Unlocking the Potential of ctDNA in Sarcomas: A Review of Recent Advances
Simple Summary
Abstract
1. Background
1.1. Sarcoma Introduction
1.2. cfDNA/ctDNA Introduction
Authors | Technique | Sarcoma Type(s) | Sensitivity/ Specificity | Correlation with Clinical Outcomes | Other Critical Findings |
---|---|---|---|---|---|
Schmidkonz and Krumbholz et al. [35] | 18F-FDG-PET/CT + ctDNA quantification (ddPCR) | ES | PET-ctDNA agreement: 65% after 2 cycles, 90% after 5 cycles | Correlation between PET-derived parameters and ctDNA; effective for response monitoring and relapse detection | Combined PET/ctDNA offers promising noninvasive monitoring |
Shah and Azad et al. [36] | CAPP-Seq and CNA detection | ES, RMS, OS | Translocations identified with 81.3% sensitivity | Declines in ctDNA levels aligned with therapy response | Rising ctDNA detected before relapse, providing early monitoring potential |
Ruhen and Lak et al. [32] | ctDNA via ddPCR, panel sequencing, WES | Pediatric RMS | ctDNA detected: 14/18 pretreatment plasma (ddPCR), 7/7 sequencing | Fluctuations in ctDNA corresponded to treatment response | Sequencing better for tracking changes across multiple genomic targets |
Lyskjaer and Davies et al. [37] | ddPCR | Chondrosarcoma | Pre-op ctDNA: 37%; post-op ctDNA: 39% | Detection correlated with poor prognosis, tumor grade, and volume | Hotspot SNVs detected in 80% of cases |
Christodoulou and Yellapantula et al. [38] | LB with low-pass WGS | Pediatric solid tumors: sarcomas, renal tumors, hepatic tumors | CNA detection rate ~70% | Feasible for stratifying pediatric patients and early relapse detection | Hybridization-based panel successfully identified sarcoma-related fusions |
Ruas and Silva et al. [39] | LB-based CNA profiling (ddPCR) | Pediatric tumors: ES, RMS, LMS | CNA levels concordant between tumors and ctDNA: 56% | cfDNA levels correlated with metastasis development during therapy | Potential for long-term biomarker monitoring |
Audinot and Drubay et al. [40] | Low-pass WGS | OS | Improved clinical score discrimination by >8% and ~5% for different time points | Prognostic factor for OS risk stratification when combined with known clinical factors | PRONOS tool improves prognosis predictions with diagCPA |
Lyskjaer and Kara et al. [41] | Methylation-specific ddPCR | OS | ctDNA detected in 69% of samples pre-surgery | Effective for prognosis and survival prediction | Pre-surgical levels correlated with survival outcomes and prognosis |
Bui and Nemat-Gorgani et al. [42] | Patient-specific ctDNA analysis using bespoke panels | STS | ctDNA increased in 90% of patients post-cryotherapy | Subsequent decreases in ctDNA correlated with better PFS | Pretreatment ctDNA allele fraction negatively associated with treatment response and overall survival |
Anderson and Ghisoli et al. [43] | Patient-specific ddPCR | Recurrent ES | Patient-specific EWS/FLI1 ctDNA detected in all 8 patients at baseline | ctDNA levels tracked disease burden during treatment | Correlated with treatment response to Vigil/TEM/IRI |
Mattox and Douville et al. [44] | RealSeq and ddPCR | MPNST | Sensitivity: 33% (aneuploidy), 50% (CNA) with specificity: 97% | LB effective for early detection of MPNST | High specificity retained with sub-chromosomal CNA analysis |
McConnell and Gazdova et al. [45] | Sarcoma-specific NGS gene panel | ARMS, ES, synovial sarcoma, extraskeletal myxoid chondrosarcoma, clear cell sarcoma, undifferentiated round cell sarcoma, myxoid liposarcoma, alveolar soft part sarcoma, dedifferentiated liposarcoma | Variants identified: 91.6% tissue, 50% plasma | NGS in ctDNA shows great potential for diagnosis and monitoring of various sarcomas | N/A |
