The Ectonucleotidases CD39 and CD73 and the Purinergic Receptor P2X4 Serve as Prognostic Markers in Non-Small Cell Lung Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Tissue Samples
2.2. Tissue Microarray Construction
2.3. Immunohistochemistry
2.4. Tissue Microarray Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Patient Survival
3.3. Histopathologic Parameters
3.4. Analysis of the Estimated Progressive-Free Survival Using Kaplan–Meier Method and Logrank-Test
3.5. Expression of Ectonucleotidases and Purinergic Receptors in NSCLCs
3.6. Logrank-Test of Progression-Free Survival and CD39 Expression
3.7. Cox-Regression of Progression-Free Survival and CD39 Expression
3.8. Logrank-Test of Progression-Free Survival and CD73 Expression
3.9. Cox-Regression of Progression-Free Survival and CD73 Expression
3.10. Logrank-Test of Progression-Free Survival and P2X7 Expression
3.11. Cox-Regression of Progression-Free Survival and P2X7 Expression
3.12. Logrank-Test of Progression-Free Survival and P2X4 Expression
3.13. Cox-Regression of Progression-Free Survival and P2X4 Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | adenosine triphosphate |
ALK | anaplastic lymphoma kinase |
ADC | adenocarcinoma |
BAL | bronchoalveolar lavage |
CI | confidence interval |
CD 39 | ectonucleoside triphosphate diphosphohydrolase-1 |
CD 73 | 5′-nucleotidase |
COPD | chronic obstructive pulmonary disease |
aADP | extracellular adenosine diphosphate |
eAMP | extracelluar adenosine monophosphate |
eATP | extracellular ATP |
EGFR | epidermal growth factor receptor |
EMT | epithelial-to-mesenchymal transition |
G | tumor grade |
H&E | hematoxylin-eosin |
HR | hazard ratio |
ISP | Institute for Surgical Pathology, Medical Center Freiburg, Germany |
L | lymph vessel invasion |
NSCLC | non-small cell lung cancer |
OS | overall survival |
PD1 | programmed cell death protein 1 |
PD-L1 | PD-ligand 1 |
PFS | progression-free survival |
Pn | perineural sheath invasion |
pT | pathological tumor size |
PY | pack-years |
R | residual disease |
ROIs | regions of interest |
SCC | squamous cell carcinoma |
SD | standard deviation |
SUVmax | maximum standardized uptake value |
TMAs | tissue microarrays |
TME | tumor microenvironment |
V | blood vessel invasion |
References
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 18 January 2025).
- Lim, J.U.; Lee, E.; Lee, S.Y.; Cho, H.J.; Ahn, D.H.; Hwang, Y.; Choi, J.Y.; Yeo, C.D.; Park, C.K.; Kim, S.J. Current Literature Review on the Tumor Immune Micro-Environment, Its Heterogeneity and Future Perspectives in Treatment of Advanced Non-Small Cell Lung Cancer. Transl. Lung Cancer Res. 2023, 12, 857–876. [Google Scholar] [CrossRef]
- Cascone, T.; Fradette, J.; Pradhan, M.; Gibbons, D.L. Tumor Immunology and Immunotherapy of Non-Small-Cell Lung Cancer. Cold Spring Harb. Perspect. Med. 2022, 12, a037895. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, J.B.; Kerkhoff, V.V.; de Oliveira Maciel, S.F.V.; de Resende e Silva, D.T. Targeting the Purinergic Pathway in Breast Cancer and Its Therapeutic Applications. Purinergic Signal. 2021, 17, 179–200. [Google Scholar] [CrossRef] [PubMed]
- Roliano, G.G.; Azambuja, J.H.; Brunetto, V.T.; Butterfield, H.E.; Kalil, A.N.; Braganhol, E. Colorectal Cancer and Purinergic Signalling: An Overview. Cancers 2022, 14, 4887. [Google Scholar] [CrossRef]
- Wilson, D.F.; Matschinsky, F.M. Integration of Eukaryotic Energy Metabolism: The Intramitochondrial and Cytosolic Energy States ([ATP]f/[ADP]f[Pi]). Int. J. Mol. Sci. 2022, 23, 5550. [Google Scholar] [CrossRef]
