Comparative Analysis of Diagnostic Accuracy and Complication Rate of Transperineal Versus Transrectal Prostate Biopsy in Prostate Cancer Diagnosis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Diagnostic Accuracy in Biopsy-Naïve Patients in the PreMRI Era
3.2. Diagnostic Accuracy in Biopsy-Naïve Patients in the MRI Era
3.3. Cancer Detection Rate of Repeat Biopsies
3.4. Complication Rates
Bleeding Complications Under Continuous Anticoagulant and Antiplatelet Therapy
4. Discussion
5. Limitations of the Study
6. Cost-Effectiveness
7. Future Directions and Innovations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Barringer, B.S. Carcinoma of the Prostate. Ann. Surg. 1931, 93, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.J.; Rosenthal, M.; Goodwin, W.E. Needle biopsy in diagnosis of prostatic cancer. Calif. Med. 1954, 81, 308–313. [Google Scholar]
- Hodge, K.K.; McNeal, J.E.; Terris, M.K.; Stamey, T.A. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J. Urol. 1989, 142, 71–74; discussion 74–75. [Google Scholar] [CrossRef]
- Radtke, J.P.; Boxler, S.; Kuru, T.H.; Wolf, M.B.; Alt, C.D.; Popeneciu, I.V.; Steinemann, S.; Huettenbrink, C.; Bergstraesser-Gasch, C.; Klein, T.; et al. Improved detection of anterior fibromuscular stroma and transition zone prostate cancer using biparametric and multiparametric MRI with MRI-targeted biopsy and MRI-US fusion guidance. Prostate Cancer Prostatic Dis. 2015, 18, 288–296. [Google Scholar] [CrossRef]
- Boeve, L.M.S.; Bloemendal, F.T.; de Bie, K.C.C.; van Haarst, E.P.; Krul, E.J.T.; de Bruijn, J.J.; Beems, S.; Vanhommerig, J.W.; Hovius, M.C.; Ruiter, A.E.C.; et al. Cancer detection and complications of transperineal prostate biopsy with antibiotics when indicated. BJU Int. 2023, 132, 397–403. [Google Scholar] [CrossRef]
- Thomson, A.; Li, M.; Grummet, J.; Sengupta, S. Transperineal prostate biopsy: A review of technique. Transl. Androl. Urol. 2020, 9, 3009–3017. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- Lu, M.; Luo, Y.; Wang, Y.; Yu, J.; Zheng, H.; Yang, Z. Transrectal versus transperineal prostate biopsy in detection of prostate cancer: A retrospective study based on 452 patients. BMC Urol. 2023, 23, 11. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, Z.Y.; Niu, S.X.; Sai, X.Y.; Zhang, X.; Zhang, X.P.; Ma, X. Transrectal versus transperineal prostate biopsy for cancer detection in patients with gray-zone prostate-specific antigen: A multicenter, real-world study. Asian J. Androl. 2024, 26, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.W.; Pek, G.; Yufei, Q.; Toh, P.C.; Kuek, N.; Lee, J.K.C.; Tan, L.G.L.; Tsang, W.C.; Chiong, E. Comparing outcomes of transperineal to transrectal prostate biopsies performed under local anaesthesia. BJUI Compass 2022, 3, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.L.; Kang, C.H.; Lee, W.C.; Chiang, P.H. Comparisons of cancer detection rate and complications between transrectal and transperineal prostate biopsy approaches—A single center preliminary study. BMC Urol. 2019, 19, 101. [Google Scholar] [CrossRef]
- Lo, K.L.; Chui, K.L.; Leung, C.H.; Ma, S.F.; Lim, K.; Ng, T.; Wong, J.; Li, J.K.M.; Mak, S.K.; Ng, C.F. Outcomes of transperineal and transrectal ultrasound-guided prostate biopsy. Hong Kong Med. J. 2019, 25, 209–215. [Google Scholar] [CrossRef]
