Updates in Diagnostic Techniques and Experimental Therapies for Diffuse Intrinsic Pontine Glioma
Simple Summary
Abstract
1. Introduction
2. Surgical Intervention/Biopsy
3. Liquid Biopsy
4. Recent and Ongoing Therapeutic Clinical Trials
5. Targeted Therapies
6. Radiation Therapy
7. Epigenetic-Modifying Therapies
8. Immunotherapy
9. Focused Ultrasound
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freeman, C.R.; Farmer, J.P. Pediatric brain stem gliomas: A review. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Johung, T.B.; Monje, M. Diffuse Intrinsic Pontine Glioma: New Pathophysiological Insights and Emerging Therapeutic Targets. Curr. Neuropharmacol. 2017, 15, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.E. Beyond the Blood:Brain Barrier: The Importance of Central Nervous System (CNS) Pharmacokinetics for the Treatment of CNS Tumors, Including Diffuse Intrinsic Pontine Glioma. Front. Oncol. 2018, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Damodharan, S.; Lara-Velazquez, M.; Williamsen, B.C.; Helgager, J.; Dey, M. Diffuse Intrinsic Pontine Glioma: Molecular Landscape, Evolving Treatment Strategies and Emerging Clinical Trials. J. Pers. Med. 2022, 12, 840. [Google Scholar] [CrossRef]
- Packer, R.J.; Boyett, J.M.; Zimmerman, R.A.; Albright, A.L.; Kaplan, A.M.; Rorke, L.B.; Selch, M.T.; Cherlow, J.M.; Finlay, J.L.; Wara, W.M. Outcome of children with brain stem gliomas after treatment with 7800 cGy of hyperfractionated radiotherapy. A Childrens Cancer Group Phase I/II Trial. Cancer 1994, 74, 1827–1834. [Google Scholar] [CrossRef]
- Filbin, M.G.; Tirosh, I.; Hovestadt, V.; Shaw, M.L.; Escalante, L.E.; Mathewson, N.D.; Neftel, C.; Frank, N.; Pelton, K.; Hebert, C.M.; et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 2018, 360, 331–335. [Google Scholar] [CrossRef]
- Yoshimura, J.; Onda, K.; Tanaka, R.; Takahashi, H. Clinicopathological study of diffuse type brainstem gliomas: Analysis of 40 autopsy cases. Neurol. Med. Chir. 2003, 43, 375–382; discussion 382. [Google Scholar] [CrossRef]
- Osborn, A.G.; Louis, D.N.; Poussaint, T.Y.; Linscott, L.L.; Salzman, K.L. The 2021 World Health Organization Classification of Tumors of the Central Nervous System: What Neuroradiologists Need to Know. AJNR Am. J. Neuroradiol. 2022, 43, 928–937. [Google Scholar] [CrossRef]
- Rechberger, J.S.; Lu, V.M.; Zhang, L.; Power, E.A.; Daniels, D.J. Clinical trials for diffuse intrinsic pontine glioma: The current state of affairs. Childs Nerv. Syst. 2020, 36, 39–46. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Barkovich, A.J.; Krischer, J.; Kun, L.E.; Packer, R.; Zimmerman, R.A.; Freeman, C.R.; Wara, W.M.; Albright, L.; Allen, J.C.; Hoffman, H.J. Brain stem gliomas: A classification system based on magnetic resonance imaging. Pediatr. Neurosurg. 1990, 16, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Gleason, C.A.; Wise, B.L.; Feinstein, B. Stereotactic localization (with computerized tomographic scanning), biopsy, and radiofrequency treatment of deep brain lesions. Neurosurgery 1978, 2, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Albright, A.L.; Packer, R.J.; Zimmerman, R.; Rorke, L.B.; Boyett, J.; Hammond, G.D. Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: A report from the Children’s Cancer Group. Neurosurgery 1993, 33, 1026–1029; discussion 1029–1030. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, A.; Nowacki, A.; Fichtner, J.; Schlaeppi, J.A.; Pollo, C. Stereotactic biopsies of brainstem lesions: Which approach? Acta Neurochir. 2021, 163, 1957–1964. [Google Scholar] [CrossRef]
