Systemic Treatment in Soft Tissue Sarcomas: Are We Making a Difference?
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Epidemiology
1.2. Etiology
1.3. Prognosis
2. Discussion
2.1. Current Systemic Treatment Agents
2.2. Neoadjuvant Chemotherapy
2.3. Adjuvant Chemotherapy
2.4. Chemotherapy for Advanced Disease
2.5. Targeted Agents
2.6. Immunotherapy
3. Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bourcier, K.; Le Cesne, A.; Tselikas, L.; Adam, J.; Mir, O.; Honore, C.; Baere, T. Basic Knowledge in Soft Tissue Sarcoma. CardioVascular Interv. Radiol. 2019, 42, 1255–1261. [Google Scholar] [CrossRef]
- Gamboa, A.C.; Gronchi, A.; Cardona, K. Soft-tissue sarcoma in adults: An update on the current state of histiotype-specific management in an era of personalized medicine. CA A Cancer J. Clin. 2020, 70, 200–229. [Google Scholar] [CrossRef]
- Board. WCoTE. WHO Classification of Tumours: Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and perspectives. Pathologica 2020, 113, 70–84. [Google Scholar] [CrossRef]
- Casali, P.G.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.; Brodowicz, T.; et al. Soft tissue and visceral sarcomas: ESMO–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. S4), iv51–iv67. [Google Scholar] [CrossRef]
- Coindre, J.-M.; Terrier, P.; Guillou, L.; Le Doussal, V.; Sastre, X.; Vilain, M.-O.; Bui, B.N.; Collin, F.; Ranchère, D.; Bonichon, F. Predictive Value of Grade for Metastasis Development in the Main Histologic Types of Adult Soft Tissue Sarcomas. Cancer 2001, 91, 1914–1926. [Google Scholar] [CrossRef]
- Benjamin, R.S.; Wiernik, P.H.; Bachur, N.R. Adriamycin: A new effective agent in the therapy of disseminated sarcomas. Med. Pediatr. Oncol. 1975, 1, 63–76. [Google Scholar] [CrossRef]
- Judson, I.; Verweij, J.; Gelderblom, H.; Hartmann, J.T.; Schöffski, P.; Blay, J.-Y.; Kerst, J.M.; Sufiliarsky, J.; Whelan, J.; Hohenberger, P.; et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: A randomised controlled phase 3 trial. Lancet Oncol. 2014, 15, 415–423. [Google Scholar] [CrossRef]
- Marianne Berwick, C.W. Soft TIssue Sarcoma. In Cancer Epidemiology and Prevention, 4th ed.; Oxford Academic: Oxford, UK, 2017; pp. 829–838. [Google Scholar]
- Corey, R.M.; Swett, K.; Ward, W.G. Epidemiology and survivorship of soft tissue sarcomas in adults: A national cancer database report. Cancer Med. 2014, 3, 1404–1415. [Google Scholar] [CrossRef]
- Toro, J.R.; Travis, L.B.; Wu, H.J.; Zhu, K.; Fletcher, C.D.M.; Devesa, S.S. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: An analysis of 26,758 cases. Int. J. Cancer 2006, 119, 2922–2930. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.F.; Antonescu, C.R.; Moraco, N.; Singer, S. Lessons Learned From the Study of 10,000 Patients with Soft Tissue Sarcoma. Ann. Surg. 2014, 260, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.; Ngeow, J. Sarcomas Associated with Genetic Cancer Predisposition Syndromes: A Review. Oncologist 2016, 21, 1002–1013. [Google Scholar] [CrossRef]
- El Abiad, J.M.; Robbins, S.M.; Cohen, B.; Levin, A.S.; Valle, D.L.; Morris, C.D.; Sobreira, N. Natural history of Ollier disease and Maffucci syndrome: Patient survey and review of clinical literature. Am. J. Med. Genet. A 2020, 182, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Gadd, M.A.; Casper, E.S.; Woodruff, J.M.; McCormack, P.M.; Brennan, M.F. Development and Treatment of Pulmonary Metastases in Adult Patients with Extremity Soft Tissue Sarcoma. Ann. Surg. 1993, 218, 705–712. [Google Scholar] [CrossRef]
- Hardy, N.J.; Deshpande, H.A.; Olino, K.; Costa, P.A. Survival trends of soft tissue sarcomas and gastrointestinal stromal tumors from 1995 to 2019: A SEER database analysis. J. Clin. Oncol. 2024, 42 (Suppl. S16), e23528. [Google Scholar] [CrossRef]
- Santoro, A.T.T.; Mouridsen, H.; Verweij, J.; Steward, W.; Somers, R.; Buesa, J.; Casali, P.; Spooner, D.; Rankin, E. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: A randomized study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1995, 13, 1537–1545. [Google Scholar] [CrossRef]
- Seddon, B.; Strauss, S.J.; Whelan, J.; Leahy, M.; Woll, P.J.; Cowie, F.; Rothermundt, C.; Wood, Z.; Benson, C.; Ali, N.; et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas [GeDDiS]: A randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1397–1410. [Google Scholar] [CrossRef]
- Ryan, C.W.; Merimsky, O.; Agulnik, M.; Blay, J.Y.; Schuetze, S.M.; Van Tine, B.A.; Jones, R.L.; Elias, A.D.; Choy, E.; Alcindor, T.; et al. PICASSO III: A Phase III, Placebo-Controlled Study of Doxorubicin With or Without Palifosfamide in Patients With Metastatic Soft Tissue Sarcoma. J. Clin. Oncol. 2016, 34, 3898–3905. [Google Scholar] [CrossRef]
