Effectiveness of FLASH vs. Conventional Dose Rate Radiotherapy in a Model of Orthotopic, Murine Breast Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Orthotopic Mouse Models
2.3. Tumor Volume Measurements
2.4. Euthanasia Criteria
2.5. Dose Target Groups
2.6. Stereotactic Mouse Positioner and Beam Collimator
2.7. Irradiation Study Design
2.8. Dosimetry
2.9. Beam Homogeneity and Dose Distribution
2.10. Radiation Doses
2.11. Statistics
3. Results
3.1. FLASH Shows Comparable Tumor Control to CONV Against Small Tumors at 20, 25, and 30 Gy, with 30 Gy Eradicating Most Small Tumors
3.2. FLASH Is as Effective as CONV in Delaying Growth of Larger Tumors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWTF | Abdominal Wall Treatment Field |
BC | Breast Cancer |
CONV | Conventional Dose Rate Radiotherapy |
DCIS | Ductal Carcinoma In Situ |
FLASH | Ultra-High Dose Rate Radiotherapy |
GI | Gastrointestinal |
Gy | Gray (Unit of Radiation Dose) |
IACUC | Institutional Animal Care and Use Committee |
MRI | Magnetic Resonance Imaging |
MMTV-PyMT | Mouse Mammary Tumor Virus Polyoma Middle T Antigen |
NT | Normal Tissue |
OD | Optical Density |
PBS | Phosphate-Buffered Saline |
PDD | Percentage Depth Dose |
PLA | Polylactic Acid |
RT | Radiotherapy |
SNB | Sentinel Node Biopsy |
SSD | Source-to-Surface Distance |
SVI | Silicon Valley Innovations |
TCD50 | Tumor Control Dose 50 |
TNBC | Triple-Negative Breast Cancer |
References
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of Radiotherapy after Breast-Conserving Surgery on 10-Year Recurrence and 15-Year Breast Cancer Death: Meta-Analysis of Individual Patient Data for 10,801 Women in 17 Randomised Trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef]
- Vicini, F.A.; Cecchini, R.S.; White, J.R.; Arthur, D.W.; Julian, T.B.; Rabinovitch, R.A.; Kuske, R.R.; Ganz, P.A.; Parda, D.S.; Scheier, M.F.; et al. Long-Term Primary Results of Accelerated Partial Breast Irradiation after Breast-Conserving Surgery for Early-Stage Breast Cancer: A Randomised, Phase 3, Equivalence Trial. Lancet 2019, 394, 2155–2164. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Jia, X.; Hobbs, B.P.; Tendulkar, R.D.; Sittenfeld, S.M.C.; Al-Hilli, Z.; Arthur, D.W.; Keisch, M.E.; Khan, A.J.; Shaitelman, S.F.; et al. Outcomes with Partial Breast Irradiation vs. Whole Breast Irradiation: A Meta-Analysis. Ann. Surg. Oncol. 2021, 28, 4985–4994. [Google Scholar] [CrossRef]
- Barazzuol, L.; Coppes, R.P.; Luijk, P. Prevention and Treatment of Radiotherapy-Induced Side Effects. Mol. Oncol. 2020, 14, 1538–1554. [Google Scholar] [PubMed]
- Williams, P.A.; Cao, S.; Yang, D.; Jennelle, R.L. Patient-Reported Outcomes of the Relative Severity of Side Effects from Cancer Radiotherapy. Support. Care Cancer 2020, 28, 309–316. [Google Scholar] [CrossRef]
- Milam, E.C.; Rangel, L.K.; Pomeranz, M.K. Dermatologic Sequelae of Breast Cancer: From Disease, Surgery, and Radiation. Int. J. Dermatol. 2021, 60, 394–406. [Google Scholar]