- Rajshekhar, V.; Moorthy, R.K. Status of stereotactic biopsy in children with brain stem masses: Insights from a series of 106 patients. Stereotact. Funct. Neurosurg. 2010, 88, 360–366. [Google Scholar] [CrossRef]
- Backlund, E.O. A new instrument for stereotaxic brain tumour biopsy. Technical note. Acta Chir. Scand. 1971, 137, 825–827. [Google Scholar]
- Samadani, U.; Judy, K.D. Stereotactic brainstem biopsy is indicated for the diagnosis of a vast array of brainstem pathology. Stereotact. Funct. Neurosurg. 2003, 81, 5–9. [Google Scholar] [CrossRef]
- Dalmage, M.; LoPresti, M.A.; Sarkar, P.; Ranganathan, S.; Abdelmageed, S.; Pagadala, M.; Shlobin, N.A.; Lam, S.; DeCuypere, M. Survival and neurological outcomes after stereotactic biopsy of diffuse intrinsic pontine glioma: A systematic review. J. Neurosurg. Pediatr. 2023, 32, 665–672. [Google Scholar] [CrossRef]
- Cage, T.A.; Samagh, S.P.; Mueller, S.; Nicolaides, T.; Haas-Kogan, D.; Prados, M.; Banerjee, A.; Auguste, K.I.; Gupta, N. Feasibility, safety, and indications for surgical biopsy of intrinsic brainstem tumors in children. Childs Nerv. Syst. 2013, 29, 1313–1319. [Google Scholar] [CrossRef]
- Coca, H.A.; Cebula, H.; Benmekhbi, M.; Chenard, M.P.; Entz-Werle, N.; Proust, F. Diffuse intrinsic pontine gliomas in children: Interest of robotic frameless assisted biopsy. A technical note. Neurochirurgie 2016, 62, 327–331. [Google Scholar] [CrossRef]
- Carai, A.; Mastronuzzi, A.; De Benedictis, A.; Messina, R.; Cacchione, A.; Miele, E.; Randi, F.; Esposito, G.; Trezza, A.; Colafati, G.S.; et al. Robot-Assisted Stereotactic Biopsy of Diffuse Intrinsic Pontine Glioma: A Single-Center Experience. World Neurosurg. 2017, 101, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Dawes, W.; Marcus, H.J.; Tisdall, M.; Aquilina, K. Robot-assisted stereotactic brainstem biopsy in children: Prospective cohort study. J. Robot. Surg. 2019, 13, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Goumnerova, L.C.; Manley, P.; Chi, S.N.; Neuberg, D.; Puligandla, M.; Fangusaro, J.; Goldman, S.; Tomita, T.; Alden, T.; et al. Prospective feasibility and safety assessment of surgical biopsy for patients with newly diagnosed diffuse intrinsic pontine glioma. Neuro Oncol. 2018, 20, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Joud, A.; Stella, I.; Klein, O. Diffuse infiltrative pontine glioma biopsy in children with neuronavigation, frameless procedure: A single center experience of 10 cases. Neurochirurgie 2020, 66, 345–348. [Google Scholar] [CrossRef]
- Labuschagne, J.; Mutyaba, D.; Nel, J.; Casieri, C. Use of intra-operative stimulation of brainstem lesion target sites for frameless stereotactic biopsies. Childs Nerv. Syst. 2021, 37, 1515–1523. [Google Scholar] [CrossRef]
- Phi, J.H.; Chung, H.T.; Wang, K.C.; Ryu, S.K.; Kim, S.K. Transcerebellar biopsy of diffuse pontine gliomas in children: A technical note. Childs Nerv. Syst. 2013, 29, 489–493. [Google Scholar] [CrossRef]
- Pincus, D.W.; Richter, E.O.; Yachnis, A.T.; Bennett, J.; Bhatti, M.T.; Smith, A. Brainstem stereotactic biopsy sampling in children. J. Neurosurg. 2006, 104, 108–114. [Google Scholar] [CrossRef]