- Tap, W.D.; Papai, Z.; A Van Tine, B.; Attia, S.; Ganjoo, K.N.; Jones, R.L.; Schuetze, S.; Reed, D.; Chawla, S.P.; Riedel, R.F.; et al. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft tissue sarcoma (THCR-406/SARC021): An international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2017, 18, 1089–1103, Erratum in: Lancet Oncol. 2018, 19, e78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lasic, D.D. Doxorubicin in sterically stabilized liposomes. Nature 1996, 380, 561–562. [Google Scholar] [CrossRef] [PubMed]
- Judson, I.; Radford, J.A.; Harris, M.; Blay, J.Y.; van Hoesel, Q.G.C.M.; Le Cesne, A.; van Oosterom, A.T.; Clemons, M.J.; Kamby, C.; Hermans, C.; et al. Randomised phase II trial of pegylated liposomal doxorubicin [DOXIL®/CAELYX®] versus doxorubicin in the treatment of advanced or metastatic soft tissue sarcoma. Eur. J. Cancer 2001, 37, 870–877. [Google Scholar] [CrossRef]
- Tascilar, M.; Loos, W.J.; Seynaeve, C.; Verweij, J.; Sleijfer, S. The Pharmacologic Basis of Ifosfamide Use in Adult Patients with Advanced Soft Tissue Sarcomas. Oncologist 2007, 12, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Buesa, J.M.; López-Pousa, A.; Martín, J.; Antón, A.; García del Muro, J.; Bellmunt, J.; Arranz, F.; Valenti, V.; Ezcudero, P.; Menendez, D.; et al. Phase II trial of first-line high-dose ifosfamide in advanced soft tissue sarcomas of the adult: A study of the Spanish Group for Research on Sarcomas [GEIS]. Ann. Oncol. 1998, 9, 871–876. [Google Scholar] [CrossRef]
- Le Cesne, A.; Antoine, E.; Spielmann, M.; Le Chevalier, T.; Brain, E.; Toussaint, C.; Janin, N.; Kayitalire, L.; Fontaine, F.; Genin, J.; et al. High-dose ifosfamide: Circumvention of resistance to standard-dose ifosfamide in advanced soft tissue sarcomas. J. Clin. Oncol. 1995, 13, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Edmonson, J.H.; Ryan, L.M.; Blum, R.H.; Brooks, J.S.; Shiraki, M.; Frytak, S.; Parkinson, D.R. Randomized comparison of doxorubicin alone versus ifosfamide plus doxorubicin or mitomycin, doxorubicin, and cisplatin against advanced soft tissue sarcomas. J. Clin. Oncol. 1993, 11, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Antman, K.; Crowley, J.; Balcerzak, S.P.; Rivkin, S.E.; Weiss, G.R.; Elias, A.; Natale, R.B.; Cooper, R.M.; Barlogie, B.; Trump, D.L.; et al. An intergroup phase III randomized study of doxorubicin and dacarbazine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. J. Clin. Oncol. 1993, 11, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Worden, F.P.; Taylor, J.M.; Biermann, J.S.; Sondak, V.K.; Leu, K.M.; Chugh, R.; McGinn, C.J.; Zalupski, M.M.; Baker, L.H. Randomized Phase II Evaluation of 6 g/m2 of Ifosfamide Plus Doxorubicin and Granulocyte Colony-Stimulating Factor [G-CSF] Compared With 12 g/m2 of Ifosfamide Plus Doxorubicin and G-CSF in the Treatment of Poor-Prognosis Soft Tissue sarcoma. J. Clin. Oncol. 2005, 23, 105. [Google Scholar] [CrossRef]
- Le Cesne, A.; Judson, I.; Crowther, D.; Rodenhuis, S.; Keizer, H.J.; Van Hoesel, Q.G.C.M.; Blay, J.Y.; Frisch, J.; Van Glabbeke, M.; Hermans, C.; et al. Randomized Phase III Study Comparing Conventional-Dose Doxorubicin Plus Ifosfamide Versus High-Dose Doxorubicin Plus Ifosfamide Plus Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor in Advanced Soft Tissue Sarcomas: A Trial of the Europe. J. Clin. Oncol. 2000, 18, 2676. [Google Scholar] [CrossRef]
- Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol. 2005, 1, 7. [Google Scholar] [CrossRef]
- Bay, J.; Ray-Coquard, I.; Fayette, J.; Leyvraz, S.; Cherix, S.; Piperno-Neumann, S.; Chevreau, C.; Isambert, N.; Brain, E.; Emile, G.; et al. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: A retrospective analysis. Int. J. Cancer 2006, 119, 706. [Google Scholar] [CrossRef]
- Maki, R.G.; Wathen, J.K.; Patel, S.R.; Priebat, D.A.; Okuno, S.H.; Samuels, B.; Fanucchi, M.; Harmon, D.C.; Schuetze, S.M.; Reinke, D.; et al. Randomized Phase II Study of Gemcitabine and Docetaxel Compared With Gemcitabine Alone in Patients With Metastatic Soft Tissue Sarcomas: Results of Sarcoma Alliance for Research Through Collaboration Study 002. J. Clin. Oncol. 2007, 25, 2755. [Google Scholar] [CrossRef]
- Hensley, M.L.; Maki, R.; Venkatraman, E.; Geller, G.; Lovegren, M.; Aghajanian, C.; Sabbatini, P.; Tong, W.; Barakat, R.; Spriggs, D.R. Gemcitabine and Docetaxel in Patients With Unresectable Leiomyosarcoma: Results of a Phase II Trial. J. Clin. Oncol. 2002, 20, 2824. [Google Scholar] [CrossRef]
- Van Glabbeke, M.; Verweij, J.; Judson, I.; Nielsen, O.S.; EORTC Soft Tissue and Bone Sarcoma Group. Progression-free rate as the principal end-point for phase II trials in soft-tissue sarcomas. Eur. J. Cancer 2002, 38, 543. [Google Scholar] [CrossRef]
- Brittain, H.G. Profiles of Drug Substances, Excipients and Related Methodology; Academic Press: Cambridge, MA, USA, 2016; p. 323. [Google Scholar]
- Gottlieb, J.A.; Benjamin, R.S.; Baker, L.H.; O’Bryan, R.M.; Sinkovics, J.G.; Hoogstraten, B.; Moon, T.E. Role of DTIC [NSC-45388] in the chemotherapy of sarcomas. Cancer Treat. Rep. 1976, 60, 199–203. [Google Scholar]