- Kurashima, Y.; Kiyono, H.; Kunisawa, J. Pathophysiological Role of Extracellular Purinergic Mediators in the Control of Intestinal Inflammation. Mediat. Inflamm. 2015, 2015, 427125. [Google Scholar] [CrossRef]
- Tovar, L.M.; Burgos, C.F.; Yévenes, G.E.; Moraga-Cid, G.; Fuentealba, J.; Coddou, C.; Bascunan-Godoy, L.; Catrupay, C.; Torres, A.; Castro, P.A. Understanding the Role of ATP Release through Connexins Hemichannels during Neurulation. Int. J. Mol. Sci. 2023, 24, 2159. [Google Scholar] [CrossRef]
- Schetinger, M.R.C.; Morsch, V.M.; Bonan, C.D.; Wyse, A.T.S. NTPDase and 5’-Nucleotidase Activities in Physiological and Disease Conditions: New Perspectives for Human Health. Biofactors 2007, 31, 77–98. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Sitkovsky, M.V.; Robson, S.C. Purinergic Signaling during Inflammation. N. Engl. J. Med. 2012, 367, 2322. [Google Scholar] [CrossRef]
- Burnstock, G. Discovery of Purinergic Signalling, the Initial Resistance and Current Explosion of Interest. Br. J. Pharmacol. 2012, 167, 238–255. [Google Scholar] [CrossRef]
- Puchałowicz, K.; Tarnowski, M.; Baranowska-Bosiacka, I.; Chlubek, D.; Dziedziejko, V. P2X and P2Y Receptors—Role in the Pathophysiology of the Nervous System. Int. J. Mol. Sci. 2014, 15, 23672. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Silberberg, S.D.; Swartz, K.J. Subtype-Specific Control of P2X Receptor Channel Signaling by ATP and Mg2+. Proc. Natl. Acad. Sci. USA 2013, 110, E3455–E3463. [Google Scholar] [CrossRef] [PubMed]
- Gendron, F.P.; Neary, J.T.; Theiss, P.M.; Sun, G.Y.; Gonzalez, F.A.; Weisman, G.A. Mechanisms of P2X7 Receptor-Mediated ERK1/2 Phosphorylation in Human Astrocytoma Cells. Am. J. Physiol. Cell Physiol. 2003, 284, C571–C581. [Google Scholar] [CrossRef] [PubMed]
- von Kügelgen, I. Pharmacological Characterization of P2Y Receptor Subtypes—An Update. Purinergic Signal. 2023, 20, 99. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Balasubramanian, R.; Deflorian, F.; Gao, Z.G. G Protein-Coupled Adenosine (P1) and P2Y Receptors: Ligand Design and Receptor Interactions. Purinergic Signal. 2012, 8, 419. [Google Scholar] [CrossRef]
- Stankovic, B.; Bjørhovde, H.A.K.; Skarshaug, R.; Aamodt, H.; Frafjord, A.; Müller, E.; Hammarström, C.; Beraki, K.; Bækkevold, E.S.; Woldbæk, P.R.; et al. Immune Cell Composition in Human Non-Small Cell Lung Cancer. Front. Immunol. 2019, 9, 3101. [Google Scholar] [CrossRef]
- Kepp, O.; Bezu, L.; Yamazaki, T.; Di Virgilio, F.; Smyth, M.J.; Kroemer, G.; Galluzzi, L. ATP and Cancer Immunosurveillance. EMBO J. 2021, 40, e108130. [Google Scholar] [CrossRef]
- Zhao, H.; Bo, C.; Kang, Y.; Li, H. What Else Can CD39 Tell Us? Front. Immunol. 2017, 8, 727. [Google Scholar] [CrossRef]
- Bastid, J.; Regairaz, A.; Bonnefoy, N.; Dejou, C.; Giustiniani, J.; Laheurte, C.; Cochaud, S.; Laprevotte, E.; Funck-Brentano, E.; Hemon, P.; et al. Inhibition of CD39 Enzymatic Function at the Surface of Tumor Cells Alleviates Their Immunosuppressive Activity. Cancer Immunol. Res. 2015, 3, 254–265. [Google Scholar] [CrossRef]
- Tøndell, A.; Wahl, S.G.F.; Sponaas, A.M.; Sørhaug, S.; Børset, M.; Haug, M. Ectonucleotidase CD39 and Checkpoint Signalling Receptor Programmed Death 1 Are Highly Elevated in Intratumoral Immune Cells in Non-Small-Cell Lung Cancer. Transl. Oncol. 2020, 13, 17–24. [Google Scholar] [CrossRef]
