The Role of PHLDA3 in Cancer Progression and Its Potential as a Therapeutic Target
Simple Summary
Abstract
1. Introduction
2. Regulation of PHLDA3 Transcription by p53
3. PHLDA3 Is a Repressor of AKT Oncoprotein
4. Dual Roles of PHLDA3 in the WNT Signaling Pathway
5. PHLDA3 in Apoptosis
6. PHLDA3 in Irradiation
7. PHLDA3 in ESCC, Osteosarcoma, Acute Myeloid Leukemia, B-Cell Lymphoma, and Prostate Cancer Cell Lines
8. PHLDA3 in SCC: Functional Roles in Tumor Progression and Data Therapeutic Resistance
8.1. Cutaneous SCC (cSCC)
8.2. ESCC and Head and Neck SCC (HNSCC)
9. The Role of PHLDA3 in Neuroendocrine Tumors
9.1. Function of PHLDA3 in Islet Β Cells
9.2. PHLDA3 in PanNETs
9.3. PHLDA3 in Other NETs
10. PHLDA3 as a Prognostic Marker and Therapeutic Target for Cancer
11. Future Directions and Drug Development Challenges
12. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar]
- Ma, S.; Quan, P.; Yu, C.; Fan, X.; Yang, S.; Jia, W.; Yang, X. PHLDA3 exerts an antitumor function in prostate cancer by down-regulating Wnt/β-catenin pathway via inhibition of AKT. Biochem. Biophys. Res. Commun. 2021, 571, 66–73. [Google Scholar]
- Chen, Y.; Ohki, R. p53-PHLDA3-AKT network: The key regulators of neuroendocrine tumorigenesis. Int. J. Mol. Sci. 2020, 21, 4098. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Y.; Xia, X.; Han, J.; Zhang, L.; Zhao, W. Pleckstrin homology-like domain family A, member 3, a miR-19a-3p-regulated gene, suppresses tumor growth in osteosarcoma by downregulating the AKT pathway. Bioengineered 2022, 13, 3993–4009. [Google Scholar]
- James, S.R.; Peter DOWNES, C.; Gigg, R.; Grove, S.J.; Holmes, A.B.; Alessi, D.R. Specific binding of the AKT-1 protein kinase to phosphatidylinositol 3, 4, 5-trisphosphate without subsequent activation. Biochem. J. 1996, 315, 709–713. [Google Scholar] [CrossRef]
- Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell 2007, 129, 1261–1274. [Google Scholar]
- Fuselier, T.T.; Lu, H. PHLD class proteins: A family of new players in the p53 network. Int. J. Mol. Sci. 2020, 21, 3543. [Google Scholar] [CrossRef]
- Saito, M.; Sada, A.; Fukuyo, M.; Oki, K.; Okumura, K.; Tabata, Y.; Ohki, R. PHLDA3 is an important downstream mediator of p53 in squamous cell carcinogenesis. J. Investig. Dermatol. 2022, 142, 1040–1049. [Google Scholar]
- Saffarzadeh, N.; Ghafouri-Fard, S.; Rezaei, Z.; Aghazadeh, K.; Yazdani, F.; Mohebi, M.; Tavakkoly-Bazzaz, J. Expression analysis of Grhl3 and Phlda3 in head and neck squamous cell carcinoma. Cancer Manag. Res. 2020, 12, 4085–4096. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, L.; Grillo, F.; Albertelli, M.; Ghiorzo, P.; Bruno, W. Insights into mechanisms of tumorigenesis in neuroendocrine neoplasms. Int. J. Mol. Sci. 2021, 22, 10328. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lin, X.; He, R.; Zhang, W.; Kang, M.; Xu, R. PHLDA3 activated by BARX2 transcription, suppresses the malignant development of esophageal squamous cell carcinoma by downregulating PI3K/AKT levels. Exp. Cell Res. 2023, 426, 113567. [Google Scholar] [CrossRef] [PubMed]
- Feroz, W.; Sheikh, A. Exploring the multiple roles of guardian of the genome: P53. Egypt. J. Med. Hum. Genet. 2020, 21, 49. [Google Scholar] [CrossRef]
- Capuozzo, M.; Santorsola, M.; Bocchetti, M.; Perri, F.; Cascella, M.; Granata, V.; Ottaiano, A. p53: From fundamental biology to clinical applications in cancer. Biology 2022, 11, 1325. [Google Scholar] [CrossRef]
- Patil, M.R.; Bihari, A. A comprehensive study of p53 protein. J. Cell. Biochem. 2022, 123, 1891–1937. [Google Scholar] [CrossRef]
- Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med. 2016, 6, a026104. [Google Scholar] [CrossRef]
- Kawase, T.; Ohki, R.; Shibata, T.; Tsutsumi, S.; Kamimura, N.; Inazawa, J.; Taya, Y. PH domain-only protein PHLDA3 is a p53-regulated repressor of AKT. Cell 2009, 136, 535–550. [Google Scholar] [CrossRef]
