar] [CrossRef]
- Sequist, L.V.; Yang, J.C.-H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.-M.; Boyer, M.; et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in Patients with Metastatic Lung Adenocarcinoma with EGFR Mutations. J. Clin. Oncol. 2013, 31, 3327–3334. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Y.-L.; Chen, G.; Feng, J.; Liu, X.-Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Erlotinib versus Chemotherapy as First-Line Treatment for Patients with Advanced EGFR Mutation-Positive Non-Small-Cell Lung Cancer (OPTIMAL, CTONG-0802): A Multicentre, Open-Label, Randomised, Phase 3 Study. Lancet Oncol. 2011, 12, 735–742. [Google Scholar] [CrossRef]
- Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of Acquired Resistance to First- and Second-Generation EGFR Tyrosine Kinase Inhibitors. Ann. Oncol. 2018, 29, i10–i19. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Fang, W.; Zhan, J.; Hong, S.; Tang, Y.; Kang, S.; Zhang, Y.; He, X.; Zhou, T.; Qin, T.; et al. Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. J. Thorac. Oncol. 2015, 10, 910–923. [Google Scholar] [CrossRef] [PubMed]
- Akbay, E.A.; Koyama, S.; Carretero, J.; Altabef, A.; Tchaicha, J.H.; Christensen, C.L.; Mikse, O.R.; Cherniack, A.D.; Beauchamp, E.M.; Pugh, T.J.; et al. Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors. Cancer Discov. 2013, 3, 1355–1363. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Lee, C.K.; Man, J.; Lord, S.; Links, M.; Gebski, V.; Mok, T.; Yang, J.C.-H. Checkpoint Inhibitors in Metastatic EGFR- Mutated Non–Small Cell Lung Cancer—A Meta-Analysis. J. Thorac. Oncol. 2017, 12, 403–407. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Nakagawa, K.; Park, K.; Ohe, Y.; Girard, N.; Kim, H.R.; Wu, Y.-L.; Gainor, J.; Lee, S.-H.; Chiu, C.-H.; et al. LBA8 Nivolumab (NIVO) + Chemotherapy (Chemo) vs. Chemo in Patients (Pts) with EGFR-Mutated Metastatic Non-Small Cell Lung Cancer (mNSCLC) with Disease Progression after EGFR Tyrosine Kinase Inhibitors (TKIs) in CheckMate 722. Ann. Oncol. 2022, 33, S1561–S1562. [Google Scholar] [CrossRef]
- Yang, J.C.-H.; Lee, D.H.; Lee, J.-S.; Fan, Y.; De Marinis, F.; Okamoto, I.; Inoue, T.; Rodriguez Cid, J.R.; Zhang, L.; Yang, C.-T.; et al. Pemetrexed and Platinum with or without Pembrolizumab for Tyrosine Kinase Inhibitor (TKI)-Resistant, EGFR -Mutant, Metastatic Nonsquamous NSCLC: Phase 3 KEYNOTE-789 Study. J. Clin. Oncol. 2023, 41, LBA9000. [Google Scholar] [CrossRef]
- Park, S.; Kim, T.M.; Han, J.-Y.; Lee, G.-W.; Shim, B.Y.; Lee, Y.-G.; Kim, S.-W.; Kim, I.H.; Lee, S.; Kim, Y.J.; et al. Phase III, Randomized Study of Atezolizumab Plus Bevacizumab and Chemotherapy in Patients with EGFR—or ALK -Rearranged or Translocated Non–Small-Cell Lung Cancer (ATTLAS, KCSG-LU19-04). J. Clin. Oncol. 2024, 42, 1241–1251. [Google Scholar] [CrossRef]
- Lu, S.; Wu, L.; Jian, H.; Chen, Y.; Wang, Q.; Fang, J.; Wang, Z.; Hu, Y.; Sun, M.; Han, L.; et al. Sintilimab plus Bevacizumab Biosimilar IBI305 and Chemotherapy for Patients with EGFR-Mutated Non-Squamous Non-Small-Cell Lung Cancer Who Progressed on EGFR Tyrosine-Kinase Inhibitor Therapy (ORIENT-31): First Interim Results from a Randomised, Double-Blind, Multicentre, Phase 3 Trial. Lancet Oncol. 2022, 23, 1167–1179. [Google Scholar] [CrossRef]