- Yeong, J.; Suteja, L.; Simoni, Y.; Lau, K.W.; Tan, A.C.; Li, H.H.; Lim, S.; Loh, J.H.; Wee, F.Y.T.; Nerurkar, S.N.; et al. Intratumoral CD39+CD8+ T Cells Predict Response to Programmed Cell Death Protein-1 or Programmed Death Ligand-1 Blockade in Patients With NSCLC. J. Thorac. Oncol. 2021, 16, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Wang, X.; Yu, Q.; Gong, J.; Zhang, X.; Zhou, Y. In Lung Adenocarcinoma, Low Expression of the Cell Surface Extracellular Nucleotidase CD39 Is Related to Immune Infiltration and a Poor Prognosis. J. Thorac. Dis. 2022, 14, 4938–4950. [Google Scholar] [CrossRef] [PubMed]
- Giatromanolaki, A.; Kouroupi, M.; Pouliliou, S.; Mitrakas, A.; Hasan, F.; Pappa, A.; Koukourakis, M.I. Ectonucleotidase CD73 and CD39 Expression in Non-Small Cell Lung Cancer Relates to Hypoxia and Immunosuppressive Pathways. Life Sci. 2020, 259, 118389. [Google Scholar] [CrossRef]
- Inoue, Y.; Yoshimura, K.; Kurabe, N.; Kahyo, T.; Kawase, A.; Tanahashi, M.; Ogawa, H.; Inui, N.; Funai, K.; Shinmura, K.; et al. Prognostic Impact of CD73 and A2A Adenosine Receptor Expression in Non-Small-Cell Lung Cancer. Oncotarget 2017, 8, 8738–8751. [Google Scholar] [CrossRef]
- Zhu, J.; Du, W.; Zeng, Y.; Liu, T.; Li, J.; Wang, A.; Li, Y.; Zhang, W.; Huang, J.A.; Liu, Z. CD73 Promotes Non-Small Cell Lung Cancer Metastasis by Regulating Axl Signaling Independent of GAS6. Proc. Natl. Acad. Sci. USA 2024, 121, e2404709121. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lee, T.; He, Y.; Raman, R.; Irizarry, A.; Martin, M.L.; Giaccone, G. The Regulation of CD73 in Non-Small Cell Lung Cancer. Eur. J. Cancer 2022, 170, 91–102. [Google Scholar] [CrossRef]
- Song, S.; Jacobson, K.N.; McDermott, K.M.; Reddy, S.P.; Cress, A.E.; Tang, H.; Dudek, S.M.; Black, S.M.; Garcia, J.G.N.; Makino, A.; et al. ATP Promotes Cell Survival via Regulation of Cytosolic [Ca2+] and Bcl-2/Bax Ratio in Lung Cancer Cells. Am. J. Physiol. Cell Physiol. 2016, 310, C99–C114. [Google Scholar] [CrossRef]
- Schmid, S.; Kübler, M.; Korcan Ayata, C.; Lazar, Z.; Haager, B.; Hoßfeld, M.; Meyer, A.; Cicko, S.; Elze, M.; Wiesemann, S.; et al. Altered Purinergic Signaling in the Tumor Associated Immunologic Microenvironment in Metastasized Non-Small-Cell Lung Cancer. Lung Cancer 2015, 90, 516–521. [Google Scholar] [CrossRef]
- Brock, V.J.; Wolf, I.M.A.; Er-Lukowiak, M.; Lory, N.; Stähler, T.; Woelk, L.M.; Mittrücker, H.W.; Müller, C.E.; Koch-Nolte, F.; Rissiek, B.; et al. P2X4 and P2X7 Are Essential Players in Basal T Cell Activity and Ca2+ Signaling Milliseconds after T Cell Activation. Sci. Adv. 2022, 8, eabl9770. [Google Scholar] [CrossRef]
- Santos, S.A.C.S.; Persechini, P.M.; Henriques-Santos, B.M.; Bello-Santos, V.G.; Castro, N.G.; Costa de Sousa, J.; Genta, F.A.; Santiago, M.F.; Coutinho-Silva, R.; Savio, L.E.B.; et al. P2X7 Receptor Triggers Lysosomal Leakage Through Calcium Mobilization in a Mechanism Dependent on Pannexin-1 Hemichannels. Front. Immunol. 2022, 13, 752105. [Google Scholar] [CrossRef]
- Herbst, R.S.; Majem, M.; Barlesi, F.; Carcereny, E.; Chu, Q.; Monnet, I.; Sanchez-Hernandez, A.; Dakhil, S.; Camidge, D.R.; Winzer, L.; et al. COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination With Oleclumab or Monalizumab in Patients With Unresectable, Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 3383–3393. [Google Scholar] [CrossRef]
- Researcher View|Study of SRF617 in Patients With Advanced Solid Tumors|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT04336098?cond=nsclc&term=SRF617&rank=1&tab=table (accessed on 18 January 2025).