Lak and van Zogchel et al. [32] | S-WGS and cfRRBS | Pediatric RMS | ctDNA detection: 53% and 92% (cfRRBS) | Plasma RASSF1A correlated with poor prognosis | Methylation-specific detection methods proved effective for risk stratification |
Demoret and Gregg et al. [46] | Targeted NGS | LMS, GIST, dedifferentiated liposarcoma, undifferentiated pleomorphic sarcoma | ctDNA detection was feasible in 77% of cases, with moderate overall concordance rate of 51% | Partial correlation with clinical outcomes | 26% complete concordance, 46% partial concordance, >50% TF < 1% |
Heinrich and Jones et al. [47] | Targeted NGS | Advanced GIST | ctDNA detected in 77%; KIT mutations: 59% | KIT exon 11 mutations associated with improved PFS | ctDNA sequencing predicts therapy efficacy |
Johansson and Berndsen et al. [48] | Targeted NGS | Advanced GIST | ctDNA detected in at least 1 time point: 28% | High-risk patients exhibited higher ctDNA levels and tumor cell proliferation | Patients positive for ctDNA pre-surgery became ctDNA-negative post-surgery |
Braig and Runkel et al. [49] | Targeted NGS | STS | Mean conversion rate: 51.4% | Statistically significant correlation with tumor burden and treatment response | ctDNA levels indicated minimal residual disease during remission and increased with recurrence |
Zhou and Bui et al. [50] | Targeted NGS | LMS | 100% ctDNA positivity concordant with imaging-detected disease progression | ctDNA levels concordant with disease progression and therapy response | Key driver mutations included TP53, PTEN, and RB1 |
Eisenhardt and Schmid et al. [51] | Targeted NGS | Myxoid liposarcoma | Breakpoints of balanced translocations detected in 70.5% of tumors | ctDNA levels decreased post-resection and increased with metastatic disease | ctDNA declined with radiotherapy/chemotherapy but rose with increased tumor burden |
Eisenhardt and Brugger et al. [52] | Targeted NGS | Synovial sarcoma | ctDNA breakpoint detection: 100% specificity, 40% sensitivity | Increased ctDNA mutations improved sensitivity and correlated with tumor burden | Exome panel proved more sensitive and valuable than breakpoint panel |
Madanat-Harjuoja and Klega et al. [53] | ULP-WGS | LMS | ctDNA detection: 49% pre-chemo, 24.6% post-2 cycles of chemo | Higher ctDNA correlated with lower survival; post-2 cycles of chemo linked to worse outcomes | N/A |
Szymanski and Sundby et al. [54] | ULP-WGS | MPNST | TF distinguished MPSNT from PN with 86% accuracy | cfDNA distinguished benign vs. malignant tumors in hereditary cancer syndrome | ctDNA levels correlated with radiographic response across treatments |
Abbou and Klega et al. [33] | ULP-WGS + Rhabdo-Seq | IR-RMS | Rhabdo-Seq detected ctDNA in 55% of cases | Higher ctDNA levels were linked to significantly worse outcomes | PAX3/PAX7-FOXO1 translocations detected with precision |
Tsoi and Gokgoz et al. [55] | WES + ddPCR analysis | Bone and soft tissue sarcoma | cfDNA detected in 69/70 samples (>0.5 ng/mL) | Lower cfDNA levels were associated with improved disease-free survival | N/A |
Seidel and Kashofer et al. [31] | WGS and ddPCR | ES | N/A | ctDNA detection correlated with treatment response and remission; potential for monitoring and stratification | Strong indicator of disease recurrence |
2. DNA Profiling and Detection Methods
2.1. Commonly Used Methods
2.2. ctDNA Detection Technologies Used in Sarcoma
2.2.1. ddPCR Analysis
2.2.2. Whole-Genome Sequencing