- Motz, G.T.; Santoro, S.P.; Wang, L.-P.; Garrabrant, T.; Lastra, R.R.; Hagemann, I.S.; Lal, P.; Feldman, M.D.; Benencia, F.; Coukos, G. Tumor Endothelium FasL Establishes a Selective Immune Barrier Promoting Tolerance in Tumors. Nat. Med. 2014, 20, 607–615. [Google Scholar] [CrossRef]
- Huang, H.; Langenkamp, E.; Georganaki, M.; Loskog, A.; Fuchs, P.F.; Dieterich, L.C.; Kreuger, J.; Dimberg, A. VEGF Suppresses T-lymphocyte Infiltration in the Tumor Microenvironment through Inhibition of NF-κB-induced Endothelial Activation. FASEB J. 2015, 29, 227–238. [Google Scholar] [CrossRef]
- Salehi-Rad, R.; Li, R.; Tran, L.M.; Lim, R.J.; Abascal, J.; Momcilovic, M.; Park, S.J.; Ong, S.L.; Shabihkhani, M.; Huang, Z.L.; et al. Novel Kras-Mutant Murine Models of Non-Small Cell Lung Cancer Possessing Co-Occurring Oncogenic Mutations and Increased Tumor Mutational Burden. Cancer Immunol. Immunother. 2021, 70, 2389–2400. [Google Scholar] [CrossRef]
- Franke, T.F. PI3K/Akt: Getting It Right Matters. Oncogene 2008, 27, 6473–6488. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.; Van De Venter, M.; Nitulescu, G.; Ungurianu, A.; Juzenas, P.; Peng, Q.; Olaru, O.; Grădinaru, D.; Tsatsakis, A.; Tsoukalas, D.; et al. The Akt Pathway in Oncology Therapy and beyond (Review). Int. J. Oncol. 2018. [Google Scholar] [CrossRef]
- Tan, A.C. Targeting the PI3K/Akt/mTOR Pathway in Non-small Cell Lung Cancer (NSCLC). Thorac. Cancer 2020, 11, 511–518. [Google Scholar] [CrossRef]
- Scrima, M.; De Marco, C.; Fabiani, F.; Franco, R.; Pirozzi, G.; Rocco, G.; Ravo, M.; Weisz, A.; Zoppoli, P.; Ceccarelli, M.; et al. Signaling Networks Associated with AKT Activation in Non-Small Cell Lung Cancer (NSCLC): New Insights on the Role of Phosphatydil-Inositol-3 Kinase. PLoS ONE 2012, 7, e30427. [Google Scholar] [CrossRef]
- Sanaei, M.-J.; Razi, S.; Pourbagheri-Sigaroodi, A.; Bashash, D. The PI3K/Akt/mTOR Pathway in Lung Cancer; Oncogenic Alterations, Therapeutic Opportunities, Challenges, and a Glance at the Application of Nanoparticles. Transl. Oncol. 2022, 18, 101364. [Google Scholar] [CrossRef]
- Trikha, P.; Carson, W.E. Signaling Pathways Involved in MDSC Regulation. Biochim. Biophys. Acta BBA—Rev. Cancer 2014, 1846, 55–65. [Google Scholar] [CrossRef]
- Xanthopoulou, E.T.; Kakouratos, C.; Nanos, C.; Gkegka, A.G.; Kalaitzis, C.; Giatromanolaki, A.; Koukourakis, M.I. HIF1α-Dependent and Independent Pathways Regulate the Expression of PD-L1 in Prostate Cancer. Med. Oncol. 2023, 40, 151. [Google Scholar] [CrossRef]
- Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT Pathway in Cancer: The Framework of Malignant Behavior. Mol. Biol. Rep. 2020, 47, 4587–4629. [Google Scholar] [CrossRef]
- Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR Signaling Pathway for Targeted Therapeutic Treatment in Human Cancer. Semin. Cancer Biol. 2022, 85, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Knopf, P.; Stowbur, D.; Hoffmann, S.H.L.; Hermann, N.; Maurer, A.; Bucher, V.; Poxleitner, M.; Tako, B.; Sonanini, D.; Krishnamachary, B.; et al. Acidosis-Mediated Increase in IFN-γ-Induced PD-L1 Expression on Cancer Cells as an Immune Escape Mechanism in Solid Tumors. Mol. Cancer 2023, 22, 207. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Han, F.; Yang, S.; Wu, J.; Zhan, W. Oxamate-Mediated Inhibition of Lactate Dehydrogenase Induces Protective Autophagy in Gastric Cancer Cells: Involvement of the Akt–mTOR Signaling Pathway. Cancer Lett. 2015, 358, 17–26. [Google Scholar] [CrossRef]