- Magill, L.J.; Robertson, F.P.; Jell, G.; Mosahebi, A.; Keshtgar, M. Determining the Outcomes of Post-Mastectomy Radiation Therapy Delivered to the Definitive Implant in Patients Undergoing One- and Two-Stage Implant-Based Breast Reconstruction: A Systematic Review and Meta-Analysis. J. Plast. Reconstr. Aesthet. Surg. 2017, 70, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Cai, L.; Beniwal, A.; Tevlin, R.; Lee, G.; Nazerali, R.S. Autologous Fat Grafting and the Occurrence of Radiation-Induced Capsular Contracture. Ann. Plast. Surg. 2021, 86, S414–S417. [Google Scholar] [CrossRef]
- Chen, J.J.; von Eyben, R.; Gutkin, P.M.; Hawley, E.; Dirbas, F.M.; Lee, G.K.; Horst, K.C. Development of a Classification Tree to Predict Implant-Based Reconstruction Failure with or without Postmastectomy Radiation Therapy for Breast Cancer. Ann. Surg. Oncol. 2021, 28, 1669–1679. [Google Scholar] [CrossRef]
- Cordeiro, P.G.; Albornoz, C.R.; McCormick, B.; Hu, Q.; Van Zee, K. The Impact of Postmastectomy Radiotherapy on Two-Stage Implant Breast Reconstruction: An Analysis of Long-Term Surgical Outcomes, Aesthetic Results, and Satisfaction over 13 Years. Plast. Reconstr. Surg. 2014, 134, 588–595. [Google Scholar] [CrossRef]
- Hughes, K.S.; Schnaper, L.A.; Bellon, J.R.; Cirrincione, C.T.; Berry, D.A.; McCormick, B.; Muss, H.B.; Smith, B.L.; Hudis, C.A.; Winer, E.P.; et al. Lumpectomy plus Tamoxifen with or without Irradiation in Women Age 70 Years or Older with Early Breast Cancer: Long-Term Follow-up of CALGB 9343. J. Clin. Oncol. 2013, 31, 2382–2387. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Bremer, T.; Cox, C.; Whitworth, P.; Patel, R.; Patel, A.; Brown, E.; Gold, L.; Rock, D.; Riley, L.; et al. The Clinical Utility of DCISionRT® on Radiation Therapy Decision Making in Patients with Ductal Carcinoma In Situ Following Breast-Conserving Surgery. Ann. Surg. Oncol. 2021, 28, 5974–5984. [Google Scholar] [CrossRef]
- Hamidi, M.; Moody, J.S.; Kozak, K.R. Refusal of Radiation Therapy and Its Associated Impact on Survival. Am. J. Clin. Oncol. 2010, 33, 629–632. [Google Scholar]
- Tuttle, T.M.; Jarosek, S.; Habermann, E.B.; Yee, D.; Yuan, J.; Virnig, B.A. Omission of Radiation Therapy after Breast-Conserving Surgery in the United States: A Population-Based Analysis of Clinicopathologic Factors. Cancer 2012, 118, 2004–2013. [Google Scholar] [CrossRef]
- Blanpain, C.; Mohrin, M.; Sotiropoulou, P.A.; Passegué, E. DNA-Damage Response in Tissue-Specific and Cancer Stem Cells. Cell Stem Cell 2011, 8, 16–29. [Google Scholar] [CrossRef]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.-F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh Dose-Rate FLASH Irradiation Increases the Differential Response between Normal and Tumor Tissue in Mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.D.; Hammond, E.M.; Higgins, G.S.; Petersson, K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Front. Oncol. 2020, 9, 1563. [Google Scholar] [CrossRef]
- Spitz, D.R.; Buettner, G.R.; Petronek, M.S.; St-Aubin, J.J.; Flynn, R.T.; Waldron, T.J.; Limoli, C.L. An Integrated Physico-Chemical Approach for Explaining the Differential Impact of FLASH versus Conventional Dose Rate Irradiation on Cancer and Normal Tissue Responses. Radiother. Oncol. 2019, 139, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Soto, L.A.; Casey, K.M.; Wang, J.; Blaney, A.; Manjappa, R.; Breitkreutz, D.; Skinner, L.; Dutt, S.; Ko, R.B.; Bush, K.; et al. FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation. Radiat. Res. 2020, 194, 618–624. [Google Scholar] [CrossRef]