2.2.3. Low-Pass and Ultra-Low-Pass WGS
2.2.4. Targeted NGS
2.2.5. Summary of ctDNA Applications in Sarcoma and Future Directions
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Fletcher, C.D.M.; Bridge, J.A.; Hogendoorn, P.; Mertens, F. WHO Classification of Tumours of Soft Tissue and Bone; IARC WHO Classification of Tumours: Lyon, France, 2013. [Google Scholar]
- Taylor, B.S.; Barretina, J.; Maki, R.G.; Antonescu, C.R.; Singer, S.; Ladanyi, M. Advances in sarcoma genomics and new therapeutic targets. Nat. Rev. Cancer 2011, 11, 541–557. [Google Scholar] [CrossRef]
- Guillou, L.; Aurias, A. Soft tissue sarcomas with complex genomic profiles. Virchows Arch. 2010, 456, 201–217. [Google Scholar] [CrossRef]
- Eastley, N.; Sommer, A.; Ottolini, B.; Neumann, R.; Luo, J.L.; Hastings, R.K.; McCulloch, T.; Esler, C.P.; Shaw, J.A.; Ashford, R.U.; et al. The Circulating Nucleic Acid Characteristics of Non-Metastatic Soft Tissue Sarcoma Patients. Int. J. Mol. Sci. 2020, 21, 4483. [Google Scholar] [CrossRef]
- Sandberg, A.A.; Bridge, J.A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: Osteosarcoma and related tumors. Cancer Genet. Cytogenet. 2003, 145, 1–30. [Google Scholar]
- Pervaiz, N.; Colterjohn, N.; Farrokhyar, F.; Tozer, R.; Figueredo, A.; Ghert, M. A systematic meta-analysis of randomized controlled trials of adjuvant chemotherapy for localized resectable soft-tissue sarcoma. Cancer 2008, 113, 573–581. [Google Scholar] [CrossRef]
- Woll, P.J.; Reichardt, P.; Le Cesne, A.; Bonvalot, S.; Azzarelli, A.; Hoekstra, H.J.; Leahy, M.; Van Coevorden, F.; Verweij, J.; Hogendoorn, P.C.; et al. Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931): A multicentre randomised controlled trial. Lancet Oncol. 2012, 13, 1045–1054. [Google Scholar] [CrossRef]
- Pasquali, S.; Pizzamiglio, S.; Touati, N.; Litiere, S.; Marreaud, S.; Kasper, B.; Gelderblom, H.; Stacchiotti, S.; Judson, I.; Dei Tos, A.P.; et al. The impact of chemotherapy on survival of patients with extremity and trunk wall soft tissue sarcoma: Revisiting the results of the EORTC-STBSG 62931 randomised trial. Eur. J. Cancer 2019, 109, 51–60. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Soft Tissue Sarcoma. Version 5.2024. 2024. Available online: https://www.nccn.org (accessed on 5 March 2025).
- Casali, P.G.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.; Brodowicz, T.; et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. S4), iv51–iv67. [Google Scholar] [CrossRef]
- Coombs, C.C.; Dickherber, T.; Crompton, B.D. Chasing ctDNA in Patients with Sarcoma. Am. Soc. Clin. Oncol. Educ. Book. 2020, 40, e351–e360. [Google Scholar] [CrossRef]
- Ansari, J.; Yun, J.W.; Kompelli, A.R.; Moufarrej, Y.E.; Alexander, J.S.; Herrera, G.A.; Shackelford, R.E. The liquid biopsy in lung cancer. Genet. Cancer 2016, 7, 355–367. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra224. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Forshew, T.; Murtaza, M.; Parkinson, C.; Gale, D.; Tsui, D.W.; Kaper, F.; Dawson, S.J.; Piskorz, A.M.; Jimenez-Linan, M.; Bentley, D.; et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 2012, 4, 136ra168. [Google Scholar] [CrossRef]
- Mandel, P.; Metais, P. Nuclear Acids In Human Blood Plasma. C R. Seances Soc. Biol. Fil. 1948, 142, 241–243. [Google Scholar]
- Haber, D.A.; Velculescu, V.E. Blood-based analyses of cancer: Circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014, 4, 650–661. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Chabner, B.A. Application of Cell-free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018, 379, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Heitzer, E.; Haque, I.S.; Roberts, C.E.S.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 2019, 20, 71–88. [Google Scholar] [CrossRef]
- Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.J.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky, R.L.; et al. Circulating Tumor DNA Analysis in Patients with Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J. Clin. Oncol. 2018, 36, 1631–1641. [Google Scholar] [CrossRef]
- Davis, G.L., Jr.; Davis, J.S.t. Detection of circulating DNA by counterimmunoelectrophoresis (CIE). Arthritis Rheum. 1973, 16, 52–58. [Google Scholar] [CrossRef]
- Tan, E.M.; Schur, P.H.; Carr, R.I.; Kunkel, H.G. Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J. Clin. Investig. 1966, 45, 1732–1740. [Google Scholar] [PubMed]
- Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016, 35, 347–376. [Google Scholar] [CrossRef]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Rodrigues Filho, E.M.; Simon, D.; Ikuta, N.; Klovan, C.; Dannebrock, F.A.; Oliveira de Oliveira, C.; Regner, A. Elevated cell-free plasma DNA level as an independent predictor of mortality in patients with severe traumatic brain injury. J. Neurotrauma 2014, 31, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.M.; Kothari, P.D.; Mouliere, F.; Mair, R.; Somnay, S.; Benayed, R.; Zehir, A.; Weigelt, B.; Dawson, S.J.; Arcila, M.E.; et al. The value of cell-free DNA for molecular pathology. J. Pathol. 2018, 244, 616–627. [Google Scholar] [CrossRef]
- Stroun, M.; Anker, P.; Maurice, P.; Lyautey, J.; Lederrey, C.; Beljanski, M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 1989, 46, 318–322. [Google Scholar] [CrossRef]
- Thierry, A.R.; Mouliere, F.; Gongora, C.; Ollier, J.; Robert, B.; Ychou, M.; Del Rio, M.; Molina, F. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 2010, 38, 6159–6175. [Google Scholar] [CrossRef]
- Mazaika, E.; Homsy, J. Digital Droplet PCR: CNV Analysis and Other Applications. Curr. Protoc. Hum. Genet. 2014, 82, 7.24.1–7.24.13. [Google Scholar] [CrossRef]
- Seidel, M.G.; Kashofer, K.; Moser, T.; Thueringer, A.; Liegl-Atzwanger, B.; Leithner, A.; Szkandera, J.; Benesch, M.; El-Heliebi, A.; Heitzer, E. Clinical implementation of plasma cell-free circulating tumor DNA quantification by digital droplet PCR for the monitoring of Ewing sarcoma in children and adolescents. Front. Pediatr. 2022, 10, 926405. [Google Scholar] [CrossRef]
- Lak, N.S.M.; van Zogchel, L.M.J.; Zappeij-Kannegieter, L.; Javadi, A.; van Paemel, R.; Vandeputte, C.; De Preter, K.; De Wilde, B.; Chicard, M.; Iddir, Y.; et al. Cell-Free DNA as a Diagnostic and Prognostic Biomarker in Pediatric Rhabdomyosarcoma. JCO Precis. Oncol. 2023, 7, e2200113. [Google Scholar] [CrossRef]
- Abbou, S.; Klega, K.; Tsuji, J.; Tanhaemami, M.; Hall, D.; Barkauskas, D.A.; Krailo, M.D.; Cibulskis, C.; Nag, A.; Thorner, A.R.; et al. Circulating Tumor DNA Is Prognostic in Intermediate-Risk Rhabdomyosarcoma: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2023, 41, 2382–2393. [Google Scholar] [CrossRef]
- Gulilat, M.; Lamb, T.; Teft, W.A.; Wang, J.; Dron, J.S.; Robinson, J.F.; Tirona, R.G.; Hegele, R.A.; Kim, R.B.; Schwarz, U.I. Targeted next generation sequencing as a tool for precision medicine. BMC Med. Genom. 2019, 12, 81. [Google Scholar] [CrossRef]
- Krumbholz, M.; Hellberg, J.; Steif, B.; Bäuerle, T.; Gillmann, C.; Fritscher, T.; Agaimy, A.; Frey, B.; Juengert, J.; Wardelmann, E.; et al. Genomic EWSR1 Fusion Sequence as Highly Sensitive and Dynamic Plasma Tumor Marker in Ewing Sarcoma. Clin. Cancer Res. 2016, 22, 4356–4365. [Google Scholar] [CrossRef]