- Wei, Y.; Lin, S.; Zhi, W.; Chu, T.; Liu, B.; Peng, T.; Xu, M.; Ding, W.; Cao, C.; Wu, P. Genomic Analysis of Cervical Carcinoma Identifies Alpelisib as a Therapeutic Option for PIK3CA-mutant Cervical Carcinoma via the PI3K/AKT Pathway. J. Med. Virol. 2023, 95, e28656. [Google Scholar] [CrossRef]
- Du, L.; Li, X.; Zhen, L.; Chen, W.; Mu, L.; Zhang, Y.; Song, A. Everolimus Inhibits Breast Cancer Cell Growth through PI3K/AKT/mTOR Signaling Pathway. Mol. Med. Rep. 2018, 17, 7163–7169. [Google Scholar] [CrossRef]
- Tsamis, I.; Gomatou, G.; Chachali, S.P.; Trontzas, I.P.; Patriarcheas, V.; Panagiotou, E.; Kotteas, E. BRAF/MEK Inhibition in NSCLC: Mechanisms of Resistance and How to Overcome It. Clin. Transl. Oncol. 2022, 25, 10–20. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Yang, S.; Wu, X.; Li, H.; Wang, Q. MEK Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J. Hematol. Oncol. J Hematol. Oncol. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Long, C.; Shen, H.; Li, H.; Han, L. Capivasertib Augments Chemotherapy via Akt Inhibition in Preclinical Small Cell Lung Cancer Models. Fundam. Clin. Pharmacol. 2025, 39, e13042. [Google Scholar] [CrossRef]
- Garon, E.B.; Cappuzzo, F.; Ahn, M.-J.; Lu, S.; Kato, T.; Felip, E.; Cheema, P.; Girard, N.; Shamoun, M.; Wang, G.; et al. P2.10A.06 Phase 3 TroFuse-004 Study: Sac-TMT vs Chemotherapy for Previously Treated Advanced NSCLC with EGFR/Other Genomic Alterations. J. Thorac. Oncol. 2024, 19, S245–S246. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, C.H.; Neupane, P.C.; Chuda, R.; McKittrick, R.J.; Allen, M.R.; Dai, Q.; Collins, Z.; Madan, R.; Phadnis, M.A.; et al. P2.10A.05 Ipat-Lung: A Multi-Center Phase 2 Study of Ipatasertib Plus Docetaxel in NSCLC Patients Who Have Failed or Are Intolerant to 1st Line Immunotherapy. J. Thorac. Oncol. 2024, 19, S245. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Biffi, G.; Tuveson, D.A. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol. Rev. 2021, 101, 147–176. [Google Scholar] [CrossRef]
- Li, T.; Liu, T.; Zhu, W.; Xie, S.; Zhao, Z.; Feng, B.; Guo, H.; Yang, R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. Clin. Med. Insights Oncol. 2021, 15, 11795549211035540. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Wei, T.; Meng, H.; Luo, P.; Zhang, J. Role of the Dynamic Tumor Microenvironment in Controversies Regarding Immune Checkpoint Inhibitors for the Treatment of Non-Small Cell Lung Cancer (NSCLC) with EGFR Mutations. Mol. Cancer 2019, 18, 139. [Google Scholar] [CrossRef] [PubMed]
- Castells, M.; Thibault, B.; Delord, J.-P.; Couderc, B. Implication of Tumor Microenvironment in Chemoresistance: Tumor-Associated Stromal Cells Protect Tumor Cells from Cell Death. Int. J. Mol. Sci. 2012, 13, 9545–9571. [Google Scholar] [CrossRef]
- Graves, E.E.; Maity, A.; Le, Q.-T. The Tumor Microenvironment in Non–Small-Cell Lung Cancer. Semin. Radiat. Oncol. 2010, 20, 156–163. [Google Scholar] [CrossRef]
- Xing, S.; Hu, K.; Wang, Y. Tumor Immune Microenvironment and Immunotherapy in Non-Small Cell Lung Cancer: Update and New Challenges. Aging Dis. 2022, 13, 1615. [Google Scholar] [CrossRef]
- Datta, M.; Coussens, L.M.; Nishikawa, H.; Hodi, F.S.; Jain, R.K. Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies. Am. Soc. Clin. Oncol. Educ. Book 2019, 165–174. [Google Scholar] [CrossRef]