- Roujeau, T.; Machado, G.; Garnett, M.R.; Miquel, C.; Puget, S.; Geoerger, B.; Grill, J.; Boddaert, N.; Di Rocco, F.; Zerah, M.; et al. Stereotactic biopsy of diffuse pontine lesions in children. J. Neurosurg. 2007, 107, 1–4. [Google Scholar] [CrossRef]
- Tejada, S.; Alonso, M.; Patiño, A.; Fueyo, J.; Gomez-Manzano, C.; Diez-Valle, R. Phase I Trial of DNX-2401 for Diffuse Intrinsic Pontine Glioma Newly Diagnosed in Pediatric Patients. Neurosurgery 2018, 83, 1050–1056. [Google Scholar] [CrossRef]
- Wang, Z.J.; Rao, L.; Bhambhani, K.; Miller, K.; Poulik, J.; Altinok, D.; Sood, S. Diffuse intrinsic pontine glioma biopsy: A single institution experience. Pediatr. Blood Cancer 2015, 62, 163–165. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Shi, W.; Zhu, R.; Li, H.; Zhao, R. Frameless robot-assisted stereotactic biopsy: An effective and minimally invasive technique for pediatric diffuse intrinsic pontine gliomas. J. Neurooncol. 2022, 160, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Koester, S.W.; Di, L.; Elarjani, T.; Luther, E.M.; Eichberg, D.G.; Morell, A.A.; Graffeo, C.S.; Bin-Alamer, O.; Abou-Al-Shaar, H.; et al. Frameless Robotic-Assisted Biopsy of Pediatric Brainstem Lesions: A Systematic Review and Meta-Analysis of Efficacy and Safety. World Neurosurg. 2023, 169, 87–93.e81. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Chan, T.M.; Santiago-Dieppa, D.R.; Yekula, A.; Sanchez, C.E.; Elster, J.D.; Crawford, J.R.; Levy, M.L.; Gonda, D.D. Robot-assisted stereotactic biopsy of pediatric brainstem and thalamic lesions. J. Neurosurg. Pediatr. 2020, 27, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Haegelen, C.; Touzet, G.; Reyns, N.; Maurage, C.A.; Ayachi, M.; Blond, S. Stereotactic robot-guided biopsies of brain stem lesions: Experience with 15 cases. Neurochirurgie 2010, 56, 363–367. [Google Scholar] [CrossRef]
- Machetanz, K.; Grimm, F.; Wang, S.; Schuhmann, M.U.; Tatagiba, M.; Gharabaghi, A.; Naros, G. Rediscovery of the transcerebellar approach: Improving the risk-benefit ratio in robot-assisted brainstem biopsies. Neurosurg. Focus 2022, 52, E12. [Google Scholar] [CrossRef]
- Quick-Weller, J.; Tritt, S.; Behmanesh, B.; Mittelbronn, M.; Spyrantis, A.; Dinc, N.; Weise, L.; Seifert, V.; Marquardt, G.; Freiman, T.M. Biopsies of pediatric brainstem lesions display low morbidity but strong impact on further treatment decisions. J. Clin. Neurosci. 2017, 44, 254–259. [Google Scholar] [CrossRef]
- Lim, Y.G.; Tan, E.E.; Looi, W.S.; Wong, R.X.; Chang, K.T.; Low, D.C.; Seow, W.T.; Low, S.Y. Biopsy of paediatric brainstem intrinsic tumours: Experience from a Singapore Children’s Hospital. J. Clin. Neurosci. 2022, 106, 8–13. [Google Scholar] [CrossRef]
- Puget, S.; Beccaria, K.; Blauwblomme, T.; Roujeau, T.; James, S.; Grill, J.; Zerah, M.; Varlet, P.; Sainte-Rose, C. Biopsy in a series of 130 pediatric diffuse intrinsic Pontine gliomas. Childs Nerv. Syst. 2015, 31, 1773–1780. [Google Scholar] [CrossRef]
- Abbasi, A.W.; Westerlaan, H.E.; Holtman, G.A.; Aden, K.M.; van Laar, P.J.; van der Hoorn, A. Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: A Systematic Review and Meta-Analysis. Clin. Neuroradiol. 2018, 28, 401–411. [Google Scholar] [CrossRef]