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef]
- Suo, M.; Shen, H.; Lyu, M.; Jiang, Y.; Liao, X.; Tang, W.; Pan, Y.; Zhang, T.; Ning, S.; Tang, B.Z. Biomimetic Nano-Cancer Stem Cell Scavenger for Inhibition of Breast Cancer Recurrence and Metastasis after FLASH-Radiotherapy. Small 2024, 20, e2400666. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xie, D.H.; Yang, Y.; Wang, Y.; Huang, R.; Chen, X.; Wang, B.; Peng, Y.; Wang, J.; Xiao, D.; et al. The Immune Response and Intestinal Injury after X-Ray FLASH Irradiation in Murine Breast Cancer Transplanted Models. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, S66–S67. [Google Scholar] [CrossRef]
- Lattery, G.; Kaulfers, T.; Cheng, C.; Zhao, X.; Selvaraj, B.; Lin, H.; Simone, C.B.; Choi, J.I.; Chang, J.; Kang, M. Pencil Beam Scanning Bragg Peak FLASH Technique for Ultra-High Dose Rate Intensity-Modulated Proton Therapy in Early-Stage Breast Cancer Treatment. Cancers 2023, 15, 4560. [Google Scholar] [CrossRef]
- Franciosini, G.; Carlotti, D.; Cattani, F.; De Gregorio, A.; De Liso, V.; De Rosa, F.; Di Francesco, M.; Di Martino, F.; Felici, G.; Pensavalle, J.H.; et al. IOeRT Conventional and FLASH Treatment Planning System Implementation Exploiting Fast GPU Monte Carlo: The Case of Breast Cancer. Phys. Medica 2024, 121, 103346. [Google Scholar] [CrossRef]
- van Marlen, P.; van de Water, S.; Dahele, M.; Slotman, B.J.; Verbakel, W.F.A.R. Single Ultra-High Dose Rate Proton Transmission Beam for Whole Breast FLASH-Irradiation: Quantification of FLASH-Dose and Relation with Beam Parameters. Cancers 2023, 15, 2579. [Google Scholar] [CrossRef]
- Adrian, G.; Konradsson, E.; Beyer, S.; Wittrup, A.; Butterworth, K.T.; McMahon, S.J.; Ghita, M.; Petersson, K.; Ceberg, C. Cancer Cells Can Exhibit a Sparing FLASH Effect at Low Doses Under Normoxic In Vitro-Conditions. Front. Oncol. 2021, 11, 686142. [Google Scholar] [CrossRef]
- Rohrer Bley, C.; Wolf, F.; Gonçalves Jorge, P.; Grilj, V.; Petridis, I.; Petit, B.; Böhlen, T.T.; Moeckli, R.; Limoli, C.; Bourhis, J.; et al. Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs. Clin. Cancer Res. 2022, 28, 3814–3823. [Google Scholar] [CrossRef]
- Rosen, P.P.; Fracchia, A.A.; Urban, J.A.; Schottenfeld, D.; Robbins, G.F. “Residual” Mammary Carcinoma Following Simulated Partial Mastectomy. Cancer 1975, 35, 739–747. [Google Scholar] [CrossRef]
- Lagios, M.D. Multicentricity of breast carcinoma demonstrated by routine correlated serial multicentric breast carcinoma subgross and radiographic examination. Cancer 1977, 40, 1726–1734. [Google Scholar] [CrossRef]
- Renton, S.C.; Gazet, J.C.; Ford, H.T.; Corbishley, C.; Sutcliffe, R. The Importance of the Resection Margin in Conservative Surgery for Breast Cancer. Eur. J. Surg. Oncol. 1996, 22, 17–22. [Google Scholar] [CrossRef]
- Fisher, B.; Anderson, S.; Bryant, J.; Margolese, R.G.; Deutsch, M.; Fisher, E.R.; Jeong, J.-H.; Wolmark, N. Twenty-Year Follow-up of a Randomized Trial Comparing Total Mastectomy, Lumpectomy, and Lumpectomy plus Irradiation for the Treatment of Invasive Breast Cancer. N. Engl. J. Med. 2002, 347, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.M.; Whelan, T.; Levine, M.; Roberts, R.; Willan, A.; McCulloch, P.; Lipa, M.; Wilkinson, R.H.; Mahoney, L.J. Randomized Clinical Trial of Breast Irradiation Following Lumpectomy and Axillary Dissection for Node-Negative Breast Cancer: An Update. Ontario Clinical Oncology Group. J. Natl. Cancer Inst. 1996, 88, 1659–1664. [Google Scholar] [CrossRef]