- Shah, A.T.; Azad, T.D.; Breese, M.R.; Chabon, J.J.; Hamilton, E.G.; Straessler, K.; Kurtz, D.M.; Leung, S.G.; Spillinger, A.; Liu, H.Y.; et al. A Comprehensive Circulating Tumor DNA Assay for Detection of Translocation and Copy-Number Changes in Pediatric Sarcomas. Mol. Cancer Ther. 2021, 20, 2016–2025. [Google Scholar] [CrossRef]
- Lyskjaer, I.; Davies, C.; Strobl, A.C.; Hindley, J.; James, S.; Lalam, R.K.; Cross, W.; Hide, G.; Rankin, K.S.; Jeys, L.; et al. Circulating tumour DNA is a promising biomarker for risk stratification of central chondrosarcoma with IDH1/2 and GNAS mutations. Mol. Oncol. 2021, 15, 3679–3690. [Google Scholar] [CrossRef]
- Christodoulou, E.; Yellapantula, V.; O’Halloran, K.; Xu, L.; Berry, J.L.; Cotter, J.A.; Zdanowicz, A.; Mascarenhas, L.; Amatruda, J.F.; Ostrow, D.; et al. Combined low-pass whole genome and targeted sequencing in liquid biopsies for pediatric solid tumors. npj Precis. Oncol. 2023, 7, 21. [Google Scholar] [CrossRef]
- Ruas, J.S.; Silva, F.L.T.; Euzébio, M.F.; Biazon, T.O.; Daiggi, C.M.M.; Nava, D.; Franco, M.T.; Cardinalli, I.A.; Cassone, A.E.; Pereira, L.H.; et al. Somatic Copy Number Alteration in Circulating Tumor DNA for Monitoring of Pediatric Patients with Cancer. Biomedicines 2023, 11, 1082. [Google Scholar] [CrossRef]
- Audinot, B.; Drubay, D.; Gaspar, N.; Mohr, A.; Cordero, C.; Marec-Bérard, P.; Lervat, C.; Piperno-Neumann, S.; Jimenez, M.; Mansuy, L.; et al. ctDNA quantification improves estimation of outcomes in patients with high-grade osteosarcoma: A translational study from the OS2006 trial. Ann. Oncol. 2024, 35, 559–568. [Google Scholar] [CrossRef]
- Lyskjær, I.; Kara, N.; De Noon, S.; Davies, C.; Rocha, A.M.; Strobl, A.C.; Usher, I.; Gerrand, C.; Strauss, S.J.; Schrimpf, D.; et al. Osteosarcoma: Novel prognostic biomarkers using circulating and cell-free tumour DNA. Eur. J. Cancer 2022, 168, 1–11. [Google Scholar] [CrossRef]
- Bui, N.Q.; Nemat-Gorgani, N.; Subramanian, A.; Torres, I.A.; Lohman, M.; Sears, T.J.; van de Rijn, M.; Charville, G.W.; Becker, H.C.; Wang, D.S.; et al. Monitoring Sarcoma Response to Immune Checkpoint Inhibition and Local Cryotherapy with Circulating Tumor DNA Analysis. Clin. Cancer Res. 2023, 29, 2612–2620. [Google Scholar] [CrossRef]
- Anderson, P.; Ghisoli, M.; Crompton, B.D.; Klega, K.S.; Wexler, L.H.; Slotkin, E.K.; Stanbery, L.; Manning, L.; Wallraven, G.; Manley, M.; et al. Pilot Study of Recurrent Ewing’s Sarcoma Management with Vigil/Temozolomide/Irinotecan and Assessment of Circulating Tumor (ct) DNA. Clin. Cancer Res. 2023, 29, 1689–1697. [Google Scholar] [CrossRef]
- Mattox, A.K.; Douville, C.; Silliman, N.; Ptak, J.; Dobbyn, L.; Schaefer, J.; Popoli, M.; Blair, C.; Judge, K.; Pollard, K.; et al. Detection of malignant peripheral nerve sheath tumors in patients with neurofibromatosis using aneuploidy and mutation identification in plasma. eLife 2022, 11, e74238. [Google Scholar] [CrossRef]
- Mc Connell, L.; Gazdova, J.; Beck, K.; Srivastava, S.; Harewood, L.; Stewart, J.P.; Hübschmann, D.; Stenzinger, A.; Glimm, H.; Heilig, C.E.; et al. Detection of Structural Variants in Circulating Cell-Free DNA from Sarcoma Patients Using Next Generation Sequencing. Cancers 2020, 12, 3627. [Google Scholar] [CrossRef]