- Van Tine, B.A.; Weiss, M.C.; Hirbe, A.C.; Oppelt, P.J.; Abaricia, S.; Trinkaus, K.; Luo, J.; Berry, S.; Ruff, T.; Callahan, C.; et al. Phase II study of dacarbazine given with modern prophylactic anti-emetics and growth factor support to patients with metastatic, resistant soft tissue, and bone sarcoma. Rare Tumors 2021, 13, 203636132110524. [Google Scholar] [CrossRef]
- Gottlieb, J.A.; Baker, L.H.; Quagliana, J.M.; Luce, J.K.; Whitecar, J.P., Jr.; Sinkovics, J.G.; Rivkin, S.E.; Brownlee, R.; Frei, E., 3rd. Chemotherapy of sarcomas with a combination of adriamycin and dimethyl triazeno imidazole carboxamide. Cancer 1972, 30, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Zucali, P.A.; Bertuzzi, A.; Parra, H.J.; Campagnoli, E.; Quagliuolo, V.; Santoro, A. The “old drug” dacarbazine as a second/third line chemotherapy in advanced soft tissue sarcomas. Invest. New Drugs 2008, 26, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Woll, P.J.; Judson, I.; Lee, S.M.; Rodenhuis, S.; Nielsen, O.S.; Buesa, J.M.; Lorigan, P.C.; Leyvraz, S.; Hermans, C.; van Glabbeke, M.; et al. Temozolomide in adult patients with advanced soft tissue sarcoma: A phase II study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer 1999, 35, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Talbot, S.M.; Keohan, M.L.; Hesdorffer, M.; Orrico, R.; Bagiella, E.; Troxel, A.B.; Taub, R.N. A phase II trial of temozolomide in patients with unresectable or metastatic soft tissue sarcoma. Cancer 2003, 98, 1942–1946. [Google Scholar] [CrossRef] [PubMed]
- Yovine, A.; Riofrio, M.; Blay, J.Y.; Brain, E.; Alexandre, J.; Kahatt, C.; Taamma, A.; Jimeno, J.; Martin, C.; Salhi, Y.; et al. Phase II Study of Ecteinascidin-743 in Advanced Pretreated Soft Tissue Sarcoma Patients. J. Clin. Oncol. 2004, 22, 890–899. [Google Scholar] [CrossRef]
- Le Cesne, A.; Blay, J.Y.; Judson, I.; Van Oosterom, A.; Verweij, J.; Radford, J.; Lorigan, P.; Rodenhuis, S.; Ray-Coquard, I.; Bonvalot, S.; et al. Phase II study of ET-743 in advanced soft tissue sarcomas: A European Organisation for the Research and Treatment of Cancer (EORTC) soft tissue and bone sarcoma group trial. J. Clin. Oncol. 2005, 23, 576–584, Erratum in: J. Clin. Oncol. 2005, 23, 5276. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carbonero, R.; Supko, J.G.; Manola, J.; Seiden, M.V.; Harmon, D.; Ryan, D.P.; Quigley, M.T.; Merriam, P.; Canniff, J.; Goss, G.; et al. Phase II and pharmacokinetic study of ecteinascidin 743 in patients with progressive sarcomas of soft tissues refractory to chemotherapy. J. Clin. Oncol. 2004, 22, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; von Mehren, M.; Jones, R.L.; Hensley, M.L.; Schuetze, S.M.; Staddon, A.; Milhem, M.; Elias, A.; Ganjoo, K.; Tawbi, H.; et al. Efficacy and Safety of Trabectedin or Dacarbazine for Metastatic Liposarcoma or Leiomyosarcoma After Failure of Conventional Chemotherapy: Results of a Phase III Randomized Multicenter Clinical Trial. J. Clin. Oncol. 2016, 34, 786–793. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pautier, P.; Italiano, A.; Piperno-Neumann, S.; Chevreau, C.; Penel, N.; Firmin, N.; Boudou-Rouquette, P.; Bertucci, F.; Lebrun-Ly, V.; Ray-Coquard, I.; et al. Doxorubicin–Trabectedin with Trabectedin Maintenance in Leiomyosarcoma. N. Engl. J. Med. 2024, 391, 789–799. [Google Scholar] [CrossRef]
- Wagner, A.J.; Ravi, V.; Riedel, R.F.; Ganjoo, K.; Van Tine, B.A.; Chugh, R.; Cranmer, L.; Gordon, E.M.; Hornick, J.L.; Du, H.; et al. Phase II Trial of nab-Sirolimus in Patients With Advanced Malignant Perivascular Epithelioid Cell Tumors (AMPECT): Long-Term Efficacy and Safety Update. J. Clin. Oncol. 2024, 42, 1472–1476. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gronchi, A.; Miceli, R.; Shurell, E.; Eilber, F.C.; Eilber, F.R.; Anaya, D.A.; Kattan, M.W.; Honoré, C.; Lev, D.C.; Colombo, C.; et al. Outcome prediction in primary resected retroperitoneal soft tissue sarcoma: Histology-specific overall survival and disease-free survival nomograms built on major sarcoma center data sets. J. Clin. Oncol. 2013, 31, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- DeLaney, T.F.; Spiro, I.J.; Suit, H.D.; Gebhardt, M.C.; Hornicek, F.J.; Mankin, H.J.; Rosenberg, A.L.; Rosenthal, D.I.; Miryousefi, F.; Ancukiewicz, M.; et al. Neoadjuvant chemotherapy and radiotherapy for large extremity soft-tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Kr Kraybill, W.G.; Harris, J.; Spiro, I.J.; Ettinger, D.S.; DeLaney, T.F.; Blum, R.H.; Lucas, D.R.; Harmon, D.C.; Letson, G.D.; Eisenberg, B. Phase II study of neoadjuvant chemotherapy and radiation therapy in the management of high-risk, high-grade, soft tissue sarcomas of the extremities and body wall: Radiation Therapy Oncology Group Trial 9514. J. Clin. Oncol. 