- Xue, J.; Qin, Z.; Cai, H.; Zhang, C.; Li, X.; Xu, W.; Wang, J.; Xu, Z.; Yu, B.; Xu, T.; et al. Comparison between transrectal and transperineal prostate biopsy for detection of prostate cancer: A meta-analysis and trial sequential analysis. Oncotarget 2017, 8, 23322–23336. [Google Scholar] [CrossRef]
- Guo, L.H.; Wu, R.; Xu, H.X.; Xu, J.M.; Wu, J.; Wang, S.; Bo, X.W.; Liu, B.J. Comparison between Ultrasound Guided Transperineal and Transrectal Prostate Biopsy: A Prospective, Randomized, and Controlled Trial. Sci. Rep. 2015, 5, 16089. [Google Scholar] [CrossRef]
- Cerruto, M.A.; Vianello, F.; D’Elia, C.; Artibani, W.; Novella, G. Transrectal versus transperineal 14-core prostate biopsy in detection of prostate cancer: A comparative evaluation at the same institution. Arch. Ital. Urol. Androl. 2014, 86, 284–287. [Google Scholar] [CrossRef]
- Bjurlin, M.A.; Mendhiratta, N.; Wysock, J.S.; Taneja, S.S. Multiparametric MRI and targeted prostate biopsy: Improvements in cancer detection, localization, and risk assessment. Cent. Eur. J. Urol. 2016, 69, 9–18. [Google Scholar] [CrossRef]
- Moldovan, P.; Udrescu, C.; Ravier, E.; Souchon, R.; Rabilloud, M.; Bratan, F.; Sanzalone, T.; Cros, F.; Crouzet, S.; Gelet, A.; et al. Accuracy of Elastic Fusion of Prostate Magnetic Resonance and Transrectal Ultrasound Images under Routine Conditions: A Prospective Multi-Operator Study. PLoS ONE 2016, 11, e0169120. [Google Scholar] [CrossRef]
- Wu, Q.; Tu, X.; Zhang, C.; Ye, J.; Lin, T.; Liu, Z.; Yang, L.; Qiu, S.; Bao, Y.; Wei, Q. Transperineal magnetic resonance imaging targeted biopsy versus transrectal route in the detection of prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2024, 27, 212–221. [Google Scholar] [CrossRef]
- Uleri, A.; Baboudjian, M.; Tedde, A.; Gallioli, A.; Long-Depaquit, T.; Palou, J.; Basile, G.; Gaya, J.M.; Sanguedolce, F.; Lughezzani, G.; et al. Is There an Impact of Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsy in Clinically Significant Prostate Cancer Detection Rate? A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2023, 6, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Ploussard, G.; Barret, E.; Fiard, G.; Lenfant, L.; Malavaud, B.; Giannarini, G.; Almeras, C.; Aziza, R.; Renard-Penna, R.; Descotes, J.L.; et al. Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted Biopsies for Prostate Cancer Diagnosis: Final Results of the Randomized PERFECT trial (CCAFU-PR1). Eur. Urol. Oncol. 2024, 7, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Zattoni, F.; Marra, G.; Kasivisvanathan, V.; Grummet, J.; Nandurkar, R.; Ploussard, G.; Olivier, J.; Chiu, P.K.; Valerio, M.; Gontero, P.; et al. The Detection of Prostate Cancer with Magnetic Resonance Imaging-Targeted Prostate Biopsies is Superior with the Transperineal vs the Transrectal Approach. A European Association of Urology-Young Academic Urologists Prostate Cancer Working Group Multi-Institutional Study. J. Urol. 2022, 208, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; Saba, K.; Schmidli, T.S.; Stutz, S.; Bissig, L.; Britschgi, A.J.; Schaeren, E.; Gu, A.; Langenegger, N.; Sulser, T.; et al. Prostate cancer detection rate in men undergoing transperineal template-guided saturation and targeted prostate biopsy. Prostate 2022, 82, 388–396. [Google Scholar] [CrossRef]