- Forrest, A.P.; Stewart, H.J.; Everington, D.; Prescott, R.J.; McArdle, C.S.; Harnett, A.N.; Smith, D.C.; George, W.D. Randomised Controlled Trial of Conservation Therapy for Breast Cancer: 6-Year Analysis of the Scottish Trial. Lancet 1996, 348, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Liljegren, G.; Holmberg, L.; Bergh, J.; Lindgren, A.; Tabár, L.; Nordgren, H.; Adami, H.O. 10-Year Results after Sector Resection with or without Postoperative Radiotherapy for Stage I Breast Cancer: A Randomized Trial. J. Clin. Oncol. 1999, 17, 2326–2333. [Google Scholar] [CrossRef]
- Holli, K.; Saaristo, R.; Isola, J.; Joensuu, H.; Hakama, M. Lumpectomy with or without Postoperative Radiotherapy for Breast Cancer with Favourable Prognostic Features: Results of a Randomized Study. Br. J. Cancer 2001, 84, 164–169. [Google Scholar] [CrossRef]
- Veronesi, U.; Orecchia, R.; Maisonneuve, P.; Viale, G.; Rotmensz, N.; Sangalli, C.; Luini, A.; Veronesi, P.; Galimberti, V.; Zurrida, S.; et al. Intraoperative Radiotherapy versus External Radiotherapy for Early Breast Cancer (ELIOT): A Randomised Controlled Equivalence Trial. Lancet Oncol. 2013, 14, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Zhou, J.-Q.; Chen, Q.; Deng, Y.-C. Comparison of the Sensitivity of Mammography, Ultrasound, Magnetic Resonance Imaging and Combinations of These Imaging Modalities for the Detection of Small (≤2 cm) Breast Cancer. Medicine 2021, 100, e26531. [Google Scholar] [CrossRef]
- Haussmann, J.; Corradini, S.; Nestle-Kraemling, C.; Bölke, E.; Njanang, F.J.D.; Tamaskovics, B.; Orth, K.; Ruckhaeberle, E.; Fehm, T.; Mohrmann, S.; et al. Recent Advances in Radiotherapy of Breast Cancer. Radiat. Oncol. 2020, 15, 71. [Google Scholar] [CrossRef]
- Langer, S.A.; Horst, K.C.; Ikeda, D.M.; Daniel, B.L.; Kong, C.S.; Dirbas, F.M. Pathologic Correlates of False Positive Breast Magnetic Resonance Imaging Findings: Which Lesions Warrant Biopsy? Am. J. Surg. 2005, 190, 633–640. [Google Scholar] [CrossRef]
- Sørensen, B.S.; Sitarz, M.K.; Ankjærgaard, C.; Johansen, J.G.; Andersen, C.E.; Kanouta, E.; Grau, C.; Poulsen, P. Pencil Beam Scanning Proton FLASH Maintains Tumor Control While Normal Tissue Damage Is Reduced in a Mouse Model. Radiother. Oncol. 2022, 175, 178–184. [Google Scholar] [CrossRef]
- Almeida, A.; Godfroid, C.; Leavitt, R.J.; Montay-Gruel, P.; Petit, B.; Romero, J.; Ollivier, J.; Meziani, L.; Sprengers, K.; Paisley, R.; et al. Antitumor Effect by Either FLASH or Conventional Dose Rate Irradiation Involves Equivalent Immune Responses. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 1110–1122. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, T.A.; Rafat, M.; Castellini, L.; Shehade, H.; Kariolis, M.S.; Hui, A.B.-Y.; Stehr, H.; von Eyben, R.; Jiang, D.; Ellies, L.G.; et al. Reprogramming the Immunological Microenvironment through Radiation and Targeting Axl. Nat. Commun. 2016, 7, 13898. [Google Scholar] [CrossRef]