- Markowitz, G.J.; Havel, L.S.; Crowley, M.J.P.; Ban, Y.; Lee, S.B.; Thalappillil, J.S.; Narula, N.; Bhinder, B.; Elemento, O.; Wong, S.T.C.; et al. Immune Reprogramming via PD-1 Inhibition Enhances Early-Stage Lung Cancer Survival. JCI Insight 2018, 3, e96836. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, H.; Zhu, L.; Li, J.; Ma, S. Cancer-Associated Fibroblasts in Non-Small Cell Lung Cancer: Recent Advances and Future Perspectives. Cancer Lett. 2021, 514, 38–47. [Google Scholar] [CrossRef]
- Brennen, W.N.; Rosen, D.M.; Wang, H.; Isaacs, J.T.; Denmeade, S.R. Targeting Carcinoma-Associated Fibroblasts Within the Tumor Stroma with a Fibroblast Activation Protein-Activated Prodrug. JNCI J. Natl. Cancer Inst. 2012, 104, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Zhao, Y.; Ding, Y.; Wang, J.; Zhao, R.; Lang, J.; Qin, H.; Liu, X.; Shi, J.; Tao, N.; et al. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation. Angew. Chem. Int. Ed. 2016, 55, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, B.C.; Pentcheva-Hoang, T.; Carstens, J.L.; Zheng, X.; Wu, C.-C.; Simpson, T.R.; Laklai, H.; Sugimoto, H.; Kahlert, C.; Novitskiy, S.V.; et al. Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell 2014, 25, 719–734. [Google Scholar] [CrossRef]
- Carapuça, E.F.; Gemenetzidis, E.; Feig, C.; Bapiro, T.E.; Williams, M.D.; Wilson, A.S.; Delvecchio, F.R.; Arumugam, P.; Grose, R.P.; Lemoine, N.R.; et al. Anti-Stromal Treatment Together with Chemotherapy Targets Multiple Signalling Pathways in Pancreatic Adenocarcinoma: Stroma and Cancer Co-Targeting. J. Pathol. 2016, 239, 286–296. [Google Scholar] [CrossRef]
- Kocher, H.M.; Basu, B.; Froeling, F.E.M.; Sarker, D.; Slater, S.; Carlin, D.; deSouza, N.M.; De Paepe, K.N.; Goulart, M.R.; Hughes, C.; et al. Phase I Clinical Trial Repurposing All-Trans Retinoic Acid as a Stromal Targeting Agent for Pancreatic Cancer. Nat. Commun. 2020, 11, 4841. [Google Scholar] [CrossRef]
- Genova, C.; Dellepiane, C.; Carrega, P.; Sommariva, S.; Ferlazzo, G.; Pronzato, P.; Gangemi, R.; Filaci, G.; Coco, S.; Croce, M. Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Front. Immunol. 2022, 12, 799455. [Google Scholar] [CrossRef]
- Shintani, Y.; Kimura, T.; Funaki, S.; Ose, N.; Kanou, T.; Fukui, E. Therapeutic Targeting of Cancer-Associated Fibroblasts in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancers 2023, 15, 335. [Google Scholar] [CrossRef]
- Suzuki, J.; Tsuboi, M.; Ishii, G. Cancer-Associated Fibroblasts and the Tumor Microenvironment in Non-Small Cell Lung Cancer. Expert Rev. Anticancer Ther. 2022, 22, 169–182. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, X.; Feng, G.; Hu, S.; Bai, Y. The Impact of NOTCH Pathway Alteration on Tumor Microenvironment and Clinical Survival of Immune Checkpoint Inhibitors in NSCLC. Front. Immunol. 2021, 12, 638763. [Google Scholar] [CrossRef]
- Molinier-Frenkel, V.; Castellano, F. Immunosuppressive Enzymes in the Tumor Microenvironment. FEBS Lett. 2017, 591, 3135–3157. [Google Scholar] [CrossRef]
- Martino, E.; Misso, G.; Pastina, P.; Costantini, S.; Vanni, F.; Gandolfo, C.; Botta, C.; Capone, F.; Lombardi, A.; Pirtoli, L.; et al. Immune-Modulating Effects of Bevacizumab in Metastatic Non-Small-Cell Lung Cancer Patients. Cell Death Discov. 2016, 2, 16025. [Google Scholar] [CrossRef] [PubMed]
- Sandler, A. Bevacizumab in Non–Small Cell Lung Cancer. Clin. Cancer Res. 2007, 13, 4613s–4616s. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.E.; Priolo, D.; Antonelli, G.; Libra, M.; Mccubrey, J.A.; Ferraù, F. Bevacizumab in the Treatment of NSCLC: Patient Selection and Perspectives. Lung Cancer Targets Ther. 2017, 8, 259–269. [Google Scholar] [CrossRef]