- Diamand, R.; Guenzel, K.; Mjaess, G.; Lefebvre, Y.; Ferriero, M.; Simone, G.; Fourcade, A.; Fournier, G.; Bui, A.P.; Taha, F.; et al. Transperineal or Transrectal Magnetic Resonance Imaging-targeted Biopsy for Prostate Cancer Detection. Eur. Urol. Focus 2024, 10, 805–811. [Google Scholar] [CrossRef]
- Roehl, K.A.; Antenor, J.A.; Catalona, W.J. Serial biopsy results in prostate cancer screening study. J. Urol. 2002, 167, 2435–2439. [Google Scholar] [CrossRef]
- Kawakami, S.; Okuno, T.; Yonese, J.; Igari, T.; Arai, G.; Fujii, Y.; Kageyama, Y.; Fukui, I.; Kihara, K. Optimal sampling sites for repeat prostate biopsy: A recursive partitioning analysis of three-dimensional 26-core systematic biopsy. Eur. Urol. 2007, 51, 675–682; discussion 682–683. [Google Scholar] [CrossRef]
- Pal, R.P.; Elmussareh, M.; Chanawani, M.; Khan, M.A. The role of a standardized 36 core template-assisted transperineal prostate biopsy technique in patients with previously negative transrectal ultrasonography-guided prostate biopsies. BJU Int. 2012, 109, 367–371. [Google Scholar] [CrossRef]
- Dimmen, M.; Vlatkovic, L.; Hole, K.H.; Nesland, J.M.; Brennhovd, B.; Axcrona, K. Transperineal prostate biopsy detects significant cancer in patients with elevated prostate-specific antigen (PSA) levels and previous negative transrectal biopsies. BJU Int. 2012, 110, E69–E75. [Google Scholar] [CrossRef]
- Stewart, C.S.; Leibovich, B.C.; Weaver, A.L.; Lieber, M.M. Prostate cancer diagnosis using a saturation needle biopsy technique after previous negative sextant biopsies. J. Urol. 2001, 166, 86–91; discussion 82–91. [Google Scholar] [CrossRef]
- Abdollah, F.; Novara, G.; Briganti, A.; Scattoni, V.; Raber, M.; Roscigno, M.; Suardi, N.; Gallina, A.; Artibani, W.; Ficarra, V.; et al. Trans-rectal versus trans-perineal saturation rebiopsy of the prostate: Is there a difference in cancer detection rate? Urology 2011, 77, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Kravchick, S.; Lobik, L.; Cytron, S.; Kravchenko, Y.; Dor, D.B.; Peled, R. Patients with Persistently Elevated PSA and Negative Results of TRUS-Biopsy: Does 6-Month Treatment with Dutasteride can Indicate Candidates for Re-Biopsy. What is the Best of Saturation Schemes: Transrectal or Transperineal Approach? Pathol. Oncol. Res. 2015, 21, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Borkowetz, A.; Renner, T.; Platzek, I.; Toma, M.; Herout, R.; Baunacke, M.; Groeben, C.; Huber, J.; Laniado, M.; Baretton, G.; et al. Evaluation of Transperineal Magnetic Resonance Imaging/Ultrasound-Fusion Biopsy Compared to Transrectal Systematic Biopsy in the Prediction of Tumour Aggressiveness in Patients with Previously Negative Biopsy. Urol. Int. 2019, 102, 20–26. [Google Scholar] [CrossRef]
- Pepe, P.; Garufi, A.; Priolo, G.; Pennisi, M. Transperineal Versus Transrectal MRI/TRUS Fusion Targeted Biopsy: Detection Rate of Clinically Significant Prostate Cancer. Clin. Genitourin. Cancer 2017, 15, e33–e36. [Google Scholar] [CrossRef]
- Stefanova, V.; Buckley, R.; Flax, S.; Spevack, L.; Hajek, D.; Tunis, A.; Lai, E.; Loblaw, A.; Collaborators. Transperineal Prostate Biopsies Using Local Anesthesia: Experience with 1,287 Patients. Prostate Cancer Detection Rate, Complications and Patient Tolerability. J. Urol. 2019, 201, 1121–1126. [Google Scholar] [CrossRef]