- Wang, J.; Melemenidis, S.; Manjappa, R.; Viswanathan, V.; Ashraf, R.M.; Levy, K.; Skinner, L.B.; Soto, L.A.; Chow, S.; Lau, B.; et al. Dosimetric Calibration of Anatomy-Specific Ultra-High Dose Rate Electron Irradiation Platform for Preclinical FLASH Radiobiology Experiments. Med. Phys. 2024, 51, 9166–9178. [Google Scholar] [CrossRef] [PubMed]
- Schuler, E.; Trovati, S.; King, G.; Lartey, F.; Rafat, M.; Villegas, M.; Praxel, A.J.; Loo, B.W.; Maxim, P.G. Experimental Platform for Ultra-High Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 195–203. [Google Scholar] [CrossRef]
- Levy, K.; Natarajan, S.; Wang, J.; Chow, S.; Eggold, J.T.; Loo, P.E.; Manjappa, R.; Melemenidis, S.; Lartey, F.M.; Schuler, E.; et al. Abdominal FLASH Irradiation Reduces Radiation-Induced Gastrointestinal Toxicity for the Treatment of Ovarian Cancer in Mice. Sci. Rep. 2020, 10, 21600. [Google Scholar] [CrossRef]
- Eggold, J.T.; Chow, S.; Melemenidis, S.; Wang, J.; Natarajan, S.; Loo, P.E.; Manjappa, R.; Viswanathan, V.; Kidd, E.A.; Engleman, E.; et al. Abdominopelvic FLASH Irradiation Improves PD-1 Immune Checkpoint Inhibition in Preclinical Models of Ovarian Cancer. Mol. Cancer Ther. 2022, 21, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Drayson, O.G.; Melemenidis, S.; Katila, N.; Viswanathan, V.; Kramár, E.A.; Zhang, R.; Kim, R.; Ru, N.; Petit, B.; Dutt, S.; et al. A Multi-Institutional Study to Investigate the Sparing Effect after Whole Brain Electron FLASH in Mice: Reproducibility and Temporal Evolution of Functional, Electrophysiological, and Neurogenic Endpoints. Radiother. Oncol. 2024, 201, 110534. [Google Scholar] [CrossRef]
- Lewis, D.; Micke, A.; Yu, X.; Chan, M.F. An Efficient Protocol for Radiochromic Film Dosimetry Combining Calibration and Measurement in a Single Scan. Med. Phys. 2012, 39, 6339–6350. [Google Scholar] [CrossRef]
- Bryant, A.K.; Banegas, M.P.; Martinez, M.E.; Mell, L.K.; Murphy, J.D. Trends in Radiation Therapy among Cancer Survivors in the United States, 2000–2030. Cancer Epidemiol. Biomark. Prev. 2017, 26, 963–970. [Google Scholar] [CrossRef]
- Wu, Y.; No, H.J.; Breitkreutz, D.Y.; Mascia, A.E.; Moeckli, R.; Bourhis, J.; Schüler, E.; Maxim, P.G.; Loo, B.W. Technological Basis for Clinical Trials in FLASH Radiation Therapy: A Review. Appl. Rad. Oncol. 2021, 10, 6–14. [Google Scholar] [CrossRef]
- Loo, B.W.; Verginadis, I.I.; Sørensen, B.S.; Mascia, A.E.; Perentesis, J.P.; Koong, A.C.; Schüler, E.; Rankin, E.B.; Maxim, P.G.; Limoli, C.L.; et al. Navigating the Critical Translational Questions for Implementing FLASH in the Clinic. Semin. Radiat. Oncol. 2024, 34, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Mascia, A.E.; Daugherty, E.C.; Zhang, Y.; Lee, E.; Xiao, Z.; Sertorio, M.; Woo, J.; Backus, L.R.; McDonald, J.M.; McCann, C.; et al. Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases: The FAST-01 Nonrandomized Trial. JAMA Oncol. 2023, 9, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Study Details | FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases in the Thorax | ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05524064 (accessed on 18 August 2024).
- Study Details|Irradiation of Melanoma in a Pulse | ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT04986696 (accessed on 18 August 2024).