- Panditharatna, E.; Kilburn, L.B.; Aboian, M.S.; Kambhampati, M.; Gordish-Dressman, H.; Magge, S.N.; Gupta, N.; Myseros, J.S.; Hwang, E.I.; Kline, C.; et al. Clinically Relevant and Minimally Invasive Tumor Surveillance of Pediatric Diffuse Midline Gliomas Using Patient-Derived Liquid Biopsy. Clin. Cancer Res. 2018, 24, 5850–5859. [Google Scholar] [CrossRef]
- Bonner, E.R.; Bornhorst, M.; Packer, R.J.; Nazarian, J. Liquid biopsy for pediatric central nervous system tumors. NPJ Precis. Oncol. 2018, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Piunti, A.; Lulla, R.R.; Qi, J.; Horbinski, C.M.; Tomita, T.; James, C.D.; Shilatifard, A.; Saratsis, A.M. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol. Commun. 2017, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Cantor, E.; Wierzbicki, K.; Tarapore, R.S.; Ravi, K.; Thomas, C.; Cartaxo, R.; Nand Yadav, V.; Ravindran, R.; Bruzek, A.K.; Wadden, J.; et al. Serial H3K27M cell-free tumor DNA (cf-tDNA) tracking predicts ONC201 treatment response and progression in diffuse midline glioma. Neuro Oncol. 2022, 24, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Bruzek, A.K.; Ravi, K.; Muruganand, A.; Wadden, J.; Babila, C.M.; Cantor, E.; Tunkle, L.; Wierzbicki, K.; Stallard, S.; Dickson, R.P.; et al. Electronic DNA Analysis of CSF Cell-free Tumor DNA to Quantify Multi-gene Molecular Response in Pediatric High-grade Glioma. Clin. Cancer Res. 2020, 26, 6266–6276. [Google Scholar] [CrossRef]
- Majzner, R.G.; Ramakrishna, S.; Yeom, K.W.; Patel, S.; Chinnasamy, H.; Schultz, L.M.; Richards, R.M.; Jiang, L.; Barsan, V.; Mancusi, R.; et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 2022, 603, 934–941. [Google Scholar] [CrossRef]
- Li, D.; Bonner, E.R.; Wierzbicki, K.; Panditharatna, E.; Huang, T.; Lulla, R.; Mueller, S.; Koschmann, C.; Nazarian, J.; Saratsis, A.M. Standardization of the liquid biopsy for pediatric diffuse midline glioma using ddPCR. Sci. Rep. 2021, 11, 5098. [Google Scholar] [CrossRef]
- Stallard, S.; Savelieff, M.G.; Wierzbicki, K.; Mullan, B.; Miklja, Z.; Bruzek, A.; Garcia, T.; Siada, R.; Anderson, B.; Singer, B.H.; et al. CSF H3F3A K27M circulating tumor DNA copy number quantifies tumor growth and in vitro treatment response. Acta Neuropathol. Commun. 2018, 6, 80. [Google Scholar] [CrossRef]
- Ommaya, A.K. Subcutaneous reservoir and pump for sterile access to ventricular cerebrospinal fluid. Lancet 1963, 2, 983–984. [Google Scholar] [CrossRef]
- Ratcheson, R.A.; Ommaya, A.K. Experience with the subcutaneous cerebrospinal-fluid reservoir. Preliminary report of 60 cases. N. Engl. J. Med. 1968, 279, 1025–1031. [Google Scholar] [CrossRef]
- Sandberg, D.I.; Bilsky, M.H.; Souweidane, M.M.; Bzdil, J.; Gutin, P.H. Ommaya reservoirs for the treatment of leptomeningeal metastases. Neurosurgery 2000, 47, 49–54; discussion 54–45. [Google Scholar] [CrossRef]
- Fedyuk, V.; Erez, N.; Furth, N.; Beresh, O.; Andreishcheva, E.; Shinde, A.; Jones, D.; Zakai, B.B.; Mavor, Y.; Peretz, T.; et al. Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat. Biotechnol. 2023, 41, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Shum, E.Y.; Lai, J.H.; Li, S.; Lee, H.G.; Soliman, J.; Raol, V.K.; Lee, C.K.; Fodor, S.P.A.; Fan, H.C. Next-Generation Digital Polymerase Chain Reaction: High-Dynamic-Range Single-Molecule DNA Counting via Ultrapartitioning. Anal. Chem. 2022, 94, 17868–17876. [Google Scholar] [CrossRef] [PubMed]