- Mittal, V.; El Rayes, T.; Narula, N.; McGraw, T.E.; Altorki, N.K.; Barcellos-Hoff, M.H. The Microenvironment of Lung Cancer and Therapeutic Implications. In Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management; Ahmad, A., Gadgeel, S.M., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2016; Volume 890, pp. 75–110. ISBN 978-3-319-24931-5. [Google Scholar]
- Zhang, X.; Wang, X.; Hou, L.; Xu, Z.; Liu, Y.; Wang, X. Nanoparticles Overcome Adaptive Immune Resistance and Enhance Immunotherapy via Targeting Tumor Microenvironment in Lung Cancer. Front. Pharmacol. 2023, 14, 1130937. [Google Scholar] [CrossRef]
- Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting Tumor Microenvironment for Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 840. [Google Scholar] [CrossRef]
- Wood, S.L.; Pernemalm, M.; Crosbie, P.A.; Whetton, A.D. The Role of the Tumor-Microenvironment in Lung Cancer-Metastasis and Its Relationship to Potential Therapeutic Targets. Cancer Treat. Rev. 2014, 40, 558–566. [Google Scholar] [CrossRef]
- Gray, J.E.; Schenker, M.; Şendur, M.A.N.; Leonova, V.; Kowalski, D.; Kato, T.; Orlova, R.; Chih-Hsin Yang, J.; Langleben, A.; Pilz, A.; et al. The Phase 3 KEYLYNK-006 Study of Pembrolizumab plus Olaparib versus Pembrolizumab plus Pemetrexed as Maintenance Therapy for Metastatic Nonsquamous Non–Small-Cell Lung Cancer. J. Thorac. Oncol. 2024, 20, 219–232. [Google Scholar] [CrossRef]
- Behrouzieh, S.; Sheida, F.; Rezaei, N. Review of the Recent Clinical Trials for PD-1/PD-L1 Based Lung Cancer Immunotherapy. Expert Rev. Anticancer Ther. 2021, 21, 1355–1370. [Google Scholar] [CrossRef]
- Qu, J.; Mei, Q.; Chen, L.; Zhou, J. Chimeric Antigen Receptor (CAR)-T-Cell Therapy in Non-Small-Cell Lung Cancer (NSCLC): Current Status and Future Perspectives. Cancer Immunol. Immunother. 2021, 70, 619–631. [Google Scholar] [CrossRef]
- Fang, D.D.; Tao, R.; Wang, G.; Li, Y.; Zhang, K.; Xu, C.; Zhai, G.; Wang, Q.; Wang, J.; Tang, C.; et al. Discovery of a Novel ALK/ROS1/FAK Inhibitor, APG-2449, in Preclinical Non-Small Cell Lung Cancer and Ovarian Cancer Models. BMC Cancer 2022, 22, 752. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrakas, A.G.; Kakouratos, C.; Lamprou, I.; Xanthopoulou, E.; Koukourakis, M.I. Oncogenic Mutations and the Tumor Microenvironment: Drivers of Non-Small Cell Lung Cancer Progression. Cancers 2025, 17, 853. https://doi.org/10.3390/cancers17050853
Mitrakas AG, Kakouratos C, Lamprou I, Xanthopoulou E, Koukourakis MI. Oncogenic Mutations and the Tumor Microenvironment: Drivers of Non-Small Cell Lung Cancer Progression. Cancers. 2025; 17(5):853. https://doi.org/10.3390/cancers17050853
Chicago/Turabian StyleMitrakas, Achilleas G., Christos Kakouratos, Ioannis Lamprou, Erasmia Xanthopoulou, and Michael I. Koukourakis. 2025. "Oncogenic Mutations and the Tumor Microenvironment: Drivers of Non-Small Cell Lung Cancer Progression" Cancers 17, no. 5: 853. https://doi.org/10.3390/cancers17050853
APA StyleMitrakas, A. G., Kakouratos, C., Lamprou, I., Xanthopoulou, E., & Koukourakis, M. I. (2025). Oncogenic Mutations and the Tumor Microenvironment: Drivers of Non-Small Cell Lung Cancer Progression. Cancers, 17(5), 853. https://doi.org/10.3390/cancers17050853