2006, 24, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, A.; Stacchiotti, S.; Verderio, P.; Ferrari, S.; Martin Broto, J.; Lopez-Pousa, A.; Llombart-Bosch, A.; Dei Tos, A.P.; Collini, P.; Jurado, J.C.; et al. Short, full-dose adjuvant chemotherapy (CT) in high-risk adult soft tissue sarcomas (STS): Long-term follow-up of a randomized clinical trial from the Italian Sarcoma Group and the Spanish Sarcoma Group. Ann. Oncol. 2016, 27, 2283–2288. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, A.; Ferrari, S.; Quagliuolo, V.; Broto, J.M.; Pousa, A.L.; Grignani, G.; Basso, U.; Blay, J.Y.; Tendero, O.; Beveridge, R.D.; et al. Histotype-tailored neoadjuvant chemotherapy versus standard chemotherapy in patients with high-risk soft-tissue sarcomas (ISG-STS 1001): An international, open-label, randomised, controlled, phase 3, multicentre trial. Lancet Oncol. 2017, 18, 812–822, Erratum in: Lancet Oncol. 2017, 18, e301. [Google Scholar] [CrossRef] [PubMed]
- Grobmyer, S.R.; Maki, R.G.; Demetri, G.D.; Mazumdar, M.; Riedel, E.; Brennan, M.F.; Singer, S. Neo-adjuvant chemotherapy for primary high-grade extremity soft tissue sarcoma. Ann. Oncol. 2004, 15, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Harris, J.; Kraybill, W.G.; Eisenberg, B.; Kirsch, D.G.; Ettinger, D.S.; Kane, J.M., 3rd.; Barry, P.N.; Naghavi, A.; Freeman, C.R.; et al. Pathologic Complete Response and Clinical Outcomes in Patients With Localized Soft Tissue Sarcoma Treated With Neoadjuvant Chemoradiotherapy or Radiotherapy: The NRG/RTOG 9514 and 0630 Nonrandomized Clinical Trials. JAMA Oncol. 2023, 9, 646–655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarcoma Meta-analysis Collaboration (SMAC). Adjuvant chemotherapy for localised resectable soft tissue sarcoma in adults. Cochrane Database Syst. Rev. 2000, 4, CD001419. [Google Scholar] [CrossRef] [PubMed]
- Sarcoma Meta-analysis Collaboration. Adjuvant chemotherapy for localised resectable soft-tissue sarcoma of adults: Meta-analysis of individual data. Sarcoma Meta-analysis Collaboration. Lancet 1997, 350, 1647–1654. [Google Scholar] [CrossRef]
- Brodowicz, T.; Schwameis, E.; Widder, J.; Amann, G.; Wiltschke, C.; Dominkus, M.; Windhager, R.; Ritschl, P.; Pötter, R.; Kotz, R.; et al. Intensified Adjuvant IFADIC Chemotherapy for Adult Soft Tissue Sarcoma: A Prospective Randomized Feasibility Trial. Sarcoma 2000, 4, 151–160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frustaci, S.; Gherlinzoni, F.; De Paoli, A.; Bonetti, M.; Azzarelli, A.; Comandone, A.; Olmi, P.; Buonadonna, A.; Pignatti, G.; Barbieri, E.; et al. Adjuvant chemotherapy for adult soft tissue sarcomas of the extremities and girdles: Results of the Italian randomized cooperative trial. J. Clin. Oncol. 2001, 19, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, S.; De Paoli, A.; Bidoli, E.; La Mura, N.; Berretta, M.; Buonadonna, A.; Boz, G.; Gherlinzoni, F. Ifosfamide in the adjuvant therapy of soft tissue sarcomas. Oncology 2003, 65 (Suppl. S2), 80–84. [Google Scholar] [CrossRef] [PubMed]
- Petrioli, R.; Coratti, A.; Correale, P.; D’Aniello, C.; Grimaldi, L.; Tanzini, G.; Civitelli, S.; Marsili, S.; Messinese, S.; Marzocca, G.; et al. Adjuvant epirubicin with or without Ifosfamide for adult soft-tissue sarcoma. Am. J. Clin. Oncol. 2002, 25, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, N.; Colterjohn, N.; Farrokhyar, F.; Tozer, R.; Figueredo, A.; Ghert, M. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer 2008, 113, 573–581. [Google Scholar] [CrossRef]
- Bramwell, V.; Rouesse, J.; Steward, W.; Santoro, A.; Schraffordt-Koops, H.; Buesa, J.; Ruka, W.; Priario, J.; Wagener, T.; Burgers, M.; et al. Adjuvant CYVADIC chemotherapy for adult soft tissue sarcoma--reduced local recurrence but no improvement in survival: A study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J. Clin. Oncol. 1994, 12, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Woll, P.J.; Reichardt, P.; Le Cesne, A.; Bonvalot, S.; Azzarelli, A.; Hoekstra, H.J.; Leahy, M.; Van Coevorden, F.; Verweij, J.; Hogendoorn, P.C.; et al. EORTC Soft Tissue and Bone Sarcoma Group and the NCIC Clinical Trials Group Sarcoma Disease Site Committee. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): A multicentre randomised controlled trial. Lancet Oncol. 2012, 13, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Le Cesne, A.; Ouali, M.; Leahy, M.G.; Santoro, A.; Hoekstra, H.J.; Hohenberger, P.; Van Coevorden, F.; Rutkowski, P.; Van Hoesel, R.; Verweij, J.; et al. Doxorubicin-based adjuvant chemotherapy in soft tissue sarcoma: Pooled analysis of two STBSG-EORTC phase III clinical trials. Ann. Oncol. 2014, 25, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
- Schöffski, P.; Chawla, S.; Maki, R.G.; Italiano, A.; Gelderblom, H.; Choy, E.; Grignani, G.; Camargo, V.; Bauer, S.; Rha, S.Y.; et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: A randomised, open-label, multicentre, phase 3 trial. Lancet 2016, 387, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- van der Graaf, W.T.; Blay, J.Y.; Chawla, S.P.; Kim, D.W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for metastatic soft-tissue sarcoma [PALETTE]: A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef]