- Marcozzi, A.; Jager, M.; Elferink, M.; Straver, R.; van Ginkel, J.H.; Peltenburg, B.; Chen, L.T.; Renkens, I.; van Kuik, J.; Terhaard, C.; et al. Accurate detection of circulating tumor DNA using nanopore consensus sequencing. NPJ Genom. Med. 2021, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.J.; Pollack, I.F.; Zhou, T.; Buxton, A.; Holmes, E.J.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Hamilton, R.L.; Lavey, R.S.; et al. Temozolomide in the treatment of high-grade gliomas in children: A report from the Children’s Oncology Group. Neuro Oncol. 2011, 13, 317–323. [Google Scholar] [CrossRef]
- Allen, J.E.; Kline, C.L.; Prabhu, V.V.; Wagner, J.; Ishizawa, J.; Madhukar, N.; Lev, A.; Baumeister, M.; Zhou, L.; Lulla, A.; et al. Discovery and clinical introduction of first-in-class imipridone ONC201. Oncotarget 2016, 7, 74380–74392. [Google Scholar] [CrossRef]
- Ishizawa, J.; Zarabi, S.F.; Davis, R.E.; Halgas, O.; Nii, T.; Jitkova, Y.; Zhao, R.; St-Germain, J.; Heese, L.E.; Egan, G.; et al. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. Cancer Cell 2019, 35, 721–737.e9. [Google Scholar] [CrossRef]
- Venneti, S.; Kawakibi, A.R.; Ji, S.; Waszak, S.M.; Sweha, S.R.; Mota, M.; Pun, M.; Deogharkar, A.; Chung, C.; Tarapore, R.S.; et al. Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways. Cancer Discov. 2023, 13, 2370–2393. [Google Scholar] [CrossRef]
- Arrillaga-Romany, I.; Gardner, S.L.; Odia, Y.; Aguilera, D.; Allen, J.E.; Batchelor, T.; Butowski, N.; Chen, C.; Cloughesy, T.; Cluster, A.; et al. ONC201 (Dordaviprone) in Recurrent H3 K27M-Mutant Diffuse Midline Glioma. J. Clin. Oncol. 2024, 42, 1542–1552. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Yin, Y.; Fan, Y.; Sun, W.; Zhao, X.; Tucker, K.; Staley, A.; Paraghamian, S.; Hawkins, G.; et al. ONC206, an Imipridone Derivative, Induces Cell Death Through Activation of the Integrated Stress Response in Serous Endometrial Cancer In Vitro. Front. Oncol. 2020, 10, 577141. [Google Scholar] [CrossRef]
- Dalle Ore, C.; Coleman, C.; Gupta, N.; Mueller, S. Advances and Clinical Trials Update in the Treatment of Diffuse Intrinsic Pontine Gliomas. Pediatr. Neurosurg. 2023, 58, 259–266. [Google Scholar] [CrossRef]
- Grill, J.; Le Teuff, G.; Nysom, K.; Blomgren, K.; Hargrave, D.; MacCowage, G.; Bautista, F.; Van Vuurden, D.; Dangouloff-Ros, V.; Puget, S.; et al. Biological medicines for diffuse intrinsic pontine glioma (DIPG) eradication (BIOMEDE): Final results of an international randomized phase II platform trial comparing 3 targeted therapies in combination with radiotherapy from ITCC, SIOPE-Brain and ANZCHOG. J. Clin. Oncol. 2023, 41, iii293–iii294. [Google Scholar] [CrossRef]
- Kline, C.; Jain, P.; Kilburn, L.; Bonner, E.R.; Gupta, N.; Crawford, J.R.; Banerjee, A.; Packer, R.J.; Villanueva-Meyer, J.; Luks, T.; et al. Upfront Biology-Guided Therapy in Diffuse Intrinsic Pontine Glioma: Therapeutic, Molecular, and Biomarker Outcomes from PNOC003. Clin. Cancer Res. 2022, 28, 3965–3978. [Google Scholar] [CrossRef] [PubMed]
- Franson, A.T.; Kilburn, L.B.; Cooney, T.M.; Stoller, S.; Reddy, A.T.; Banerjee, A.; Packer, R.J.; Bendel, A.E.; Skrypek, M.M.; Minturn, J.E.; et al. HGG-32. PNOC008: A Pilot Trial Testing the Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan in Children and Young Adults with Newly Diagnosed High-Grade Glioma (Excluding Diffuse Intrinsic Pontine Glioma). Neuro-Oncology 2024, 26, viii115. [Google Scholar] [CrossRef]