- Demoret, B.; Gregg, J.; Liebner, D.A.; Tinoco, G.; Lenobel, S.; Chen, J.L. Prospective Evaluation of the Concordance of Commercial Circulating Tumor DNA Alterations with Tumor-Based Sequencing across Multiple Soft Tissue Sarcoma Subtypes. Cancers 2019, 11, 1829. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Jones, R.L.; George, S.; Gelderblom, H.; Schöffski, P.; von Mehren, M.; Zalcberg, J.R.; Kang, Y.-K.; Razak, A.A.; Trent, J.; et al. Ripretinib versus sunitinib in gastrointestinal stromal tumor: ctDNA biomarker analysis of the phase 3 INTRIGUE trial. Nat. Med. 2024, 30, 498–506. [Google Scholar] [CrossRef]
- Johansson, G.; Berndsen, M.; Lindskog, S.; Österlund, T.; Fagman, H.; Muth, A.; Ståhlberg, A. Monitoring Circulating Tumor DNA During Surgical Treatment in Patients with Gastrointestinal Stromal Tumors. Mol. Cancer Ther. 2021, 20, 2568–2576. [Google Scholar] [CrossRef]
- Braig, D.; Runkel, A.; Eisenhardt, A.E.; Schmid, A.; Zeller, J.; Pauli, T.; Lausch, U.; Wehrle, J.; Bronsert, P.; Jung, M.; et al. Individualized Mini-Panel Sequencing of ctDNA Allows Tumor Monitoring in Complex Karyotype Sarcomas. Int. J. Mol. Sci. 2022, 23, 10215. [Google Scholar] [CrossRef]
- Zhou, M.; Bui, N.; Rathore, R.; Sudhaman, S.; George, G.V.; Malashevich, A.K.; Malhotra, M.; Liu, M.C.; Aleshin, A.; Ganjoo, K.N. Feasibility of Longitudinal ctDNA Assessment in Patients with Uterine and Extra-Uterine Leiomyosarcoma. Cancers 2022, 15, 157. [Google Scholar] [CrossRef]
- Eisenhardt, A.E.; Schmid, A.; Esser, J.; Brugger, Z.; Lausch, U.; Kiefer, J.; Braig, M.; Runkel, A.; Wehrle, J.; Claus, R.; et al. Targeted next-generation sequencing of circulating free DNA enables non-invasive tumor detection in myxoid liposarcomas. Mol. Cancer 2022, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Eisenhardt, A.E.; Brugger, Z.; Lausch, U.; Kiefer, J.; Zeller, J.; Runkel, A.; Schmid, A.; Bronsert, P.; Wehrle, J.; Leithner, A.; et al. Genotyping of Circulating Free DNA Enables Monitoring of Tumor Dynamics in Synovial Sarcomas. Cancers 2022, 14, 2078. [Google Scholar] [CrossRef]
- Madanat-Harjuoja, L.M.; Klega, K.; Lu, Y.; Shulman, D.S.; Thorner, A.R.; Nag, A.; Tap, W.D.; Reinke, D.K.; Diller, L.; Ballman, K.V.; et al. Circulating Tumor DNA Is Associated with Response and Survival in Patients with Advanced Leiomyosarcoma. Clin. Cancer Res. 2022, 28, 2579–2586. [Google Scholar] [CrossRef]
- Szymanski, J.J.; Sundby, R.T.; Jones, P.A.; Srihari, D.; Earland, N.; Harris, P.K.; Feng, W.; Qaium, F.; Lei, H.; Roberts, D.; et al. Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: A cross-sectional study. PLoS Med. 2021, 18, e1003734. [Google Scholar] [CrossRef]
- Tsoi, K.M.; Gokgoz, N.; Darville-O’Quinn, P.; Prochazka, P.; Malekoltojari, A.; Griffin, A.M.; Ferguson, P.C.; Wunder, J.S.; Andrulis, I.L. Detection and utility of cell-free and circulating tumour DNA in bone and soft-tissue sarcomas. Bone Jt. Res. 2021, 10, 602–610. [Google Scholar] [CrossRef]
- Abbou, S.D.; Shulman, D.S.; DuBois, S.G.; Crompton, B.D. Assessment of circulating tumor DNA in pediatric solid tumors: The promise of liquid biopsies. Pediatr. Blood Cancer 2019, 66, e27595. [Google Scholar] [CrossRef]
- van Ginkel, J.H.; Huibers, M.M.H.; van Es, R.J.J.; de Bree, R.; Willems, S.M. Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients. BMC Cancer 2017, 17, 428. [Google Scholar] [CrossRef]
- Adalsteinsson, V.A.; Ha, G.; Freeman, S.S.; Choudhury, A.D.; Stover, D.G.; Parsons, H.A.; Gydush, G.; Reed, S.C.; Rotem, D.; Rhoades, J.; et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 2017, 8, 1324. [Google Scholar] [CrossRef]
- Klega, K.; Imamovic-Tuco, A.; Ha, G.; Clapp, A.N.; Meyer, S.; Ward, A.; Clinton, C.; Nag, A.; Van Allen, E.; Mullen, E.; et al. Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children with Solid Tumors. JCO Precis. Oncol. 2018, 2018, PO.17.00285. [Google Scholar] [CrossRef]