- Berquin, C.; Perletti, G.; Develtere, D.; Van Puyvelde, H.; Pauwels, E.; De Groote, R.; D’Hondt, F.; Schatteman, P.; Mottrie, A.; De Naeyer, G. Transperineal vs. transrectal prostate biopsies under local anesthesia: A prospective cohort study on patient tolerability and complication rates. Urol. Oncol. 2023, 41, 388.e17–388.e23. [Google Scholar] [CrossRef]
- Derin, O.; Fonseca, L.; Sanchez-Salas, R.; Roberts, M.J. Infectious complications of prostate biopsy: Winning battles but not war. World J. Urol. 2020, 38, 2743–2753. [Google Scholar] [CrossRef]
- Hu, J.C.; Assel, M.; Allaf, M.E.; Ehdaie, B.; Vickers, A.J.; Cohen, A.J.; Ristau, B.T.; Green, D.A.; Han, M.; Rezaee, M.E.; et al. Transperineal Versus Transrectal Magnetic Resonance Imaging-targeted and Systematic Prostate Biopsy to Prevent Infectious Complications: The PREVENT Randomized Trial. Eur. Urol. 2024, 86, 61–68. [Google Scholar] [CrossRef]
- Mian, B.M.; Feustel, P.J.; Aziz, A.; Kaufman, R.P., Jr.; Bernstein, A.; Avulova, S.; Fisher, H.A.G. Complications Following Transrectal and Transperineal Prostate Biopsy: Results of the ProBE-PC Randomized Clinical Trial. J. Urol. 2024, 211, 205–213. [Google Scholar] [CrossRef]
- Ortner, G.; Tzanaki, E.; Rai, B.P.; Nagele, U.; Tokas, T. Transperineal prostate biopsy: The modern gold standard to prostate cancer diagnosis. Turk. J. Urol. 2021, 47, S19–S26. [Google Scholar] [CrossRef]
- Berry, B.; Parry, M.G.; Sujenthiran, A.; Nossiter, J.; Cowling, T.E.; Aggarwal, A.; Cathcart, P.; Payne, H.; van der Meulen, J.; Clarke, N. Comparison of complications after transrectal and transperineal prostate biopsy: A national population-based study. BJU Int. 2020, 126, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ghani, K.R.; Dundas, D.; Patel, U. Bleeding after transrectal ultrasonography-guided prostate biopsy: A study of 7-day morbidity after a six-, eight- and 12-core biopsy protocol. BJU Int. 2004, 94, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Culkin, D.J.; Exaire, E.J.; Green, D.; Soloway, M.S.; Gross, A.J.; Desai, M.R.; White, J.R.; Lightner, D.J. Anticoagulation and antiplatelet therapy in urological practice: ICUD/AUA review paper. J. Urol. 2014, 192, 1026–1034. [Google Scholar] [CrossRef]
- Burger, W.; Chemnitius, J.M.; Kneissl, G.D.; Rucker, G. Low-dose aspirin for secondary cardiovascular prevention—Cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation—review and meta-analysis. J. Intern. Med. 2005, 257, 399–414. [Google Scholar] [CrossRef]
- Connor, S.E.; Wingate, J.P. Management of patients treated with aspirin or warfarin and evaluation of haemostasis prior to prostatic biopsy: A survey of current practice amongst radiologists and urologists. Clin. Radiol. 1999, 54, 598–603. [Google Scholar] [CrossRef]
- Saito, K.; Washino, S.; Nakamura, Y.; Konishi, T.; Ohshima, M.; Arai, Y.; Miyagawa, T. Transperineal ultrasound-guided prostate biopsy is safe even when patients are on combination antiplatelet and/or anticoagulation therapy. BMC Urol. 2017, 17, 53. [Google Scholar] [CrossRef]
- Raheem, O.A.; Casey, R.G.; Galvin, D.J.; Manecksha, R.P.; Varadaraj, H.; McDermott, T.; Grainger, R.; Lynch, T.H. Discontinuation of anticoagulant or antiplatelet therapy for transrectal ultrasound-guided prostate biopsies: A single-center experience. Korean J. Urol. 2012, 53, 234–239. [Google Scholar] [CrossRef]