- Müller, C.E.; Namasivayam, V. Recommended Tool Compounds and Drugs for Blocking P2X and P2Y Receptors. Purinergic Signal. 2021, 17, 633–648. [Google Scholar] [CrossRef] [PubMed]
- Borczuk, A.C.; Chan, J.K.C.; Cooper, W.A.; Dacic, S.; Kerr, K.M.; Lantuejoul, S.; Marx, A.; Nicholson, A.G.; Scagliotti, G.V.; Thompson, L.D.R.; et al. Thoracic Tumours; IARC Press: Lyon, France, 2021; ISBN 978-92-832-4506-3. [Google Scholar]
- Kurowski, K.; Timme, S.; Föll, M.C.; Backhaus, C.; Holzner, P.A.; Bengsch, B.; Schilling, O.; Werner, M.; Bronsert, P. AI-Assisted High-Throughput Tissue Microarray Workflow. Methods Protoc. 2024, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Union for International Cancer Control: Geneva, Switzerland, 2017; pp. 1–272. [Google Scholar]
- Kaur, J.; Dora, S. Purinergic Signaling: Diverse Effects and Therapeutic Potential in Cancer. Front. Oncol. 2023, 13, 1058371. [Google Scholar] [CrossRef]
- Del, A.; Campos-Contreras, R.; Díaz-Muñoz, M.; Vázquez-Cuevas, F.G. Purinergic Signaling in the Hallmarks of Cancer. Cells 2020, 9, 1612. [Google Scholar] [CrossRef]
- Zhang, Y.; Vaccarella, S.; Morgan, E.; Li, M.; Etxeberria, J.; Chokunonga, E.; Manraj, S.S.; Kamate, B.; Omonisi, A.; Bray, F. Global Variations in Lung Cancer Incidence by Histological Subtype in 2020: A Population-Based Study. Lancet Oncol. 2023, 24, 1206–1218. [Google Scholar] [CrossRef]
- Casal-Mouriño, A.; Ruano-Ravina, A.; Lorenzo-González, M.; Rodríguez-Martínez, Á.; Giraldo-Osorio, A.; Varela-Lema, L.; Pereiro-Brea, T.; Miguel Barros-Dios, J.; Valdés-Cuadrado, L.; Pérez-Ríos, M. Epidemiology of Stage III Lung Cancer: Frequency, Diagnostic Characteristics, and Survival. Transl. Lung Cancer Res. 2021, 10, 506. [Google Scholar] [CrossRef]
- Baiu, I.; Titan, A.L.; Martin, L.W.; Wolf, A.; Backhus, L. The Role of Gender in Non-Small Cell Lung Cancer: A Narrative Review. J. Thorac. Dis. 2021, 13, 3816. [Google Scholar] [CrossRef]
- Cai, X.Y.; Wang, X.F.; Li, J.; Dong, J.N.; Liu, J.Q.; Li, N.P.; Yun, B.; Xia, R.L.; Qin, J.; Sun, Y.H. High Expression of CD39 in Gastric Cancer Reduces Patient Outcome Following Radical Resection. Oncol. Lett. 2016, 12, 4080–4086. [Google Scholar] [CrossRef]
- Muñóz-Godínez, R.; De Lourdes Mora-García, M.; Weiss-Steider, B.; Montesinos-Montesinos, J.J.; Del Carmen Aguilar-Lemarroy, A.; García-Rocha, R.; Hernández-Montes, J.; Azucena Don-López, C.; Ávila-Ibarra, L.R.; Torres-Pineda, D.B.; et al. Detection of CD39 and a Highly Glycosylated Isoform of Soluble CD73 in the Plasma of Patients with Cervical Cancer: Correlation with Disease Progression. Mediat. Inflamm. 2020, 2020, 1678780. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.Y.; Ni, X.C.; Yi, Y.; He, H.W.; Wang, J.X.; Fu, Y.P.; Sun, J.; Zhou, J.; Cheng, Y.F.; Jin, J.J.; et al. Overexpression of CD39 in Hepatocellular Carcinoma Is an Independent Indicator of Poor Outcome after Radical Resection. Medicine 2016, 95, e4989. [Google Scholar] [CrossRef]