- Kinj, R.; Gaide, O.; Jeanneret-Sozzi, W.; Dafni, U.; Viguet-Carrin, S.; Sagittario, E.; Kypriotou, M.; Chenal, J.; Duclos, F.; Hebeisen, M.; et al. Randomized Phase II Selection Trial of FLASH and Conventional Radiotherapy for Patients with Localized Cutaneous Squamous Cell Carcinoma or Basal Cell Carcinoma: A Study Protocol. Clin. Transl. Radiat. Oncol. 2024, 45, 100743. [Google Scholar] [CrossRef]
- Study Details|FLASH Radiotherapy for Skin Cancer|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05724875 (accessed on 18 August 2024).
- Ko, R.B.; Soto, L.A.; von Eyben, R.; Melemenidis, S.; Rankin, E.B.; Maxim, P.G.; Graves, E.E.; Loo, B.W. Evaluating the Reproducibility of Mouse Anatomy under Rotation in a Custom Immobilization Device for Conformal FLASH Radiotherapy. Radiat. Res. 2020, 194, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Maxim, P.G.; Tantawi, S.G.; Loo, B.W. PHASER: A Platform for Clinical Translation of FLASH Cancer Radiotherapy. Radiother. Oncol. 2019, 139, 28–33. [Google Scholar] [CrossRef]
- Friedl, A.A.; Prise, K.M.; Butterworth, K.T.; Montay-Gruel, P.; Favaudon, V. Radiobiology of the FLASH Effect. Med. Phys. 2022, 49, 1993–2013. [Google Scholar] [CrossRef]
- Buchsbaum, J.C.; Coleman, C.N.; Espey, M.G.; Prasanna, P.G.S.; Capala, J.; Ahmed, M.M.; Hong, J.A.; Obcemea, C. FLASH Radiation Therapy: New Technology Plus Biology Required. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1248–1249. [Google Scholar] [CrossRef]
- Rama, N.; Saha, T.; Shukla, S.; Goda, C.; Milewski, D.; Mascia, A.E.; Vatner, R.E.; Sengupta, D.; Katsis, A.; Abel, E.; et al. Improved Tumor Control Through T-Cell Infiltration Modulated by Ultra-High Dose Rate Proton FLASH Using a Clinical Pencil Beam Scanning Proton System. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, S164–S165. [Google Scholar] [CrossRef]
Round 1 | |||||||
---|---|---|---|---|---|---|---|
Mode | Tumor Volume | Dose | No. mice | Collimation | AWTF a | SSD b | Missed |
[mm3] | [Gy] | [cm2] | [cm2] | [cm] | Pulses * | ||
FLASH | 20–40 | 20 | 4 | 2 × 2 | 0.75 × 2.00 | 18.7 | 1 |
FLASH | 20–40 | 30 | 4 | 2 × 2 | 0.75 × 2.00 | 18.7 | 0 |
FLASH | 250–800 | 30 | 6 | 2 × 2 | 0.75 × 2.00 | 18.7 | 0 |
CONV | 20–40 | 20 | 4 | 2 × 2 | 0.75 × 2.00 | 76.1 | - |
CONV | 20–40 | 30 | 4 | 2 × 2 | 0.75 × 2.00 | 76.1 | - |
CONV | 250–800 | 30 | 6 | 2 × 2 | 0.75 × 2.00 | 76.1 | - |
Round 2 | |||||||
Mode | Tumor Volume | Dose | No. mice | Collimation | PTV a | SSD b | Missed |
[mm3] | [Gy] | [cm2] | [cm2] | [cm] | Pulses * | ||
FLASH | 20–40 | 20 | 4 | 2 × 2 | 0.50 × 2.00 | 18.7 | 0 |
FLASH | 20–40 | 25 | 8 | 2 × 2 | 0.50 × 2.00 | 18.7 | 1 |
FLASH | 20–40 | 30 | 4 | 2 × 2 | 0.50 × 2.00 | 18.7 | 0 |