- Shulman, D.S.; Klega, K.; Imamovic-Tuco, A.; Clapp, A.; Nag, A.; Thorner, A.R.; Van Allen, E.; Ha, G.; Lessnick, S.L.; Gorlick, R.; et al. Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: A report from the Children’s Oncology Group. Br. J. Cancer 2018, 119, 615–621. [Google Scholar] [CrossRef]
- Serrano, C.; Vivancos, A.; López-Pousa, A.; Matito, J.; Mancuso, F.M.; Valverde, C.; Quiroga, S.; Landolfi, S.; Castro, S.; Dopazo, C.; et al. Clinical value of next generation sequencing of plasma cell-free DNA in gastrointestinal stromal tumors. BMC Cancer 2020, 20, 99. [Google Scholar] [CrossRef]
- Jilg, S.; Rassner, M.; Maier, J.; Waldeck, S.; Kehl, V.; Follo, M.; Philipp, U.; Sauter, A.; Specht, K.; Mitschke, J.; et al. Circulating cKIT and PDGFRA DNA indicates disease activity in Gastrointestinal Stromal Tumor (GIST). Int. J. Cancer 2019, 145, 2292–2303. [Google Scholar] [CrossRef]
- Maier, J.; Lange, T.; Kerle, I.; Specht, K.; Bruegel, M.; Wickenhauser, C.; Jost, P.; Niederwieser, D.; Peschel, C.; Duyster, J.; et al. Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA. Clin. Cancer Res. 2013, 19, 4854–4867. [Google Scholar] [CrossRef]
- Namløs, H.M.; Boye, K.; Mishkin, S.J.; Barøy, T.; Lorenz, S.; Bjerkehagen, B.; Stratford, E.W.; Munthe, E.; Kudlow, B.A.; Myklebost, O.; et al. Noninvasive Detection of ctDNA Reveals Intratumor Heterogeneity and Is Associated with Tumor Burden in Gastrointestinal Stromal Tumor. Mol. Cancer Ther. 2018, 17, 2473–2480. [Google Scholar] [CrossRef]
- Hemming, M.L.; Klega, K.S.; Rhoades, J.; Ha, G.; Acker, K.E.; Andersen, J.L.; Thai, E.; Nag, A.; Thorner, A.R.; Raut, C.P.; et al. Detection of Circulating Tumor DNA in Patients with Leiomyosarcoma with Progressive Disease. JCO Precis. Oncol. 2019, 3, 1–11. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017, 171, 950–965.e928. [Google Scholar] [CrossRef]
- Crompton, B.D.; Stewart, C.; Taylor-Weiner, A.; Alexe, G.; Kurek, K.C.; Calicchio, M.L.; Kiezun, A.; Carter, S.L.; Shukla, S.A.; Mehta, S.S.; et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014, 4, 1326–1341. [Google Scholar] [CrossRef]
- Perry, J.A.; Kiezun, A.; Tonzi, P.; Van Allen, E.M.; Carter, S.L.; Baca, S.C.; Cowley, G.S.; Bhatt, A.S.; Rheinbay, E.; Pedamallu, C.S.; et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl. Acad. Sci. USA 2014, 111, E5564–E5573. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Liu, Y.; Alexandrov, L.B.; Edmonson, M.N.; Gawad, C.; Zhou, X.; Li, Y.; Rusch, M.C.; Easton, J.; et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 2018, 555, 371–376. [Google Scholar] [CrossRef]
- Shern, J.F.; Chen, L.; Chmielecki, J.; Wei, J.S.; Patidar, R.; Rosenberg, M.; Ambrogio, L.; Auclair, D.; Wang, J.; Song, Y.K.; et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014, 4, 216–231. [Google Scholar] [CrossRef]
- Peneder, P.; Stütz, A.M.; Surdez, D.; Krumbholz, M.; Semper, S.; Chicard, M.; Sheffield, N.C.; Pierron, G.; Lapouble, E.; Tötzl, M.; et al. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat. Commun. 2021, 12, 3230. [Google Scholar] [CrossRef]
- Chicard, M.; Colmet-Daage, L.; Clement, N.; Danzon, A.; Bohec, M.; Bernard, V.; Baulande, S.; Bellini, A.; Deveau, P.; Pierron, G.; et al. Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma. Clin. Cancer Res. 2018, 24, 939–949. [Google Scholar] [CrossRef]
- Eguchi-Ishimae, M.; Tezuka, M.; Kokeguchi, T.; Nagai, K.; Moritani, K.; Yonezawa, S.; Tauchi, H.; Tokuda, K.; Ishida, Y.; Ishii, E.; et al. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes. Chromosomes Cancer 2019, 58, 521–529. [Google Scholar] [CrossRef]