- Azmi, A.S.; Uddin, M.H.; Mohammad, R.M. The nuclear export protein XPO1—From biology to targeted therapy. Nat. Rev. Clin. Oncol. 2021, 18, 152–169. [Google Scholar] [CrossRef]
- Lassman, A.B.; Wen, P.Y.; van den Bent, M.J.; Plotkin, S.R.; Walenkamp, A.M.E.; Green, A.L.; Li, K.; Walker, C.J.; Chang, H.; Tamir, S.; et al. A Phase II Study of the Efficacy and Safety of Oral Selinexor in Recurrent Glioblastoma. Clin. Cancer Res. 2022, 28, 452–460. [Google Scholar] [CrossRef]
- Hargrave, D.; Bartels, U.; Bouffet, E. Diffuse brainstem glioma in children: Critical review of clinical trials. Lancet Oncol. 2006, 7, 241–248. [Google Scholar] [CrossRef]
- Gallitto, M.; Lazarev, S.; Wasserman, I.; Stafford, J.M.; Wolden, S.L.; Terezakis, S.A.; Bindra, R.S.; Bakst, R.L. Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Adv. Radiat. Oncol. 2019, 4, 520–531. [Google Scholar] [CrossRef]
- Amsbaugh, M.J.; Mahajan, A.; Thall, P.F.; McAleer, M.F.; Paulino, A.C.; Grosshans, D.; Khatua, S.; Ketonen, L.; Fontanilla, H.; McGovern, S.L. A Phase 1/2 Trial of Reirradiation for Diffuse Intrinsic Pontine Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 144–148. [Google Scholar] [CrossRef]
- Janssens, G.O.; Gandola, L.; Bolle, S.; Mandeville, H.; Ramos-Albiac, M.; van Beek, K.; Benghiat, H.; Hoeben, B.; Morales La Madrid, A.; Kortmann, R.D.; et al. Survival benefit for patients with diffuse intrinsic pontine glioma (DIPG) undergoing re-irradiation at first progression: A matched-cohort analysis on behalf of the SIOP-E-HGG/DIPG working group. Eur. J. Cancer 2017, 73, 38–47. [Google Scholar] [CrossRef]
- Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 2000, 97, 10014–10019. [Google Scholar] [CrossRef]
- Johnstone, R.W. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 2002, 1, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997, 90, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Su, F.; Chen, D.; Shiloh, A.; Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000, 408, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Monje, M.; Cooney, T.; Glod, J.; Huang, J.; Peer, C.J.; Faury, D.; Baxter, P.; Kramer, K.; Lenzen, A.; Robison, N.J.; et al. Phase I trial of panobinostat in children with diffuse intrinsic pontine glioma: A report from the Pediatric Brain Tumor Consortium (PBTC-047). Neuro Oncol. 2023, 25, 2262–2272. [Google Scholar] [CrossRef]
- Lulla, R.R.; Buxton, A.; Krailo, M.D.; Lazow, M.A.; Boue, D.R.; Leach, J.L.; Lin, T.; Geller, J.I.; Kumar, S.S.; Nikiforova, M.N.; et al. Vorinostat, temozolomide or bevacizumab with irradiation and maintenance BEV/TMZ in pediatric high-grade glioma: A Children’s Oncology Group Study. Neurooncol. Adv. 2024, 6, vdae035. [Google Scholar] [CrossRef]
- Kline, C.; Liu, S.J.; Duriseti, S.; Banerjee, A.; Nicolaides, T.; Raber, S.; Gupta, N.; Haas-Kogan, D.; Braunstein, S.; Mueller, S. Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: A single-institution experience. J. Neurooncol. 2018, 140, 629–638. [Google Scholar] [CrossRef]
- Non-Invasive Focused Ultrasound (FUS) with Oral Panobinostat in Children with Progressive Diffuse Midline Glioma (DMG). Available online: https://trials.braintumor.org/trials/NCT04804709 (accessed on 3 March 2025).