- Chowdhury, R.; Abbas, A.; Idriz, S.; Hoy, A.; Rutherford, E.E.; Smart, J.M. Should warfarin or aspirin be stopped prior to prostate biopsy? An analysis of bleeding complications related to increasing sample number regimes. Clin. Radiol. 2012, 67, e64–e70. [Google Scholar] [CrossRef]
- Ghafoori, M.; Velayati, M.; Aliyari Ghasabeh, M.; Shakiba, M.; Alavi, M. Prostate Biopsy Using Transrectal Ultrasonography; The Optimal Number of Cores Regarding Cancer Detection Rate and Complications. Iran. J. Radiol. 2015, 12, e13257. [Google Scholar] [CrossRef]
- Exterkate, L.; Wegelin, O.; Barentsz, J.O.; van der Leest, M.G.; Kummer, J.A.; Vreuls, W.; de Bruin, P.C.; Witjes, J.A.; van Melick, H.H.E.; Somford, D.M. Incidence of significant prostate cancer after negative MRI and systematic biopsy in the FUTURE trial. BJU Int. 2023, 131, 313–320. [Google Scholar] [CrossRef]
- Emiliozzi, P.; Corsetti, A.; Tassi, B.; Federico, G.; Martini, M.; Pansadoro, V. Best approach for prostate cancer detection: A prospective study on transperineal versus transrectal six-core prostate biopsy. Urology 2003, 61, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, N.R.; Breen, K.; Haroon, U.M.; Akram, M.; Flood, H.D.; Giri, S.K. Patient experience after transperineal template prostate biopsy compared to prior transrectal ultrasound guided prostate biopsy. Cent. Eur. J. Urol. 2018, 71, 43–47. [Google Scholar] [CrossRef]
- Muthuveloe, D.; Telford, R.; Viney, R.; Patel, P. The detection and upgrade rates of prostate adenocarcinoma following transperineal template-guided prostate biopsy—A tertiary referral centre experience. Cent. Eur. J. Urol. 2016, 69, 42–47. [Google Scholar] [CrossRef]
- Kawakami, S.; Yamamoto, S.; Numao, N.; Ishikawa, Y.; Kihara, K.; Fukui, I. Direct comparison between transrectal and transperineal extended prostate biopsy for the detection of cancer. Int. J. Urol. 2007, 14, 719–724. [Google Scholar] [CrossRef]
- Di Franco, C.A.; Jallous, H.; Porru, D.; Giliberto, G.L.; Cebrelli, T.; Tinelli, C.; Rovereto, B. A retrospective comparison between transrectal and transperineal prostate biopsy in the detection of prostate cancer. Arch. Ital. Urol. Androl. 2017, 89, 55–59. [Google Scholar] [CrossRef]
- Valerio, M.; McCartan, N.; Freeman, A.; Punwani, S.; Emberton, M.; Ahmed, H.U. Visually directed vs. software-based targeted biopsy compared to transperineal template mapping biopsy in the detection of clinically significant prostate cancer. Urol. Oncol. 2015, 33, 424.e9–424.e16. [Google Scholar] [CrossRef]
- Schouten, M.G.; van der Leest, M.; Pokorny, M.; Hoogenboom, M.; Barentsz, J.O.; Thompson, L.C.; Futterer, J.J. Why and Where do We Miss Significant Prostate Cancer with Multi-parametric Magnetic Resonance Imaging followed by Magnetic Resonance-guided and Transrectal Ultrasound-guided Biopsy in Biopsy-naive Men? Eur. Urol. 2017, 71, 896–903. [Google Scholar] [CrossRef]
- Wegelin, O.; van Melick, H.H.E.; Hooft, L.; Bosch, J.; Reitsma, H.B.; Barentsz, J.O.; Somford, D.M. Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted Prostate Biopsies: A Systematic Review of In-bore versus Magnetic Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique? Eur. Urol. 2017, 71, 517–531. [Google Scholar] [CrossRef]