- Chow, A.; Uddin, F.Z.; Liu, M.; Dobrin, A.; Nabet, B.Y.; Mangarin, L.; Lavin, Y.; Rizvi, H.; Tischfield, S.E.; Quintanal-Villalonga, A.; et al. The Ectonucleotidase CD39 Identifies Tumor-Reactive CD8+ T Cells Predictive of Immune Checkpoint Blockade Efficacy in Human Lung Cancer. Immunity 2023, 56, 93–106.e6. [Google Scholar] [CrossRef]
- Koppensteiner, L.; Mathieson, L.; Pattle, S.; Dorward, D.A.; O’Connor, R.; Akram, A.R. Location of CD39+ T Cell Subpopulations within Tumors Predict Differential Outcomes in Non-Small Cell Lung Cancer. J. Immunother. Cancer 2023, 11, e006770. [Google Scholar] [CrossRef] [PubMed]
- Warren, M.C.; Matissek, S.; Rausch, M.; Panduro, M.; Hall, R.J.; Dulak, A.; Brennan, D.; Das Yekkirala, S.; Koseoglu, S.; Masia, R.; et al. SRF617 Is a Potent Inhibitor of CD39 with Immunomodulatory and Antitumor Properties. Immunohorizons 2023, 7, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Perrot, I.; Michaud, H.A.; Giraudon-Paoli, M.; Augier, S.; Docquier, A.; Gros, L.; Courtois, R.; Déjou, C.; Jecko, D.; Becquart, O.; et al. Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Rep. 2019, 27, 2411–2425.e9. [Google Scholar] [CrossRef]
- Kowash, R.R.; Akbay, E.A.; Shi, Q.; Jenkins, R.; Jaeger, A. Tumor Intrinsic and Extrinsic Functions of CD73 and the Adenosine Pathway in Lung Cancer. Front. Immunol. 2023, 14, 1130358. [Google Scholar] [CrossRef]
- Cascone, T.; Kar, G.; Spicer, J.D.; García-Campelo, R.; Weder, W.; Daniel, D.B.; Spigel, D.R.; Hussein, M.; Mazieres, J.; Oliveira, J.; et al. Neoadjuvant Durvalumab Alone or Combined with Novel Immuno-Oncology Agents in Resectable Lung Cancer: The Phase II NeoCOAST Platform Trial. Cancer Discov. 2023, 13, 2394–2411. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, S.W.; Camidge, D.R.; Shu, C.A.; Marrone, K.A.; Le, X.; Blakely, C.M.; Park, K.; Chang, G.C.; Patel, S.P.; et al. CD73 Inhibitor Oleclumab Plus Osimertinib in Previously Treated Patients With Advanced T790M-Negative EGFR-Mutated NSCLC: A Brief Report. J. Thorac. Oncol. 2023, 18, 650–656. [Google Scholar] [CrossRef]
- Timperi, E.; Barnaba, V. CD39 Regulation and Functions in T Cells. Int. J. Mol. Sci. 2021, 22, 8068. [Google Scholar] [CrossRef]
- Chadet, S.; Allard, J.; Brisson, L.; Lopez-Charcas, O.; Lemoine, R.; Heraud, A.; Lerondel, S.; Guibon, R.; Fromont, G.; Le Pape, A.; et al. P2x4 Receptor Promotes Mammary Cancer Progression by Sustaining Autophagy and Associated Mesenchymal Transition. Oncogene 2022, 41, 2920–2931. [Google Scholar] [CrossRef]
- Maynard, J.P.; Lu, J.; Vidal, I.; Hicks, J.; Mummert, L.; Ali, T.; Kempski, R.; Carter, A.M.; Sosa, R.Y.; Peiffer, L.B.; et al. P2X4 Purinergic Receptors Offer a Therapeutic Target for Aggressive Prostate Cancer. J. Pathol. 2021, 256, 149. [Google Scholar] [CrossRef]
- Douguet, L.; Janho dit Hreich, S.; Benzaquen, J.; Seguin, L.; Juhel, T.; Dezitter, X.; Duranton, C.; Ryffel, B.; Kanellopoulos, J.; Delarasse, C.; et al. A Small-Molecule P2RX7 Activator Promotes Anti-Tumor Immune Responses and Sensitizes Lung Tumor to Immunotherapy. Nat. Commun. 2021, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Lara, R.; Adinolfi, E.; Harwood, C.A.; Philpott, M.; Barden, J.A.; Di Virgilio, F.; McNulty, S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front. Pharmacol. 2020, 11, 542480. [Google Scholar] [CrossRef] [PubMed]