CONV | 20–40 | 20 | 4 | 2 × 2 | 0.50 × 2.00 | 18.7 | - |
CONV | 20–40 | 25 | 8 | 2 × 2 | 0.50 × 2.00 | 18.7 | - |
CONV | 20–40 | 30 | 4 | 2 × 2 | 0.50 × 2.00 | 18.7 | - |
Round 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Mode | Rx a | Pulses | DPP b | Pulse Rate | Dose Rate | Pulse Length | IPDR c | Energy |
[Gy] | [Gy] | [Hz] | [Gy/s] | [s] | [Gy/s] | [MeV] | ||
FLASH | 20 | 10 | 2 | 90 | 200 | 3.75 × 10−6 | 5.33 × 105 | 16.60 |
FLASH | 30 | 15 | 2 | 90 | 193 | 3.75 × 10−6 | 5.33 × 105 | 16.60 |
CONV | 20 | 9860 | 2.03 × 10−3 | 72 | 0.146 | 3.75 × 10−6 | 541 | 15.73 |
CONV | 30 | 14,796 | 2.03 × 10−3 | 72 | 0.146 | 3.75 × 10−6 | 541 | 15.73 |
Round 2 | ||||||||
Mode | Rx a | Pulses | DPP b | Pulse Rate | Dose Rate | Pulse Length | IPDR c | Energy |
[Gy] | [Gy] | [Hz] | [Gy/s] | [s] | [Gy/s] | [MeV] | ||
FLASH | 20 | 10 | 2 | 90 | 200 | 3.75 × 10−6 | 5.33 × 105 | 16.60 |
FLASH | 25 | 25 | 1 | 90 | 94 | 3.75 × 10−6 | 2.67 × 105 | 16.60 |
FLASH | 30 | 15 | 2 | 90 | 193 | 3.75 × 10−6 | 5.33 × 105 | 16.60 |
CONV | 20 | 13,200 | 1.52 × 10−3 | 90 | 0.136 | 3.75 × 10−6 | 404 | 15.73 |
CONV | 25 | 16,500 | 1.52 × 10−3 | 90 | 0.136 | 3.75 × 10−6 | 404 | 15.73 |
CONV | 30 | 19,800 | 1.52 × 10−3 | 90 | 0.136 | 3.75 × 10−6 | 404 | 15.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melemenidis, S.; Viswanathan, V.; Dutt, S.; Kapadia, N.; Lau, B.; Soto, L.A.; Ashraf, M.R.; Thakur, B.; Mutahar, A.Z.I.; Skinner, L.B.; et al. Effectiveness of FLASH vs. Conventional Dose Rate Radiotherapy in a Model of Orthotopic, Murine Breast Cancer. Cancers 2025, 17, 1095. https://doi.org/10.3390/cancers17071095
Melemenidis S, Viswanathan V, Dutt S, Kapadia N, Lau B, Soto LA, Ashraf MR, Thakur B, Mutahar AZI, Skinner LB, et al. Effectiveness of FLASH vs. Conventional Dose Rate Radiotherapy in a Model of Orthotopic, Murine Breast Cancer. Cancers. 2025; 17(7):1095. https://doi.org/10.3390/cancers17071095
Chicago/Turabian StyleMelemenidis, Stavros, Vignesh Viswanathan, Suparna Dutt, Naviya Kapadia, Brianna Lau, Luis A. Soto, M. Ramish Ashraf, Banita Thakur, Adel Z. I. Mutahar, Lawrie B. Skinner, and et al. 2025. "Effectiveness of FLASH vs. Conventional Dose Rate Radiotherapy in a Model of Orthotopic, Murine Breast Cancer" Cancers 17, no. 7: 1095. https://doi.org/10.3390/cancers17071095
APA StyleMelemenidis, S., Viswanathan, V., Dutt, S., Kapadia, N., Lau, B., Soto, L. A., Ashraf, M. R., Thakur, B., Mutahar, A. Z. I., Skinner, L. B., Yu, A. S., Surucu, M., Casey, K. M., Rankin, E. B., Horst, K. C., Graves, E. E., Loo, B. W., Jr., & Dirbas, F. M. (2025). Effectiveness of FLASH vs. Conventional Dose Rate Radiotherapy in a Model of Orthotopic, Murine Breast Cancer. Cancers, 17(7), 1095. https://doi.org/10.3390/cancers17071095