- Marra, G.; Calleris, G.; Marquis, A.; Oderda, M.; Zhuang, J.; Guo, H.; Gontero, P. Reply to letter by Montorsi et al. Re: Marra et al. ‘Transperineal freehand multiparametric MRI fusion targeted biopsies under local anaesthesia for prostate cancer diagnosis: A multicentre prospective study of 1014 cases’. BJU Int. 2021, 128, 524. [Google Scholar] [CrossRef]
- Souto-Ribeiro, I.; Woods, L.; Maund, E.; Alexander Scott, D.; Lord, J.; Picot, J.; Shepherd, J. Transperineal biopsy devices in people with suspected prostate cancer—A systematic review and economic evaluation. Health Technol. Assess. 2024, 28, 1–213. [Google Scholar] [CrossRef]
- Connor, M.J.; Gorin, M.A.; Eldred-Evans, D.; Bass, E.J.; Desai, A.; Dudderidge, T.; Winkler, M.; Ahmed, H.U. Landmarks in the evolution of prostate biopsy. Nat. Rev. Urol. 2023, 20, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pan, B.; Fu, Y.; Liu, Y. Development of a transperineal prostate biopsy robot guided by MRI-TRUS image. Int. J. Med. Robot. 2021, 17, e2266. [Google Scholar] [CrossRef] [PubMed]
- Glielmo, P.; Fusco, S.; Gitto, S.; Zantonelli, G.; Albano, D.; Messina, C.; Sconfienza, L.M.; Mauri, G. Artificial intelligence in interventional radiology: State of the art. Eur. Radiol. Exp. 2024, 8, 62. [Google Scholar] [CrossRef]
- Steiner, D.F.; Nagpal, K.; Sayres, R.; Foote, D.J.; Wedin, B.D.; Pearce, A.; Cai, C.J.; Winter, S.R.; Symonds, M.; Yatziv, L.; et al. Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies. JAMA Netw. Open 2020, 3, e2023267. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Zheng, X.; Liu, B.; Chen, H.; Li, J.; Ma, X.; Xiang, J.; Weng, G.; Zhu, W.; et al. A prospective multi-center randomized comparative trial evaluating outcomes of transrectal ultrasound (TRUS)-guided 12-core systematic biopsy, mpMRI-targeted 12-core biopsy, and artificial intelligence ultrasound of prostate (AIUSP) 6-core targeted biopsy for prostate cancer diagnosis. World J. Urol. 2023, 41, 653–662. [Google Scholar] [CrossRef]
Author, Year | No. Pts | Study Type | Approach | Mean PSA | Overall CDR | csPCa Detection Rate | Key Findings |
---|---|---|---|---|---|---|---|
Liu, 2024 [11] | 444 | Retrospective | TR—228 TP—216 | 7 | TR—22.4% TP—50% | TR—66.7% TP—78.8% | TPBx was associated with a greater CDR in grey zone PSA. csPCa detection rates did not significantly differ among systematic, targeted and combined biopsy groups. |
Mengxin Lu, 2023 [10] | 452 | Retrospective | TR—245 TP—207 | 22 | TR—56.3% TP—44.4% | TR—30.6% for T1 + T2 TP—36.9% for T1 + T2 TR—72.4% for T3 + T4 TP—62.5% for T3–T4 | csPCa (T3–T4) was higher with TR approach, while detection rate of T1–T2 was higher in TP group. |
Chen, 2021 [12] | 212 | Prospective | TR—86 TP—127 | 13.17 | TR—50% TP—63.5% | TR—87.2% TP—84% | Overall CDRs and csPCa detection rates were comparable. |
Huang, 2019 [13] | 238 | Comparative | TR—108 TP—130 | 10 | TR—49% TP—45% | NA | CDRs were comparable. |
K L Lo, 2019 [14] | 200 | Retrospective, comparative | TR—100 TP—100 | >4 | TR—25% TP—35% | TR—68% TP—50% | Overall CDRs were comparable. |
Xue, 2017 [15] | 4230 | Meta-analysis | TR—1643 TP—1993 | 10 | Comparable (OR = 1.11, 95%; CI = 0.92–1.34) | Comparable (OR = 0.76, 95%; CI = 0.61–0.96) | Overall CDRs and csPCa detection rates were comparable. |
Guo, 2015 [16] | 399 | Prospective | TR—166 TP—173 | 9 | TR—31.9% TP—35.3% | No difference | Overall CDRs and csPCa detection rates were comparable. |