- Shukla, N.N.; Patel, J.A.; Magnan, H.; Zehir, A.; You, D.; Tang, J.; Meng, F.; Samoila, A.; Slotkin, E.K.; Ambati, S.R.; et al. Plasma DNA-based molecular diagnosis, prognostication, and monitoring of patients with EWSR1 fusion-positive sarcomas. JCO Precis. Oncol. 2017, 2017, PO.16.00028. [Google Scholar] [CrossRef]
- Barris, D.M.; Weiner, S.B.; Dubin, R.A.; Fremed, M.; Zhang, X.; Piperdi, S.; Zhang, W.; Maqbool, S.; Gill, J.; Roth, M.; et al. Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget 2018, 9, 12695–12704. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef]
- Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E.; et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, eaan2415. [Google Scholar] [CrossRef]
- Zviran, A.; Schulman, R.C.; Shah, M.; Hill, S.T.K.; Deochand, S.; Khamnei, C.C.; Maloney, D.; Patel, K.; Liao, W.; Widman, A.J.; et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 2020, 26, 1114–1124. [Google Scholar] [CrossRef]
- Ruhen, O.; Lak, N.S.M.; Stutterheim, J.; Danielli, S.G.; Chicard, M.; Iddir, Y.; Saint-Charles, A.; Di Paolo, V.; Tombolan, L.; Gatz, S.A.; et al. Molecular Characterization of Circulating Tumor DNA in Pediatric Rhabdomyosarcoma: A Feasibility Study. JCO Precis. Oncol. 2022, 6, e2100534. [Google Scholar] [CrossRef]
- Ng, P.C.; Kirkness, E.F. Whole genome sequencing. Methods Mol. Biol. 2010, 628, 215–226. [Google Scholar] [CrossRef]
- Mazzonetto, P.C.; Villela, D.; da Costa, S.S.; Krepischi, A.C.V.; Milanezi, F.; Migliavacca, M.P.; Pierry, P.M.; Bonaldi, A.; Almeida, L.G.D.; De Souza, C.A.; et al. Low-pass whole genome sequencing is a reliable and cost-effective approach for copy number variant analysis in the clinical setting. Ann. Hum. Genet. 2024, 88, 113–125. [Google Scholar] [CrossRef]
- Chat, V.; Ferguson, R.; Morales, L.; Kirchhoff, T. Ultra Low-Coverage Whole-Genome Sequencing as an Alternative to Genotyping Arrays in Genome-Wide Association Studies. Front. Genet. 2022, 12, 790445. [Google Scholar] [CrossRef]
- Pei, X.M.; Yeung, M.H.Y.; Wong, A.N.N.; Tsang, H.F.; Yu, A.C.S.; Yim, A.K.Y.; Wong, S.C.C. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023, 12, 493. [Google Scholar] [CrossRef]
- Arshad, J.; Roberts, A.; Ahmed, J.; Cotta, J.; Pico, B.A.; Kwon, D.; Trent, J.C. Utility of Circulating Tumor DNA in the Management of Patients with GI Stromal Tumor: Analysis of 243 Patients. JCO Precis. Oncol. 2020, 4, 66–73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiyer, S.; Kim, T.-H.; Collier, K.; Pollock, R.; Verschraegen, C.; Stover, D.G.; Tinoco, G. Unlocking the Potential of ctDNA in Sarcomas: A Review of Recent Advances. Cancers 2025, 17, 1040. https://doi.org/10.3390/cancers17061040
Aiyer S, Kim T-H, Collier K, Pollock R, Verschraegen C, Stover DG, Tinoco G. Unlocking the Potential of ctDNA in Sarcomas: A Review of Recent Advances. Cancers. 2025; 17(6):1040. https://doi.org/10.3390/cancers17061040
Chicago/Turabian StyleAiyer, Sahana, Tae-Hee Kim, Katharine Collier, Raphael Pollock, Claire Verschraegen, Daniel G. Stover, and Gabriel Tinoco. 2025. "Unlocking the Potential of ctDNA in Sarcomas: A Review of Recent Advances" Cancers 17, no. 6: 1040. https://doi.org/10.3390/cancers17061040
APA StyleAiyer, S., Kim, T.-H., Collier, K., Pollock, R., Verschraegen, C., Stover, D. G., & Tinoco, G. (2025). Unlocking the Potential of ctDNA in Sarcomas: A Review of Recent Advances. Cancers, 17(6), 1040. https://doi.org/10.3390/cancers17061040