- Santoro, A.; Comandone, A.; Basso, U.; Soto Parra, H.; De Sanctis, R.; Stroppa, E.; Marcon, I.; Giordano, L.; Lutman, F.R.; Boglione, A.; et al. Phase II prospective study with sorafenib in advanced soft tissue sarcomas after anthracycline-based therapy. Ann. Oncol. 2013, 24, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Maki, R.G.; D’Adamo, D.R.; Keohan, M.L.; Saulle, M.; Schuetze, S.M.; Undevia, S.D.; Livingston, M.B.; Cooney, M.M.; Hensley, M.L.; Mita, M.M.; et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J. Clin. Oncol. 2009, 27, 3133–3140. [Google Scholar] [CrossRef]
- Gounder, M.M.; Mahoney, M.R.; Van Tine, B.A.; Ravi, V.; Attia, S.; Deshpande, H.A.; Gupta, A.A.; Milhem, M.M.; Conry, R.M.; Movva, S.; et al. Sorafenib for Advanced and Refractory Desmoid Tumors. N. Engl. J. Med. 2018, 379, 2417–2428. [Google Scholar] [CrossRef]
- Gounder, M.; Ratan, R.; Alcindor, T.; Schöffski, P.; van der Graaf, W.T.; Wilky, B.A.; Riedel, R.F.; Lim, A.; Smith, L.M.; Moody, S.; et al. Nirogacestat, a γ-Secretase Inhibitor for Desmoid Tumors. N. Engl. J. Med. 2023, 388, 898–912. [Google Scholar] [CrossRef] [PubMed]
- Miano, S.T.; Francini, G.; Civitelli, S.; Petrioli, R.; Francini, E. Clinical outcomes of sunitinib [Su] for patients [pts] with desmoid tumors [DT]. J. Clin. Oncol. 2019, 37 (Suppl. S15), 11052. [Google Scholar] [CrossRef]
- Szucs, Z.; Messiou, C.; Wong, H.H.; Hatcher, H.; Miah, A.; Zaidi, S.; van der Graaf, W.T.; Judson, I.; Jones, R.L.; Benson, C. Pazopanib, a promising option for the treatment of aggressive fibromatosis. Anticancer. Drugs 2017, 28, 421–426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gounder, M.; Schöffski, P.; Jones, R.L.; Agulnik, M.; Cote, G.M.; Villalobos, V.M.; Attia, S.; Chugh, R.; Chen, T.W.; Jahan, T.; et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: An international, open-label, phase 2 basket study. Lancet Oncol. 2020, 21, 1423–1432. [Google Scholar] [CrossRef]
- Kummar, S.; Shen, L.; Hong, D.S.; McDermott, R.; Keedy, V.L.; Casanova, M.; Demetri, G.D.; Dowlati, A.; Melcón, S.G.; Lassen, U.N.; et al. Larotrectinib efficacy and safety in adult patients with tropomyosin receptor kinase fusion sarcomas. Cancer 2023, 129, 3772–3782. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Approves Crizotinib for ALK-Positive Inflammatory Myofibroblastic Tumor 2022. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizotinib-alk-positive-inflammatory-myofibroblastic-tumor (accessed on 14 July 2022).
- Gambacorti-Passerini, C.; Orlov, S.; Zhang, L.; Braiteh, F.; Huang, H.; Esaki, T.; Horibe, K.; Ahn, J.S.; Beck, J.T.; Edenfield, W.J.; et al. Long-term effects of crizotinib in ALK-positive tumors [excluding NSCLC]: A phase 1b open-label study. Am. J. Hematol. 2018, 93, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Movva, S.; Wen, W.; Chen, W.; Millis, S.Z.; Gatalica, Z.; Reddy, S.; von Mehren, M.; Van Tine, B.A. Multi-platform profiling of over 2000 sarcomas: Identification of biomarkers and novel therapeutic targets. Oncotarget 2015, 6, 12234–12247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orth, M.F.; Buecklein, V.L.; Kampmann, E.; Subklewe, M.; Noessner, E.; Cidre-Aranaz, F.; Romero-Pérez, L.; Wehweck, F.S.; Lindner, L.; Issels, R.; et al. A comparative view on the expression patterns of PD-L1 and PD-1 in soft tissue sarcomas. Cancer Immunol. Immunother. 2020, 69, 1353–1362. [Google Scholar] [CrossRef]
- Dancsok, A.R.; Setsu, N.; Gao, D.; Blay, J.Y.; Thomas, D.; Maki, R.G.; Nielsen, T.O.; Demicco, E.G. Expression of lymphocyte immunoregulatory biomarkers in bone and soft-tissue sarcomas. Mod. Pathol. 2019, 32, 1772–1785. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma [SARC028]: A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef]
- Burgess, M.A.; Bolejack, V.; Schuetze, S.; Tine, B.A.V.; Attia, S.; Riedel, R.F.; Hu, J.S.; Davis, L.E.; Okuno, S.; Priebat, D.A.; et al. Clinical activity of pembrolizumab [P] in undifferentiated pleomorphic sarcoma [UPS] and dedifferentiated/pleomorphic liposarcoma [LPS]: Final results of SARC028 expansion cohorts. J. Clin. Oncol. 2019, 37 (Suppl. S15), 11015. [Google Scholar] [CrossRef]
- Chen, A.P.; Sharon, E.; O’Sullivan-Coyne, G.; Moore, N.; Foster, J.C.; Hu, J.S.; Van Tine, B.A.; Conley, A.P.; Read, W.L.; Riedel, R.F.; et al. Atezolizumab for Advanced Alveolar Soft Part Sarcoma. N. Engl. J. Med. 2023, 389, 911–921. [Google Scholar] [CrossRef]