- Allen, M.A.; Andrysik, Z.; Dengler, V.L.; Mellert, H.S.; Guarnieri, A.; Freeman, J.A.; Sullivan, K.D.; Galbraith, M.D.; Luo, X.; Kraus, W.L.; et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. Elife 2014, 27, e02200. [Google Scholar] [CrossRef]
- Sementino, E.; Hassan, D.; Bellacosa, A.; Testa, J.R. AKT and the Hallmarks of Cancer. Cancer Res. 2024, 84, 4126–4139. [Google Scholar] [CrossRef]
- Hers, I.; Vincent, E.E.; Tavaré, J.M. AKT signalling in health and disease. Cell. Signal. 2011, 23, 1515–1527. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Hung, M.C. Physiological regulation of AKT activity and stability. Am. J. Transl. Res. 2010, 2, 19–42. [Google Scholar]
- Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell 2017, 169, 381–405. [Google Scholar] [PubMed]
- Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008, 27, 5497–5510. [Google Scholar]
- Powis, G.; Meuillet, E.J.; Indarte, M.; Booher, G.; Kirkpatrick, L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed. Pharmacother. 2023, 165, 115024. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar]
- Zhang, Y.; Zu, D.; Chen, Z.; Ying, G. An update on Wnt signaling pathway in cancer. Transl. Cancer Res. 2020, 9, 1246. [Google Scholar]
- Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef]
- Huang, S.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Cong, F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009, 461, 614–620. [Google Scholar]
- Schneider, J.A.; Logan, S.K. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Mol. Cell. Endocrinol. 2018, 462, 3–8. [Google Scholar]
- Yeh, Y.; Guo, Q.; Connelly, Z.; Cheng, S.; Yang, S.; Prieto-Dominguez, N.; Yu, X. Wnt/Beta-catenin signaling and prostate cancer therapy resistance. In Prostate Cancer: Cellular and Genetic Mechanisms of Disease Development and Progression; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2019; pp. 351–378. [Google Scholar]
- Lei, L.; Wang, Y.; Li, Z.H.; Fei, L.R.; Huang, W.J.; Zheng, Y.W.; Xu, H.T. PHLDA3 promotes lung adenocarcinoma cell proliferation and invasion via activation of the Wnt signaling pathway. Lab. Invest. 2021, 101, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Ohki, R.; Saito, K.; Chen, Y.; Kawase, T.; Hiraoka, N.; Saigawa, R.; Nakagama, H. PHLDA3 is a novel tumor suppressor of pancreatic neuroendocrine tumors. Proc. Natl. Acad. Sci. USA 2014, 111, E2404–E2413. [Google Scholar] [CrossRef] [PubMed]
- Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Hammond, E.M. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. J. Clin. Investig. 2015, 125, 2385–2398. [Google Scholar] [CrossRef]
- Sakata, N.; Yamaguchi, Y.; Chen, Y.; Shimoda, M.; Yoshimatsu, G.; Unno, M.; Ohki, R. Pleckstrin homology-like domain family A, member 3 (PHLDA3) deficiency improves islets engraftment through the suppression of hypoxic damage. PLoS ONE 2017, 12, e0187927. [Google Scholar] [CrossRef] [PubMed]
- Bensellam, M.; Chan, J.Y.; Lee, K.; Joglekar, M.V.; Hardikar, A.A.; Loudovaris, T.; Laybutt, D.R. Phlda3 regulates beta cell survival during stress. Sci. Rep. 2019, 9, 12827. [Google Scholar]
- Komarova, E.A.; Kondratov, R.V.; Wang, K.; Christov, K.; Golovkina, T.V.; Goldblum, J.R.; Gudkov, A.V. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 2004, 23, 3265–3271. [Google Scholar] [CrossRef]
- Lee, C.L.; Castle, K.D.; Moding, E.J.; Blum, J.M.; Williams, N.; Luo, L.; Kirsch, D.G. Acute DNA damage activates the tumour suppressor p53 to promote radiation-induced lymphoma. Nat. Commun. 2015, 6, 8477. [Google Scholar]
- Ghandhi, S.A.; Shuryak, I.; Ponnaiya, B.; Wu, X.; Garty, G.; Morton, S.R.; Amundson, S.A. Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose. Sci. Rep. 2022, 12, 14124. [Google Scholar]
- Hasapis, S.; Caraballo, I.; Sears, T.J.; Brock, K.D.; Cart, J.B.; Moding, E.J.; Lee, C.L. Characterizing the role of Phlda3 in the development of acute toxicity and malignant transformation of hematopoietic cells induced by total-body irradiation in mice. Sci. Rep. 2023, 13, 12916. [Google Scholar]