- Benzaquen, J.; Dit Hreich, S.J.; Heeke, S.; Juhel, T.; Lalvee, S.; Bauwens, S.; Saccani, S.; Lenormand, P.; Hofman, V.; Butori, M.; et al. P2RX7B Is a New Theranostic Marker for Lung Adenocarcinoma Patients. Theranostics 2020, 10, 10849–10860. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, L.; Giordano, M.; Alì, G.; Melfi, F.; Romano, G.; Lucchi, M.; Fontanini, G. P2x7 Mrna Expression in Non-Small Cell Lung Cancer: MicroRNA Regulation and Prognostic Value. Oncol. Lett. 2015, 9, 449–453. [Google Scholar] [CrossRef]
- Sainz, R.M.; Rodriguez-Quintero, J.H.; Maldifassi, M.C.; Stiles, B.M.; Wennerberg, E. Tumour Immune Escape via P2X7 Receptor Signalling. Front. Immunol. 2023, 14, 1287310. [Google Scholar] [CrossRef]
Logrank-Test | |
---|---|
Clinicopathological Parameter | p-Value |
Age | 0.086 |
Blood Vessel Invasion | 0.0012 * |
Histological Subtype | 0.64 |
Lymph Vessel Invasion | <0.0001 * |
Neoadjuvant Therapy | 0.16 |
Pack Years | 0.57 |
Perineural Sheath Invasion | 0.24 |
pN-Classification | 0.00068 * |
pT-Classification | 0.0052 * |
Residual Disease | <0.0001 * |
Sex | 0.0036 * |
Tumor Grade | 0.81 |
H-Score | p-Value 1 | Cutoff 2 |
---|---|---|
CD39-Tumor | <0.01 | 4.2 |
CD39-Stroma | 0.24 | 151.8 |
CD73-Tumor | <0.01 | 6.8 |
CD73-Stroma | <0.01 | 105.8 |
P2X7-Tumor | <0.01 | 205.7 |
P2X7-Stroma | <0.01 | 102.6 |
P2X4-Tumor | <0.01 | 12.49 |
P2X4-Stroma | <0.01 | 2.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurowski, K.; Prozmann, S.N.; Cabrita Figueiredo, A.E.; Heyer, J.; Kind, F.; Schröder, K.-M.; Passlick, B.; Werner, M.; Bronsert, P.; Schmid, S. The Ectonucleotidases CD39 and CD73 and the Purinergic Receptor P2X4 Serve as Prognostic Markers in Non-Small Cell Lung Cancer. Cancers 2025, 17, 1142. https://doi.org/10.3390/cancers17071142
Kurowski K, Prozmann SN, Cabrita Figueiredo AE, Heyer J, Kind F, Schröder K-M, Passlick B, Werner M, Bronsert P, Schmid S. The Ectonucleotidases CD39 and CD73 and the Purinergic Receptor P2X4 Serve as Prognostic Markers in Non-Small Cell Lung Cancer. Cancers. 2025; 17(7):1142. https://doi.org/10.3390/cancers17071142
Chicago/Turabian StyleKurowski, Konrad, Sophie Nicole Prozmann, António Eduardo Cabrita Figueiredo, Jannis Heyer, Felix Kind, Karl-Moritz Schröder, Bernward Passlick, Martin Werner, Peter Bronsert, and Severin Schmid. 2025. "The Ectonucleotidases CD39 and CD73 and the Purinergic Receptor P2X4 Serve as Prognostic Markers in Non-Small Cell Lung Cancer" Cancers 17, no. 7: 1142. https://doi.org/10.3390/cancers17071142
APA StyleKurowski, K., Prozmann, S. N., Cabrita Figueiredo, A. E., Heyer, J., Kind, F., Schröder, K.-M., Passlick, B., Werner, M., Bronsert, P., & Schmid, S. (2025). The Ectonucleotidases CD39 and CD73 and the Purinergic Receptor P2X4 Serve as Prognostic Markers in Non-Small Cell Lung Cancer. Cancers, 17(7), 1142. https://doi.org/10.3390/cancers17071142