- Blay, J.Y.; Chevret, S.; Le Cesne, A.; Brahmi, M.; Penel, N.; Cousin, S.; Bertucci, F.; Bompas, E.; Ryckewaert, T.; Soibinet, P.; et al. Pembrolizumab in patients with rare and ultra-rare sarcomas [AcSé Pembrolizumab]: Analysis of a subgroup from a non-randomised, open-label, phase 2, basket trial. Lancet Oncol. 2023, 24, 892–902. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Mahoney, M.R.; Van Tine, B.A.; Atkins, J.; Milhem, M.M.; Jahagirdar, B.N.; Antonescu, C.R.; Horvath, E.; Tap, W.D.; Schwartz, G.K.; et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma [Alliance A091401]: Two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018, 19, 416–426. [Google Scholar] [CrossRef]
- Wagner, M.J.; Othus, M.; Patel, S.P.; Ryan, C.; Sangal, A.; Powers, B.; Budd, G.T.; Victor, A.I.; Hsueh, C.T.; Chugh, R.; et al. Multicenter phase II trial [SWOG S1609, cohort 51] of ipilimumab and nivolumab in metastatic or unresectable angiosarcoma: A substudy of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors [DART]. J. ImmunoTherapy Cancer 2021, 9, e002990. [Google Scholar] [CrossRef] [PubMed]
- Hostein, I.; Pelmus, M.; Aurias, A.; Pedeutour, F.; Mathoulin-Pélissier, S.; Coindre, J.M. Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: A potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas. J. Pathol. 2004, 202, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Saâda-Bouzid, E.; Burel-Vandenbos, F.; Ranchère-Vince, D.; Birtwisle-Peyrottes, I.; Chetaille, B.; Bouvier, C.; Château, M.C.; Peoc’h, M.; Battistella, M.; Bazin, A.; et al. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod. Pathol. 2015, 28, 1404–1414. [Google Scholar] [CrossRef]
- Schmidt, H.; Taubert, H.; Würl, P.; Kappler, M.; Lange, H.; Bartel, F.; Bache, M.; Holzhausen, H.J.; Hinze, R. Gains of 12q are the most frequent genomic imbalances in adult fibrosarcoma and are correlated with a poor outcome. Genes. Chromosomes Cancer 2002, 34, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Pérot, G.; Derré, J.; Coindre, J.M.; Tirode, F.; Lucchesi, C.; Mariani, O.; Gibault, L.; Guillou, L.; Terrier, P.; Aurias, A. Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res. 2009, 69, 2269–2278. [Google Scholar] [CrossRef] [PubMed]
- El-Rifai, W.; Sarlomo-Rikala, M.; Knuutila, S.; Miettinen, M. DNA copy number changes in development and progression in leiomyosarcomas of soft tissues. Am. J. Pathol. 1998, 153, 985–990. [Google Scholar] [CrossRef]
- Chudasama, P.; Mughal, S.S.; Sanders, M.A.; Hübschmann, D.; Chung, I.; Deeg, K.I.; Wong, S.H.; Rabe, S.; Hlevnjak, M.; Zapatka, M.; et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat. Commun. 2018, 9, 144. [Google Scholar] [CrossRef]
- Paulson, V.; Chandler, G.; Rakheja, D.; Galindo, R.L.; Wilson, K.; Amatruda, J.F.; Cameron, S. High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Genes Chromosomes Cancer 2011, 50, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Chibon, F.; Mairal, A.; Fréneaux, P.; Terrier, P.; Coindre, J.M.; Sastre, X.; Aurias, A. The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res. 2000, 60, 6339–6345. [Google Scholar] [PubMed]
- Mertens, F.; Fletcher, C.D.; Dal Cin, P.; De Wever, I.; Mandahl, N.; Mitelman, F.; Rosai, J.; Rydholm, A.; Sciot, R.; Tallini, G.; et al. Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: A report of the CHAMP Study Group. Chromosomes and MorPhology. Genes Chromosomes Cancer. 1998, 22, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Liau, J.Y.; Huang, W.J.; Chang, Y.T.; Chang, M.C.; Lee, J.C.; Tsai, J.H.; Su, Y.N.; Hung, C.C.; Jeng, Y.M. Targeted next-generation sequencing of cancer genes identified frequent TP53 and ATRX mutations in leiomyosarcoma. Am. J. Transl. Res. 2015, 7, 2072–2081. [Google Scholar] [PubMed] [PubMed Central]
- Mäkinen, N.; Aavikko, M.; Heikkinen, T.; Taipale, M.; Taipale, J.; Koivisto-Korander, R.; Bützow, R.; Vahteristo, P. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53, ATRX, and MED12. PLoS Genet. 2016, 12, e1005850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zietz, C.; Rössle, M.; Haas, C.; Sendelhofert, A.; Hirschmann, A.; Stürzl, M.; Löhrs, U. MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am. J. Pathol. 1998, 153, 1425–1433. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brohl, A.S.; Kahen, E.; Yoder, S.J.; Teer, J.K.; Reed, D.R. The genomic landscape of malignant peripheral nerve sheath tumors: Diverse drivers of Ras pathway activation. Sci. Rep. 2017, 7, 14992. [Google Scholar] [CrossRef]
- Sun, S.Y.; Crago, A. MDM2 Implications for Potential Molecular Pathogenic Therapies of Soft-Tissue Tumors. J. Clin. Med. 2023, 12, 3638. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeyer, J.L.; Gordon, D.J.; Tanas, M.R.; Monga, V.; Dodd, R.D.; Quelle, D.E. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int. J. Mol. Sci. 2020, 21, 3018. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; Antonescu, C.R.; Bjerkehagen, B.; Bovée, J.V.M.G.; Boye, K.; Chacón, M.; Dei Tos, A.P.; Desai, J.; Fletcher, J.A.; Gelderblom, H.; et al. Diagnosis and management of tropomyosin receptor kinase [TRK] fusion sarcomas: Expert recommendations from the World Sarcoma Network. Ann. Oncol. 2020, 31, 1506–1517. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gounder, M.; Schöffski, P.; Villalobos, V.; Cote, G.; Chugh, R.; Chen, T.W.W.; Jahan, T.; Loggers, E.T.; Italiano, A.; Gupta, A.; et al. Phase 2 multicenter study of the EZH2 inhibitor tazemetostat in adults with INI1 negative epithelioid sarcoma [NCT02601950]. J. Clin. Oncol. 2017, 35 (Suppl. S15), 11058. [Google Scholar] [CrossRef]