- Mueller, S.; Taitt, J.M.; Villanueva-Meyer, J.E.; Bonner, E.R.; Nejo, T.; Lulla, R.R.; Goldman, S.; Banerjee, A.; Chi, S.N.; Whipple, N.S.; et al. Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. J. Clin. Investig. 2020, 130, 6325–6337. [Google Scholar] [CrossRef]
- Fry, W.J.; Barnard, J.W.; Fry, E.J.; Krumins, R.F.; Brennan, J.F. Ultrasonic lesions in the mammalian central nervous system. Science 1955, 122, 517–518. [Google Scholar] [CrossRef]
- Toccaceli, G.; Delfini, R.; Colonnese, C.; Raco, A.; Peschillo, S. Emerging Strategies and Future Perspective in Neuro-Oncology Using Transcranial Focused Ultrasonography Technology. World Neurosurg. 2018, 117, 84–91. [Google Scholar] [CrossRef]
- Hynynen, K.; Sun, J. Trans-skull ultrasound therapy: The feasibility of using image-derived skull thickness information to correct the phase distortion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 752–755. [Google Scholar] [CrossRef]
- Kobus, T.; Vykhodtseva, N.; Pilatou, M.; Zhang, Y.; McDannold, N. Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound. Ultrasound Med. Biol. 2016, 42, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Treat, L.H.; McDannold, N.; Vykhodtseva, N.; Zhang, Y.; Tam, K.; Hynynen, K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int. J. Cancer 2007, 121, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Escoffre, J.M.; Piron, J.; Novell, A.; Bouakaz, A. Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Mol. Pharm. 2011, 8, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Hua, M.Y.; Chen, P.Y.; Chu, P.C.; Pan, C.H.; Yang, H.W.; Huang, C.Y.; Wang, J.J.; Yen, T.C.; Wei, K.C. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 2010, 255, 415–425. [Google Scholar] [CrossRef]
- Song, C.W.; Park, H.J.; Lee, C.K.; Griffin, R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperth. 2005, 21, 761–767. [Google Scholar] [CrossRef]
- Syed, H.R.; Kilburn, L.; Fonseca, A.; Nazarian, J.; Oluigbo, C.; Myseros, J.S.; Packer, R.J.; Keating, R.F. First-in-human sonodynamic therapy with ALA for pediatric diffuse intrinsic pontine glioma: A phase 1/2 study using low-intensity focused ultrasound: Technical communication. J. Neurooncol. 2023, 162, 449–451. [Google Scholar] [CrossRef]
Title | Clinical Trial ID | Principal Investigator | Study Design | Agents Investigated | Sample Size | Age Requirement | Summary of Outcomes | |
---|---|---|---|---|---|---|---|---|
Chemotherapy | Combination Therapy for the Treatment of Diffuse Midline Gliomas | NCT05009992 | Sabine Mueller, MD, PhD | Phase II | ONC201 (Doradaviprone) and paxalisib | 360 patients | 2–39 years old | Progression-free survival, overall survival, safety and toxicity, results TBD |
ONC206 for Treatment of Newly Diagnosed, Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors (PNOC023) | NCT04732065 | Sabine Mueller, MD, PhD | Phase I | ONC206 (analog of ONC201) alone or in combination with radiation therapy | Currently enrolling | 2–21 years old | Safety and toxicity, results TBD | |
Targeted Therapy | Biological Medicine for Diffuse Intrinsic Pontine Glioma (DIPG) Eradication (BIOMEDE) | NCT02233049 | Gustave Roussy, MD | Phase II | Post radiation patients treated with erlotinib, everolimus, or dasatinib based on having biomarker EGFR, biomarker mTOR, or no specific biomarker, respectively | 233 patients | 6 months–25 years old | Median overall survival of 9.0 (7.4–14.3) months, 11.3 (10.3–13.4) months, and 9.4 (7.7–10.7) months for eroltinib, everolimus, and dasatinib, respectively (p = 0.45) |
Molecular Profiling for Individualized Treatment Plan for DIPG | NCT02274987 | Sabine Mueller, MD, PhD | Phase I/Pilot feasibility | Personilized treatment recommendations based on UCSF 500 gene panel and RNA seq analysis of the tumor | 19 patients | 3–25 years old | Median overall survival 13. (11.2–18.4) 1 months | |
Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients with High-Grade Glioma (PNOC008) | NCT03739372 | Sabine Mueller, MD, PhD | Phase I/Pilot feasibility | Non-DIPG DMG patients received personalized treatment following real-time molecular profiling | 22 patients | <25 years old | Median overall survival 21.5 (16.8–31.6) months | |