Cerruto, 2014 [17] | 108 | RCT | TR—54 TP—54 | >4 | TR—46.24% TP—44.44% | NA | Overall CDRs were comparable. TP approach offered better sampling of apex. |
Author, Year | No. Pts | Study Type | Approach | Mean PSA | Overall Detection Rate | csPca Detection Rate | Key Findings |
---|---|---|---|---|---|---|---|
Qiyou Wu et al., 2024 [20] | 8826 | Retrospective | TR-MRI-TB TP-MRI-TB | NA | RR 0.91 [95% CI 0.76, 1.08] | RR 1.33 [95% CI 1.09, 1.63]. | TP-MRI-TB had a higher detection rate of both PCa and csPCa. TP detected more csPCa in anterior region. |
Fabio Zattoni, 2022 [23] | 5241 | Multicentric retrospective | TR-TBx—1936 TP-TBx—3305 | TR-TBx—50% TP-TBx—64% | TR-TBx—35% TP-TBx—49% | TP-TBx had a significantly higher likelihood than TR-TBx of detecting csPCa in the apex, transition/central zone and anterior zone. It allowed for better PCa risk assessment. | |
Basil Kaufman, 2022 [24] | 392 | Comparative | 7 | Overall CDR—51% | Overall csPca—79% | CDR was comparable. | |
Alessandro Uleri, 2023 [21] | 11 studies | Systematic and meta-analysis | TR—3522 TP—5140 | NA | CDR—no statistical difference | (odds ratio [OR] 1.11, 95% [CI] 0.98–1.25; p = 0.1). | No statistical difference in detection of csPCa between TR and TP. In TP group, csPCa detection was higher in apical and anterior regions as well as in PI-RADS 4 lesions. |
Romain Diamand, 2024 [25] | 3949 | Comparative | TP—2187 TR—1762 | 7 | TR—45%. TP—51% | TR—45% for GG > 2 TP—51% for GG > 2 TR—23% for GG > 3 TP—29% for GG > 3 | Higher CDR in anterior region and apex for TR. |
Guillaume Ploussard, 2024 [22] | 250 | Randomized—PERFECT trial | TR—128 TP—122 | 7 | TR-TBx—64.1% TP-TBx—71.3% sysTR—65.6% sysTP—60.2% | TR—51.9% for ISUP > 2 TP—46.4% for ISUP > 2 | CDR in posterior region was higher in TR group, whereas CDR was higher in anterior region for TP group (40.6% vs. 26.5%). higher detection rate in the TP group for ISUP < 2 (23% vs. 9.4%). Overall CRD was comparable between two groups. |
Author, Year | No. Pts | Study Type | Approach | Mean PSA | Overall Detection Rate | csPCa Detection Rate | Key Findings |
---|---|---|---|---|---|---|---|
Chen, 2021 [12] | 212 | Prospective | TR—86 TP—127 | 13.17 | TR—50% TP—63.5% | TR—87.2% TP—84% | CDR was comparable in both groups. |
Borkowetz, 2019 [33] | 710 | Comparative | comP-bx (systemic +fusion) | 8.8 | Systematic cores = 12 Targeted cores = 7 CDR—40% | Overall csPCa—29–74% | fusPbx increased detection rate of PCa, particularly csPCa, than sysPbx alone. |
Pepe, 2017 [34] | 200 | Comparative | TR—40 TP—56 | NA | Overall CDR—30% | csPCa TR—78.3% TP—93.3% | mpMRI/TRUS TP cognitive targeted biopsies have higher detection rates of csPCa in anterior zone vs. mpMRI/TRUS TR fusion. |
Kravchik, 2015 [32] | 133 | Comparative | STR—68 STP—65 | 7 | No. of Cores TR—21 TP—45 CDR—comparable | TR—20.5% TP—38.4% | Template-guided approach had higher cancer detection rate of rebiopsy. |
Author, Year | No. Pts | Study | Approach | Rectal Bleeding | Haematuria | Infection | Acute Urinary Retention | Pain | Key Findings |
---|---|---|---|---|---|---|---|---|---|
Mian, 2024 [39] | 718 | RCT, ProBE-PC trial | TR—351 TP—367 | Comparable | Comparable | TR—2.6% TR—2.7% | TR—<2% TP—5–11.1% | NA | Non-infectious complications were comparable; sepsis rate was 0% for both approaches. |