- Schöffski, P.; Sufliarsky, J.; Gelderblom, H.; Blay, J.Y.; Strauss, S.J.; Stacchiotti, S.; Rutkowski, P.; Lindner, L.H.; Leahy, M.G.; Italiano, A.; et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations [European Organisation for Research and Treatment of Cancer 90101 CREATE]: A multicentre, single-drug, prospective, non-randomised phase 2 trial. Lancet Respir Med 2018, 6, 431–441. [Google Scholar] [PubMed]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Thanindratarn, P.; Dean, D.C.; Nelson, S.D.; Hornicek, F.J.; Duan, Z. Chimeric antigen receptor T [CAR-T] cell immunotherapy for sarcomas: From mechanisms to potential clinical applications. Cancer Treat. Rev. 2020, 82, 101934. [Google Scholar] [CrossRef]
- Hegde, M.; Navai, S.; DeRenzo, C.; Joseph, S.K.; Sanber, K.; Wu, M.; Gad, A.Z.; Janeway, K.A.; Campbell, M.; Mullikin, D.; et al. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: A phase 1 trial. Nat. Cancer 2024, 5, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Brawley, V.S.; Hegde, M.; Robertson, C.; Ghazi, A.; Gerken, C.; Liu, E.; Dakhova, O.; Ashoori, A.; Corder, A.; et al. Human Epidermal Growth Factor Receptor 2 [HER2]-Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. 2015, 33, 1688–1696. [Google Scholar] [CrossRef]
- Dobrenkov, K.; Ostrovnaya, I.; Gu, J.; Cheung, I.Y.; Cheung, N.K. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr. Blood Cancer 2016, 63, 1780–1785. [Google Scholar] [CrossRef]
- Kaczanowska, S.; Murty, T.; Alimadadi, A.; Contreras, C.F.; Duault, C.; Subrahmanyam, P.B.; Reynolds, W.; Gutierrez, N.A.; Baskar, R.; Wu, C.J.; et al. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell 2024, 42, 35–51.e8. [Google Scholar] [CrossRef]
- Huang, X.; Park, H.; Greene, J.; Pao, J.; Mulvey, E.; Zhou, S.X.; Albert, C.M.; Moy, F.; Sachdev, D.; Yee, D.; et al. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas. PLoS ONE 2015, 10, e0133152. [Google Scholar] [CrossRef]
- Leuci, V.; Casucci, G.M.; Grignani, G.; Rotolo, R.; Rossotti, U.; Vigna, E.; Gammaitoni, L.; Mesiano, G.; Fiorino, E.; Donini, C.; et al. CD44v6 as innovative sarcoma target for CAR-redirected CIK cells. Oncoimmunology 2018, 7, e1423167. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Araujo, D.M.; Abdul Razak, A.R.; Agulnik, M.; Attia, S.; Blay, J.Y.; Carrasco Garcia, I.; Charlson, J.A.; Choy, E.; Demetri, G.D.; et al. Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma [SPEARHEAD-1]: An international, open-label, phase 2 trial. Lancet 2024, 403, 1460–1471. [Google Scholar] [CrossRef]
- Kelly, C.M.; Antonescu, C.R.; Bowler, T.; Munhoz, R.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Keohan, M.L.; Movva, S.; Dholakia, R.; et al. Objective Response Rate Among Patients With Locally Advanced or Metastatic Sarcoma Treated With Talimogene Laherparepvec in Combination With Pembrolizumab. JAMA Oncol. 2020, 6, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.A.; Bell, J.C.; Atkins, H.L.; Roach, J.; Bamat, M.K.; O’Neil, J.D.; Roberts, M.S.; Groene, W.S.; Lorence, R.M. A Phase 1 Clinical Study of Intravenous Administration of PV701, an Oncolytic Virus, Using Two-Step Desensitization. Clin. Cancer Res. 2006, 12, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.J.; Ahern, C.; Weigel, B.J.; Poirier, J.T.; Rudin, C.M.; Chen, Y.; Cripe, T.P.; Bernhardt, M.B.; Blaney, S.M. Phase I trial of Seneca Valley Virus (NTX-010) in children with relapsed/refractory solid tumors: A report of the Children’s Oncology Group. Pediatr. Blood Cancer 2014, 62, 743–750. [Google Scholar] [CrossRef] [PubMed]
Treatment Modalities | Agents |
Chemotherapy | Doxorubicin Ifosfamide Gemcitabine Docetaxel Dacarbazine Temozolomide Trabectedin Eribulin Vincristine Cyclophosphamide Irinotecan Topotecan Epirubicin Etoposide Vinorelbine Liposomal doxorubicin Paclitaxel Methotrexate |
Targeted Therapy | Multitargeted Tyrosine Kinase Inhibitors Imatinib Sunitinib Sorafenib Regorafenib Ripretinib Avapritinib Nilotinib Pazopanib Cabozantinib Axitinib Lenvatinib Immunotherapy Nivolumab Ipilimumab Pembrolizumab Atezolizumab CDK4/6 Inhibitors Palbociclib Ribociclib Abemaciclib mTOR Inhibitors Sirolimus Temsirolimus Everolimus Nab-Sirolimus VEGF Inhibitors Bevacizumab PARP Inhibitors Olaparib Rucaparib Niraparib Talazoparib EZH-1 Inhibitors Tazemetostat Gamma-Secretase Inhibitors Nirogacestat NTRK Inhibitors Larotrectinib Entrectinib Repotrectinib ALK Inhibitors Lorlatinib Crizotinib Alectinib Brigatinib Ceritinib CSF1R Inhibitor Pexidartinib |