A Study of the Drug Selinexor with Radiation Therapy in Patients with Newly-Diagnosed Diffuse Intrinsic Pontine (DIPG) Glioma and High-Grade Glioma (HGG) | NCT05099003 | Adam Green, MD | Phase I/II | Selinexor with radiation therapy | 210 patient | 1–21 years old | To be determined | |
Radiation Therapy | Stereotactic Biopsy Split-Course Radiation Therapy in Diffuse Midline Glioma, SPORT-DMG Study | NCT05077735 | Anita Mahajan, MD | Phase II | Hypo-fractionated radiation therapy, 25 Gy in 10 fractions | 20 patients | >1 year old | To be determined |
Reirradiation of Progressive or Recurrent DIPG | NCT03126266 | Lucie Lafay-Cousin, MD | Phase II | Non-randomized comparison of conventional fractionation reirradiation with a dose of 30.6 Gy or 36 Gy in recurrent or progressive DIPG | 27 patients | Any | To be determined | |
Epigenetic Modifying Therapy | Vorinostat, Temozolomide, or Bevacizumab in Combination with Radiation Therapy Followed by Bevacizumab and Temozolomide in Young Patients with Newly Diagnosed High-Grade Glioma | NCT01236560 | Maryam Fouladi, MD | Phase II/III | Vorinostat, bevacizumab, or temozolomide monotherapy with radiation therapy, followed by temozolomide and bevacizumab combination therapy | 90 patients | 3–22 years old | 1-year EFS for concurrent bevacizumab, vorinostat, or temozolomide with RT of 43.8% (±8.8%), 41.4% (±9.2%), and 59.3% (±9.5%), respectively. No statistically significant difference |
Immunotherapy | GD2 CAR T-Cells in Diffuse Intrinsic Pontine Gliomas (DIPG) and Spinal Diffuse Midline Glioma (DMG) | NCT04196413 | Michelle Monje, MD, PhD | Phase I | GD2 CAR T-cells intravenously followed by intraventricular GD2 CAR T-cells | 4 patients | 5–25 years old | 3 out of 4 patients exhibited transient clinical and radiographic improvement and increased proinflammatory cytokine levels in plasma and cerebrospinal fluid |
H3.3K27M Peptide Vaccine with Nivolumab for Children with Newly Diagnosed DIPG and Other Gliomas | NCT02960230 | Sabine Mueller, MD, PhD. | Phase II | H3K27M vaccine, followed by immunomonitoring and imaging every 3 months | 29 patients | 3–21 years old | Median overall survival of 16.1 months for patients who had expansion of H3.3K27M-reactive CD8+ T-cells compared to 9.8 months for those who did not (p = 0.05) | |
Focused Ultrasound | Non-Invasive Focused Ultrasound (FUS) with Oral Panobinostat in Children with Progressive Diffuse Midline Glioma (DMG) | NCT04804709 | Cheng-Chia Wu, MD, PhD | Phase I | Focused ultrasound with penobinostat | TBD | 4–21 years old | To be determined |
Blood–Brain Barrier (BBB) Disruption Using Exablate Focused Ultrasound With Doxorubicin for Treatment of Pediatric DIPG | NCT05630209 | Children’s National Group | Phase I | Low-frequency MR-guided focused ultrasound with doxorubicin | 18 patients | >5 years old | To be determined | |
A Phase 2 Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2.0 in Patients with DIPG | NCT05123534 | Children’s National Group | Phase I | Low-frequency MR-guided focused ultrasound with aminolevulinic | 18 patients | >5 years old | To be determined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McVeigh, L.; Patel, T.; Miclea, M.; Schwark, K.; Ajaero, D.; Momen, F.; Clausen, M.; Adam, T.; Aittaleb, R.; Wadden, J.; et al. Updates in Diagnostic Techniques and Experimental Therapies for Diffuse Intrinsic Pontine Glioma. Cancers 2025, 17, 931. https://doi.org/10.3390/cancers17060931
McVeigh L, Patel T, Miclea M, Schwark K, Ajaero D, Momen F, Clausen M, Adam T, Aittaleb R, Wadden J, et al. Updates in Diagnostic Techniques and Experimental Therapies for Diffuse Intrinsic Pontine Glioma. Cancers. 2025; 17(6):931. https://doi.org/10.3390/cancers17060931
Chicago/Turabian StyleMcVeigh, Luke, Tirth Patel, Madeline Miclea, Kallen Schwark, Diala Ajaero, Fareen Momen, Madison Clausen, Tiffany Adam, Rayan Aittaleb, Jack Wadden, and et al. 2025. "Updates in Diagnostic Techniques and Experimental Therapies for Diffuse Intrinsic Pontine Glioma" Cancers 17, no. 6: 931. https://doi.org/10.3390/cancers17060931
APA StyleMcVeigh, L., Patel, T., Miclea, M., Schwark, K., Ajaero, D., Momen, F., Clausen, M., Adam, T., Aittaleb, R., Wadden, J., Lau, B., Franson, A. T., Koschmann, C., & Marupudi, N. I. (2025). Updates in Diagnostic Techniques and Experimental Therapies for Diffuse Intrinsic Pontine Glioma. Cancers, 17(6), 931. https://doi.org/10.3390/cancers17060931