- Furukawa, N.; Okano, N.; Yoshida, Y.; Shimokawa, T.; Kanai, A.; Ohno, T.; Koitabashi, N. (P53-phlda3 Signaling Induced by Carbon-Ion Irradiation is a Novel Therapeutic Target to Suppress Cardiac Hypertrophy in Mice. Circulation 2021, 144, A9722. [Google Scholar]
- Mattes, K.; Berger, G.; Geugien, M.; Vellenga, E.; Schepers, H. CITED2 affects leukemic cell survival by interfering with p53 activation. Cell Death Dis. 2017, 8, e3132. [Google Scholar] [PubMed]
- Sloan, S.L.; Brown, F.; Long, M.; Weigel, C.; Koirala, S.; Chung, J.H.; Alinari, L. PRMT5 supports multiple oncogenic pathways in mantle cell lymphoma. Blood 2023, 142, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Muroi, H.; Nakajima, M.; Satomura, H.; Takahashi, M.; Yamaguchi, S.; Sasaki, K.; Kato, H. Low PHLDA3 expression in oesophageal squamous cell carcinomas is associated with poor prognosis. Anticancer Res. 2015, 35, 949–954. [Google Scholar]
- Yang, Y.M.; Liu, T.H.; Chen, Y.J.; Jiang, W.J.; Qian, J.M.; Lu, X.; Chen, J. Chromosome 1q loss of heterozygosity frequently occurs in sporadic insulinomas and is associated with tumor malignancy. Int. J. Cancer 2005, 117, 234–240. [Google Scholar] [CrossRef]
- Chen, Y.J.; Vortmeyer, A.; Zhuang, Z.; Huang, S.; Jensen, R.T. Loss of heterozygosity of chromosome 1q in gastrinomas: Occurrence and prognostic significance. Cancer Res. 2003, 63, 817–823. [Google Scholar]
- English, K.A.; Thakker, R.V.; Lines, K.E. The role of DNA methylation in human pancreatic neuroendocrine tumours. Endocr. Oncol. 2023, 3, e230003. [Google Scholar]
- Saleh, Z.; Moccia, M.C.; Ladd, Z.; Joneja, U.; Li, Y.; Spitz, F.; Gao, T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int. J. Mol. Sci. 2024, 25, 1331. [Google Scholar] [CrossRef]
- Stefanoli, M.; La Rosa, S.; Sahnane, N.; Romualdi, C.; Pastorino, R.; Marando, A.; Furlan, D. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology 2014, 100, 26–34. [Google Scholar]
- Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.M.; Bailey, P.; Grimmond, S.M. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017, 543, 65–71. [Google Scholar]
- Jiao, Y.; Shi, C.; Edil, B.H.; De Wilde, R.F.; Klimstra, D.S.; Maitra, A.; Papadopoulos, N. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011, 331, 1199–1203. [Google Scholar]
- Pannett, A.A.; Thakker, R.V. Multiple endocrine neoplasia type 1. Endocr.-Relat. Cancer 1999, 6, 449–473. [Google Scholar] [CrossRef]
- Corbo, V.; Dalai, I.; Scardoni, M.; Barbi, S.; Beghelli, S.; Bersani, S.; Scarpa, A. MEN1 in pancreatic endocrine tumors: Analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr.-Relat. Cancer 2010, 17, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Baldavira, C.M.; Machado-Rugolo, J.; Prieto, T.G.; Bastos, D.R.; Balancin, M.; Ab’Saber, A.M.; Capelozzi, V.L. The expression patterns and prognostic significance of pleckstrin homology-like domain family A (PHLDA) in lung cancer and malignant mesothelioma. J. Thorac. Dis. 2021, 13, 689. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Chen, Y.; Ikeda, K.; Tsukada, Y.; Takahashi, D.; Kawano, S.; Ochiai, A. Recommendation of long-term and systemic management according to the risk factors in rectal NETs patients. Sci. Rep. 2019, 9, 2404. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ruiz, M.; Fulton, D.; Sowa, G.; Languino, L.R.; Fujio, Y.; Walsh, K.; Sessa, W.C. Vascular endothelial growth factor stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase AKT. Circ. Res. 2000, 86, 892–896. [Google Scholar] [CrossRef]
- Dimmeler, S.; Dernbach, E.; Zeiher, A.M. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 2000, 477, 258–262. [Google Scholar] [CrossRef]
- Dimmeler, S.; Fleming, I.; Fisslthaler, B.; Hermann, C.; Busse, R.; Zeiher, A.M. Activation of nitric oxide synthase in endothelial cells by AKT-dependent phosphorylation. Nature 1999, 399, 601–605. [Google Scholar] [CrossRef]
- Katoh, M.; Katoh, M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol. Ther. 2006, 5, 1059–1064. [Google Scholar] [CrossRef]