Hormonal Therapy | Aromatase Inhibitors Tamoxifen |
T Cell Therapy | Afamitresgene autoleucel |
Trial | Year | Study Design | Population | Intervention | Findings | Adverse Events |
---|---|---|---|---|---|---|
EORTC 62012 [8] | 2014 | Phase III RCT | -Advanced/metastatic STS -All Sarcoma Subtypes | Doxorubicin (75 mg/m2) vs. Doxorubicin (75 mg/m2) + Ifosfamide (10 g/m²) | Median OS: 12.8 vs. 14.3 months Median PFS: 4.6 vs. 7.4 months; ORR: 14% vs. 26% | Grade 3-4: Leucopenia (18% vs. 43%), Neutropenia (37% vs. 42%), Febrile Neutropenia (13% vs. 46%), Anemia (5% vs. 35%), Thrombocytopenia (1% vs. 33%) |
GeDDiS [18] | 2017 | Phase III RCT | -Advanced/metastatic STS -Various STS subtypes | Doxorubicin (75 mg/m2) vs. Gemcitabine (675 mg/m² D1, D8) + Docetaxel (75 mg/m2) | Median PFS: 23.3 vs. 23.7 weeks Median OS: 76.3 vs. 67.3 weeks | Grade 3-4: Neutropenia (25% vs. 20%), Febrile Neutropenia (21% vs. 15%), Fatigue (6% vs. 14%), Oral Mucositis (14% vs. 2%), Pain (8% vs. 10%) |
PICASSO III [19] | 2016 | Phase III RCT | -Metastatic STS -Various STS subtypes | Doxorubicin (75 mg/m2) vs. Doxorubicin (75 mg/m2) + Palifosfamide (150 mg/m2, D1–D3) | Median OS: 16.9 vs. 15.9 months Median PFS: 5.2 vs. 6.0 months | Grade 3-4: Febrile Neutropenia (21.4% vs. 12.6%) |
SARC021 [20] | 2017 | Phase III RCT | -Advanced/metastatic STS -Various STS subtypes | Doxorubicin (75 mg/m2) vs. Doxorubicin (75 mg/m2) + Evofosfamide (300 mg/m2 D1, D8) | Median OS: 19 vs. 18.4 months | Grade 3-4: Anemia (21% vs. 48%), Neutropenia (29% vs. 15%), Febrile Neutropenia (11% vs. 18%), Thrombocytopenia (1% vs. 14%), |
Maki et al. [32] | 2007 | Phase II RCT | -Metastatic STS -Various STS subtypes | Gemcitabine (1200 mg/m2 D1, D8) Vs Gemcitabine (900 mg/m2 D1, D8)+ Docetaxel (100 mg/m2 D8) | Median PFS: 3 months vs. 6.2 months Median OS: 11.5 months vs. 17.9 months | Grade 3-4: Neutropenia (28% vs. 16%), Febrile Neutropenia (7% vs. 5%), Grade 3 Anemia (13% vs. 7%), Thrombocytopenia (35% vs. 40%), |
Demetri et al. [45] | 2016 | Phase III RCT | -Metastatic Liposarcoma and Leiomyosarcoma | Trabectedin (1.5 mg/m2) vs. Dacarbazine (1 g/m2) | Median PFS: 4.2 vs. 1.5 months Median OS: 12.4 vs. 12.9 months | Grade 3-4: Neutropenia (35% vs. 21%), Anemia (14% vs. 12%), Elevated ALT (26% vs. 1%) |
Talbot et al. [41] | 2003 | Phase II | Unresectable/Recurrent/Metastatic STS -Various STS subtypes | Temozolomide (200 mg/m2 q12h for 5 days followed by 9 doses 90 mg/m2 q4weeks) | Objective Response Rate: 8% Median OS: 13.2 months For LMS subgroup: Median PFS: 3.9 months, Median OS: 30.8 months | Grade 3: Nausea (4%), Anemia (4%) |
AMPECT [47] | 2021 | Phase II | Malignant PEComa (metastatic or locally advanced, ineligible for surgery) | Nab-Sirolimus (100 mg/m2 D1, D8) | Objective Response Rate: 39% Median PFS: 10.6 months Median OS: 40.8 months | Grade 1-2: Anemia 47%, Thrombocytopenia 32%, Mucositis 79%, Fatigue 59%, Rash 56% |
LMS04 [46] | 2024 | Phase III RCT | Leiomyosarcoma | Doxorubicin (75 mg/m2) vs. Doxorubicin (75 mg/m2) + Trabectedin (1.5 mg/m2) | Median OS: 33 vs. 24 months Median PFS: 12 vs. 6 months | Grade 3-4: Neutropenia (13% vs. 80%), Anemia (4% vs. 31%), Febrile neutropenia (9% vs. 28%) |
Genetic Alterations | STS Subtype with Genes Affected |
---|---|
Amplification | Liposarcoma-MDM2 [86,87], CDK4 [86,87], HMGA2 [87], c-JUN [87] Fibrosarcoma-MDM2 [88] Leiomyosarcoma-MYOCD [89] |
Deletion | Leiomyosarcoma-PTEN [90,91], RB1 [91] Embryonal Rhabdomyosarcoma-CDKN2A/B [92] Undifferentiated pleomorphic sarcoma-RB1 [93,94] |
Mutations | Leiomyosarcoma-TP53 [91,95,96], ATRX [91,95,96], MED12 [96] Angiosarcoma-TP53 [97], PTRB [97] MPNST-NF1 [98], CDKN2A [98], TP53 [98] |
Overexpression | Angiosarcoma-VEGF [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paudel, A.; Chattopadhyay, P.; Rose, B.; Watson, A.; D’Amato, G.; Trent, J.; Bialick, S.; Jonczak, E. Systemic Treatment in Soft Tissue Sarcomas: Are We Making a Difference? Cancers 2025, 17, 889. https://doi.org/10.3390/cancers17050889
Paudel A, Chattopadhyay P, Rose B, Watson A, D’Amato G, Trent J, Bialick S, Jonczak E. Systemic Treatment in Soft Tissue Sarcomas: Are We Making a Difference? Cancers. 2025; 17(5):889. https://doi.org/10.3390/cancers17050889
Chicago/Turabian StylePaudel, Amrit, Priya Chattopadhyay, Brandon Rose, Aleksandra Watson, Gina D’Amato, Jonathan Trent, Steven Bialick, and Emily Jonczak. 2025. "Systemic Treatment in Soft Tissue Sarcomas: Are We Making a Difference?" Cancers 17, no. 5: 889. https://doi.org/10.3390/cancers17050889
APA StylePaudel, A., Chattopadhyay, P., Rose, B., Watson, A., D’Amato, G., Trent, J., Bialick, S., & Jonczak, E. (2025). Systemic Treatment in Soft Tissue Sarcomas: Are We Making a Difference? Cancers, 17(5), 889. https://doi.org/10.3390/cancers17050889