Hu, 2024 [38] | 658 | RCT, prevention study | TR—330 TP—328 | TR—0.4% TP—0% | NA | TR—1.4% TP—0% | TR—1.1% TP—0.3% | TR—2.3% TP—2.1% | TP group reported more pain and discomfort, but was small and usually resolved within 1 week. |
Ploussard, 2024 [22] | 250 | PERFECT trial (CCAFU-PR1) | TR—128 TP—122 | No significant difference | NA | Comparable | TR—4 patients TP—2 patients | No difference | Pain, quality of life urinary and sexual functions were comparable. Sepsis in TR group (0.8%). |
Berquin, 2023 [36] | 128 | Comparative–observational | TR—61 TP—67 | TR—3% TP—8.2% | TR—32.8% TP—46.3% | TR—3.3% TP—0% | TR—0% TP—1.5% | Similar | No difference in pain and IPSS among groups; haematuria at 24 h was higher with the TP approach. |
Ortner, 2021 [40] | Comparative | TR—36.8% TP—<10% | TR—65.8% TP < 10% | TR—3.6% TP—<0.5% | <2% | 43% | Infectious complications are nullified in TP group. | ||
Chen, 2021 [12] | 212 | Prospective | TR—86 TP—127 | NA | TR—1.7% TP—0.9% | TR—2.2% TP—0.9% | TR—4.5% TP—3.8% | TR—0 TP—0.9% | Overall complication rates were 11.2% for TR vs. 6.1% for TP. Non-septic UTIs were lower in TP group. |
Berry, 2020 [41] | 73,630 | Comparative | TR—59,907 TP—13,723 | NA | TR—0.66% TP—0.71% | NA | TR—0.95% TP—1.93% | NA | TP biopsy had a lower risk of readmission for sepsis but a higher risk of readmission for urinary retention than TR biopsy. |
Lo, 2019 [14] | 200 | Retrospective, comparative | TR—100 TP—100 | TR—1% TP—0% | TR—0 TP—0 | TR—4% TP—0 | TR—1% TP—3% | NA | Four percent in TR group had fever and required at least 1-week admission for intravenous antibiotic administration. |
Xue, 2017 [15] | 4230 | Meta-analysis | 4230 | TR—10.2%. TP—1.5%. | TR—20.6%. TP—17.6%. | NA | TR—3.8% TP—2.4% | NA | Overall complications were comparable. |
Guo, 2015 [16] | 399 | Prospective | TR—166 TP—173 | TR—8.7% TP—0% | TR—23% TP—19.8% | Sepsis—0% for TP vs. 0.6% TR | NA | TR—13% TP—35% | Higher rates of mild rectal bleeding and mild pain in TP group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najjar, S.; Mirvald, C.; Danilov, A.; Labanaris, A.; Vlaicu, A.G.; Giurca, L.; Sinescu, I.; Surcel, C. Comparative Analysis of Diagnostic Accuracy and Complication Rate of Transperineal Versus Transrectal Prostate Biopsy in Prostate Cancer Diagnosis. Cancers 2025, 17, 1006. https://doi.org/10.3390/cancers17061006
Najjar S, Mirvald C, Danilov A, Labanaris A, Vlaicu AG, Giurca L, Sinescu I, Surcel C. Comparative Analysis of Diagnostic Accuracy and Complication Rate of Transperineal Versus Transrectal Prostate Biopsy in Prostate Cancer Diagnosis. Cancers. 2025; 17(6):1006. https://doi.org/10.3390/cancers17061006
Chicago/Turabian StyleNajjar, Salam, Cristian Mirvald, Alexandru Danilov, Apostolos Labanaris, Adrian George Vlaicu, Leonardo Giurca, Ioanel Sinescu, and Cristian Surcel. 2025. "Comparative Analysis of Diagnostic Accuracy and Complication Rate of Transperineal Versus Transrectal Prostate Biopsy in Prostate Cancer Diagnosis" Cancers 17, no. 6: 1006. https://doi.org/10.3390/cancers17061006
APA StyleNajjar, S., Mirvald, C., Danilov, A., Labanaris, A., Vlaicu, A. G., Giurca, L., Sinescu, I., & Surcel, C. (2025). Comparative Analysis of Diagnostic Accuracy and Complication Rate of Transperineal Versus Transrectal Prostate Biopsy in Prostate Cancer Diagnosis. Cancers, 17(6), 1006. https://doi.org/10.3390/cancers17061006