- Zhou, B.P.; Deng, J.; Xia, W.; Xu, J.; Li, Y.M.; Gunduz, M.; Hung, M.C. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 2004, 6, 931–940. [Google Scholar] [CrossRef]
- Ha, G.-H.; Park, J.-S.; Breuer, E.-K.Y. TACC3 promotes epithelial–mesenchymal transition (EMT) through the activation of PI3K/AKT and ERK signaling pathways. Cancer Lett. 2013, 332, 63–73. [Google Scholar]
- Smith, A.; Teknos, T.N.; Pan, Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral. Oncol. 2013, 49, 287–292. [Google Scholar] [PubMed]
- Wang, H.; Wang, H.-S.; Zhou, B.-H.; Li, C.-L.; Zhang, F.; Wang, X.-F.; Zhang, G.; Bu, X.-Z.; Cai, S.-H.; Du, J. Epithelial–Mesenchymal Transition (EMT) Induced by TNF-α Requires AKT/GSK-3β-Mediated Stabilization of Snail in Colorectal Cancer. PLoS ONE 2013, 8, e56664. [Google Scholar]
- Wu, K.; Fan, J.; Zhang, L.; Ning, Z.; Zeng, J.; Zhou, J.; Li, L.; Chen, Y.; Zhang, T.; Wang, X.; et al. PI3K/AKT to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription. Cell. Signal. 2012, 24, 2273–2282. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Klee, E.W.; Young, C.Y.; Sun, Z.; Jimenez, R.E.; Klee, G.G.; Donkena, K.V. Global methylation profiling for risk prediction of prostate cancer. Clin. Cancer Res. 2012, 18, 2882–2895. [Google Scholar] [PubMed]
- R Mangone, F.; AV Valoyes, M.; G do Nascimento, R.; PF Conceição, M.; R Bastos, D.; C Pavanelli, A.; A Nagai, M. Prognostic and predictive value of Pleckstrin homology-like domain, family A family members in breast cancer. Biomark. Med. 2020, 14, 1537–1552. [Google Scholar]
Cancer Type | Key Findings | Reference |
---|---|---|
ESCC | PHLDA3 is downregulated in ESCC, leading to increased PI3K/AKT signaling, promoting proliferation, migration, invasion, and angiogenesis. Overexpression of PHLDA3 suppresses these effects. | [13] |
OS | PHLDA3 inhibits proliferation, migration, and chemoresistance in OS. miR-19a-3p negatively regulates PHLDA3, emphasizing its potential as a therapeutic target. | [6] |
AML | PHLDA3 interacts with CITED2 to regulate apoptosis. CITED2 knockdown increases PHLDA3 expression, inducing apoptosis in AML cells. | [42] |
B-cell Lymphoma | PHLDA3 suppresses the B-cell receptor (BCR) signaling pathway by blocking AKT activation, reducing lymphoma cell proliferation and survival. | [43] |
Prostate Cancer | PHLDA3 is epigenetically silenced through promoter methylation. Overexpression of PHLDA3, reducing proliferation, division rate, and EMT. | [4] |
cSCC | Loss of PHLDA3 promotes EMT and metastasis. PHLDA3 deficiency complements p53 mutations, leading to aggressive SCC progression. | [10] |
HNSCC | PHLDA3 functions as a negative feedback regulator of PI3K signaling. Increased PHLDA3 expression may be involved in PI3K dysregulation in HNSCC. | [11] |
PanNETs | LOH and promoter methylation contribute to PHLDA3 silencing, leading to AKT hyperactivation and tumor progression. | [33] |
LNETs | PHLDA3 loss is frequent in LNETs and is associated with increased AKT activation. It functions as a tumor suppressor in this context. | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, W.A.; Krishnaraj, J.; Ohki, R. The Role of PHLDA3 in Cancer Progression and Its Potential as a Therapeutic Target. Cancers 2025, 17, 1069. https://doi.org/10.3390/cancers17071069
Kamel WA, Krishnaraj J, Ohki R. The Role of PHLDA3 in Cancer Progression and Its Potential as a Therapeutic Target. Cancers. 2025; 17(7):1069. https://doi.org/10.3390/cancers17071069
Chicago/Turabian StyleKamel, Walied A., Jayaraman Krishnaraj, and Rieko Ohki. 2025. "The Role of PHLDA3 in Cancer Progression and Its Potential as a Therapeutic Target" Cancers 17, no. 7: 1069. https://doi.org/10.3390/cancers17071069
APA StyleKamel, W. A., Krishnaraj, J., & Ohki, R. (2025). The Role of PHLDA3 in Cancer Progression and Its Potential as a Therapeutic Target. Cancers, 17(7), 1069. https://doi.org/10.3390/cancers17071069